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COMMUNICATION AMONG TASKS
What are common communication patterns?

Point-to-point communication

• Single sender, single receiver

• Relatively easy to implement efficiently

Collective communication

• Multiple senders and/or receivers

• Patterns include broadcast, scatter, gather, reduce, all-to-all, …

• Difficult to implement efficiently

Slides from Nvidia
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POINT-TO-POINT COMMUNICATION
Single-sender, single-receiver per instance

Most common pattern in HPC, where communication is usually to nearest neighbors

Boundary
exchanges

3
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Collective Communication
multiple senders, multiple receivers

Slides from Nvidia
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What Limits the scalability of distributed applications?

Efficiency of parallel computation tasks

• Amount of exposed parallelism 

• Load balance & scheduling overhead

Expense of communications among tasks

• Amount of communication

• Degree of overlap of communication and computation

Nvidia (nccl) : Collectives Communication Library
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BROADCAST
One sender, multiple receivers

GPU0 GPU1 GPU2 GPU3

A

GPU0 GPU1 GPU2 GPU3

A A A A

broadcast

Slides from Nvidia
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REDUCE
Combine data from all senders; deliver the result to one receiver

GPU0 GPU1 GPU2 GPU3

A B C D

reduce

GPU0 GPU1 GPU2 GPU3

A
+
B
+ 
C
+
D
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GATHER
Multiple senders, one receiver

GPU0 GPU1 GPU2 GPU3

A

B

C

D

GPU0 GPU1 GPU2 GPU3

A B C D

gather

Slides from Nvidia
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ALL-GATHER
Gather messages from all; deliver gathered data to all participants

GPU0 GPU1 GPU2 GPU3

A B C D

GPU0 GPU1 GPU2 GPU3

A A A A

B B B B

C C C C

D D D D

all-gather

Slides from Nvidia
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SCATTER
One sender; data is distributed among multiple receivers

scatter

GPU0 GPU1 GPU2 GPU3

A B C D

GPU0 GPU1 GPU2 GPU3

A

B

C

D
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GPU0 GPU1 GPU2 GPU3

A0+B0+ 
C0+D0

A1+B1+ 
C1+D1

A2+B2+ 
C2+D2

A3+B3+ 
C3+D3

REDUCE-SCATTER
Combine data from all senders; distribute result across participants

reduce-
scatter

GPU0 GPU1 GPU2 GPU3

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

Slides from Nvidia
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ALL-TO-ALL
Scatter/Gather distinct messages from each participant to every other

GPU0 GPU1 GPU2 GPU3

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

all-to-all

GPU0 GPU1 GPU2 GPU3

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3

Slides from Nvidia
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GPU0 GPU1 GPU2 GPU3

A
+
B
+ 
C
+
D

A
+
B
+ 
C
+
D

A
+
B
+ 
C
+
D

A
+
B
+ 
C
+ 
D

ALL-REDUCE
Combine data from all senders; deliver the result to all participants

GPU0 GPU1 GPU2 GPU3

A B C D

all-reduce

Slides from Nvidia
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ALL-REDUCE
Combine data from all senders; deliver the result to all participants

GPU0 GPU1 GPU2 GPU3

A B C D

all-reduce

GPU3GPU2GPU1GPU0

A

GPU3GPU2GPU1GPU0

AAAA

broadcast
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GPU3GPU2GPU1GPU0

DCBA

reduce

GPU3GPU2GPU1GPU0

A
+
B
+ 
C
+
D
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ALL-REDUCE
Combine data from all senders; deliver the result to all participants

GPU0 GPU1 GPU2 GPU3

A B C D

all-reduce

reduce-
scatter

GPU3GPU2GPU1GPU0

A3+B3+ 
C3+D3

A2+B2+ 
C2+D2

A1+B1+ 
C1+D1

A0+B0+ 
C0+D0
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GPU3GPU2GPU1GPU0

D0C0B0A0

D1C1B1A1

D2C2B2A2

D3C3B3A3

GPU3GPU2GPU1GPU0

DCBA

GPU3GPU2GPU1GPU0

AAAA

BBBB

CCCC

DDDD

all-gather

Slides from Nvidia



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

THE CHALLENGE OF COLLECTIVES
Collectives are often avoided because they are expensive. Why?

Having multiple senders and/or receivers compounds communication inefficiencies

• For small transfers, latencies dominate; more participants increase latency

• For large transfers, bandwidth is key; bottlenecks are easily exposed

• May require topology-aware implementation for high performance

• Collectives are often blocking/non-overlapped

Slides from Nvidia
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THE CHALLENGE OF COLLECTIVES
Many implementations seen in the wild are suboptimal

Depends on various factors: 

1. Underlying network topology – hierarchical, fat-free, etc.

2. Implementation – ring vs tree-based collectives (logical topology on the network)

3. Data scheduling – compute and communication overlap

Slides from Nvidia
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HARDWARE PLATFORMS

1. Multi-GPU boxes interconnected by a datacenter network (E.g., NVIDIA, AMD)

2. Custom interconnects as in TPUv4

Slides from Nvidia
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NVLink

19
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Data loading and gradient averaging share communication resources → congestion

Data Parallelism – PCIe based
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Datal loading on PCIe,  gradient averaging on NVLINK → no congestion

Data Parallelism – NVLink
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Nvidia DGX Machine – A100

Number of GPUs 8

NVLink Bandwidth 300 GBps per GPU

NIC PCIe 
Bandwidth

12.5 GBps per GPU
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Topology - Fat Trees

- For any switch, the number of links going down to its siblings is equal to the number of links 

going up to its parent in the upper level.

- If oversubscribed, the number of uplinks is less than the number of downlinks

- Non-blocking: the number of uplinks and downlinks are in proportion of 1:1

- blocking factor = # downlink/ # uplink
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IB 0 (Rack)

4-Tier Topology-Fat Tree

IB0 (Rack)
Devices per IB0: 32
Servers Per IB0: 4

DGX 
A100

B: 300 GBps
Util: 67%
Devices per 
Node: 8

IB 1 Set (160 switches)
Devices per IB1 Set: 3072
Servers per IB1 Set: 384

B: 100 GBps
Util: 80 %

DGX 
A100

DGX 
A100

DGX 
A100

DGX 
A100

DGX 
A100

DGX 
A100

B: 4 * 100 GBps per IB0 
switch set
Util: 80 %

IB 1 Set (160 
switches)

IB 2 Set (200 switches)
Devices per IB2 Set: 6144
Servers per IB2 Set: 768

B: 96 * 400 GBps per IB1 switch set
Util: 80 %

DGX A100

B: 12.5 GBps
Util: 80%
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Rail only (Meta)

Across each High Bandwidth Domain, only GPUs of the same index (same rail) are connect via rail interconnection 

● Only way for Inter-Domain communication of GPU in different rails, are by hopping through GPUs

Domain 1 Domain 2 Domain M

Optimized Network Architectures for Large Language Model Training with Billions of Parameters



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

One TPUv4 rack

Topology 3D torus

TPUs per Rack 64 (4x4x4)

Intra- rack connection Inter-Chip Interconnection 
links 50 GB/s

Inter- rack connection OCS links connected to 
surface nodes

Total TPUs per Pod 4096

26

Y[0][0]

Z[3][0]Z[0][0]

X[3][3]Y[0][3]

Google TPUv4 Racks
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TPUv4 connections across racks

OCS connection for 1 rack.

➔ 16 OCSes per dimension (connected to 
nodes in both opposite faces)

➔ 48 OCSes connected to each rack (cube)

Three out of the 48 OCS connections across 64 Racks

➔ Each OCS is connected to all 64 racks in the 
pod.

Zoom out across racks

27

1 Rack

Y 
OCS

Z 
OCS

X 
OCS

x16

x16

x16

Rack
1 

Rack
2 

Rack
64



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

With OCS, we can create any arbitrary topology with 4i x 4j x 4k nodes 

● 8x8x8 is 8 racks in assembled as a 3D Torus
● With 4096 Nodes, we will have a 16x16x16 Topology

8x8x8 Topology with OCS connections 28

TPUv4 connections across racks
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Often deploy these devices in a cluster or a pod

Figure Courtesy: Google Cloud

Eight of 64 racks for one 4096-chip supercomputer 



RING-BASED COLLECTIVES: A PRIMER
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BROADCAST
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Slides from Nvidia
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BROADCAST
with unidirectional ring

Step 1: ∆𝑡 = 𝑁/𝐵

𝑁: bytes to broadcast

𝐵: bandwidth of each link

GPU0 GPU1 GPU2 GPU3

32

Slides from Nvidia
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BROADCAST
with unidirectional ring

Step 1: ∆𝑡 = 𝑁/𝐵

Step 2: ∆𝑡 = 𝑁/𝐵

𝑁: bytes to broadcast

𝐵: bandwidth of each link

GPU0 GPU1 GPU2 GPU3

33
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BROADCAST
with unidirectional ring

Step 1: ∆𝑡 = 𝑁/𝐵

Step 2: ∆𝑡 = 𝑁/𝐵

Step 3: ∆𝑡 = 𝑁/𝐵

𝑁: bytes to broadcast

𝐵: bandwidth of each link

GPU0 GPU1 GPU2

34

GPU3

Slides from Nvidia
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BROADCAST
with unidirectional ring

Step 1: ∆𝑡 = 𝑁/𝐵

Step 2: ∆𝑡 = 𝑁/𝐵

Step 3: ∆𝑡 = 𝑁/𝐵

Total time: 𝑘 − 1 𝑁/𝐵

𝑁: bytes to broadcast

𝐵: bandwidth of each link

𝑘: number of GPUs

GPU0 GPU1 GPU2 GPU3

35

Slides from Nvidia
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Outline

Slides from Nvidia

• Collective Communication
• Collective Patterns – mathematical operators
• Collective Algorithm – the way it is logically executed in the network
• Collective Scheduling - the schedule of the data transfer and compute
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BROADCAST
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

37

Slides from Nvidia



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

BROADCAST
with unidirectional ring

Split data into 𝑆 messages

Step 1: ∆𝑡 = 𝑁/(𝑆𝐵)

GPU0 GPU1 GPU2 GPU3

38

Slides from Nvidia
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BROADCAST
with unidirectional ring

Split data into 𝑆 messages

Step 1: ∆𝑡 = 𝑁/(𝑆𝐵)

Step 2: ∆𝑡 = 𝑁/(𝑆𝐵)

GPU0 GPU1 GPU2 GPU3

39

Slides from Nvidia
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BROADCAST
with unidirectional ring

Split data into 𝑆 messages

Step 1: ∆𝑡 = 𝑁/(𝑆𝐵)

Step 2: ∆𝑡 = 𝑁/(𝑆𝐵)

Step 3: ∆𝑡 = 𝑁/(𝑆𝐵)

GPU0 GPU1 GPU2 GPU3

Slides from Nvidia



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

BROADCAST
with unidirectional ring

Split data into 𝑆 messages

Step 1: ∆𝑡 = 𝑁/(𝑆𝐵)

Step 2: ∆𝑡 = 𝑁/(𝑆𝐵)

Step 3: ∆𝑡 = 𝑁/(𝑆𝐵)

Step 4: ∆𝑡 = 𝑁/(𝑆𝐵)

GPU0 GPU1 GPU2 GPU3

Slides from Nvidia
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BROADCAST
with unidirectional ring

Split data into 𝑆 messages

Step 1: ∆𝑡 = 𝑁/(𝑆𝐵)

Step 2: ∆𝑡 = 𝑁/(𝑆𝐵)

Step 3: ∆𝑡 = 𝑁/(𝑆𝐵)

Step 4: ∆𝑡 = 𝑁/(𝑆𝐵)

...
Total time:
S𝑁/(𝑆𝐵) + (𝑘 − 2)𝑁 /(𝑆𝐵)
= 𝑁(𝑆 + 𝑘 − 2)/(𝑆𝐵) → 𝑁/𝐵

GPU0 GPU1 GPU2 GPU3

Slides from Nvidia



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 1 
Step:

43

Slides from Nvidia



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 1
Step: 1

44
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ALL-REDUCE

45

with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 1
Step: 2

Slides from Nvidia
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ALL-REDUCE

46

with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 1
Step: 3

Slides from Nvidia



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ALL-REDUCE

47

with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 1
Step: 4

Slides from Nvidia
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ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 1
Step: 5

Slides from Nvidia



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 1
Step: 6

Slides from Nvidia
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ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 1
Step: 7

Slides from Nvidia
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ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 2 
Step:

Slides from Nvidia
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ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 2
Step: 1

Slides from Nvidia
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ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Chunk: 2
Step: 2

Slides from Nvidia
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ALL-REDUCE
with unidirectional ring

GPU0 GPU1 GPU2 GPU3

done

Slides from Nvidia
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RING-BASED COLLECTIVES
A primer

GPU0

CPU

GPU1 GPU2 

4-GPU-PCIe

GPU3

Switch

Slides from Nvidia

PCIe Gen3 x16
~12 GB/s

NVLink
~16 GB/s



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0 GPU1 GPU2 

4-GPU-PCIe
GPU3

CPU

Switch

RING-BASED COLLECTIVES
A primer

Slides from Nvidia

PCIe Gen3 x16
~12 GB/s

NVLink
~16 GB/s
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RING-BASED COLLECTIVES
…apply to lots of possible topologies

GPU0 GPU1

CPU

GPU2 GPU3

Switch

GPU4 GPU5

CPU

GPU6 GPU7

Switch

Slides from Nvidia

PCIe Gen3 x16
~12 GB/s

NVLink
~16 GB/s
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THE CHALLENGE OF COLLECTIVES
Many implementations seen in the wild are suboptimal

Scaling requires efficient communication algorithms and careful implementation

Communication algorithms are implementation and topology-dependent

Topologies can be complex – not every system is a fat tree

Most collectives amenable to bandwidth-optimal implementation on rings, and many

topologies can be interpreted as one or more rings [P. Patarasuk and X. Yuan]

Slides from Nvidia
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Challenge: Collectives on Multi-dimensional networks

Physical Topology: 2D Torus

Ring Algorithm

Network 
Underutilization!!

Congestion? No

Link Utilization?~50%
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Hierarchical Collective Algorithms

1. Reduce-Scatter on dim 1 (rows)

1 2 3

1 2 3

1 2 3

4

4

4

1 2 3 4

di
m

 1

dim
 2

1 2 3

1 2 3

1 2 3

4

4

4

1 2 3 4
di

m
 1

dim
 2

1 2 3

1 2 3

1 2 3

4

4

4

1 2 3 4

di
m

 1

dim
 2

1 2 3

1 2 3

1 2 3

4

4

4

1 2 3 4

di
m

 1

dim
 2

2. Reduce-Scatter on dim 2 (cols) 3. All-Gather on dim 2 (cols) 4. All-Gather on dim 1 (rows)

Congestion? No

Link 
Utilization?

All links utilized equally over time. But at any instant, only ~50% of the links utilized! 

This is where Collective “Scheduling” comes in
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Scheduling Collectives (Naïve)
• A 2D torus with: BW(dim1) = 2*BW(dim2)
• Hierarchical All-Reduce on a 64 MB data chunk

1 2 3

1 2 3

1 2 3

4

4

4

1 2 3 4

di
m

 1

dim
 2

Dim1
(1X BW): 

Dim2
(0.5X BW): 

Time 

RS
C1.1

64MB 

Stage 1) Reduce-Scatter (RS) on dim 1 (rows)

Dim1
(1X BW): 

Dim2
(0.5X BW): 

Time 

RS
64MB 
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Scheduling Collectives (Naïve)
• A 2D torus with: BW(dim1) = 2*BW(dim2)
• Hierarchical All-Reduce on a 64 MB data chunk

Dim1
(1X BW): 

Dim2
(0.5X BW): 

Time 

RS

RS

64MB 

16MB 
1 2 3

1 2 3

1 2 3

4

4

4

1 2 3 4

di
m

 1

dim
 2

Stage 2) Reduce-Scatter (RS) on dim 2 (cols)
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Scheduling Collectives (Naïve)
• A 2D torus with: BW(dim1) = 2*BW(dim2)
• Hierarchical All-Reduce on a 64 MB data chunk

Dim1
(1X BW): 

Dim2
(0.5X BW): 

Time 

RS
C1.1

RS
C1.2

AG
C1.3

64MB 

16MB 4MB 
1 2 3

1 2 3

1 2 3

4

4

4

1 2 3 4

di
m

 1

dim
 2

Stage 3) All-Gather (AG) on dim 2 (cols)

Dim1
(1X BW): 

Dim2
(0.5X BW): 

Time 

RS

RS AG

64MB 

16MB 4MB 
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Scheduling Collectives (Naïve)
• A 2D torus with: BW(dim1) = 2*BW(dim2)
• Hierarchical All-Reduce on a 64 MB data chunk

1 2 3

1 2 3

1 2 3

4

4

4

1 2 3 4

di
m

 1

dim
 2

Dim1
(1X BW): 

Dim2
(0.5X BW): 

Time 

RS
C1.1

RS
C1.2

AG
C1.3

AG
C1.4

64MB 16MB 

16MB 4MB 

Stage 4) All-Gather (AG) on dim 1 (rows)

Dim1
(1X BW): 

Dim2
(0.5X BW): 

Time 

RS

RS AG

AG
64MB 16MB 

16MB 4MB 
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Scheduling Collectives (Naïve)
• A 2D torus with: BW(dim1) = 2*BW(dim2)
• Hierarchical All-Reduce on a 64 MB data chunk

1 2 3

1 2 3

1 2 3

4

4

4

1 2 3 4

di
m

 1

dim
 2

Dim1
(1X BW): 

Dim2
(0.5X BW): 

Time 

RS
C1.1

RS
C1.2

AG
C1.3

AG
C1.4

64MB 16MB 

16MB 4MB 

Dim1
(1X BW): 

Dim2
(0.5X BW): 

Time 

RS

RS AG

AG
64MB 16MB 

16MB 4MB 

Idle

Idle Idle

Solution: Pipelined Scheduling of 
multiple independent chunks
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Scheduling Collectives (Baseline)
• A 2D torus with: BW(dim1) = 2*BW(dim2)
• Hierarchical All-Reduce on a 64 MB data chunk

Dim1
(1X BW): 

Dim2
(0.5X BW): 

Time 

RS

RS AG

AGRS RS RS AG AG AG

RS AG RS AG RS AG idle idle 

8 

1 

64MB 64MB 64MB 64MB 16MB 16MB 16MB 16MB 

16MB 16MB 16MB 16MB 4MB 4MB 4MB 4MB Idle

1 2 3

1 2 3

1 2 3

4

4

4

1 2 3 4

di
m

 1

dim
 2

Pipeline All-Reduce across multiple chunks to utilize 
all dims

Challenge: Load Imbalance 
across network dimensions

S. Rashidi, W. Won, S. Srinivasan, S. Sridharan, T. Krishna, ” Themis: A Network Bandwidth-Aware Collective Scheduling Policy for Distributed Training of DL Models”. ISCA 2022.
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Summary of Hierarchical All-Reduce Challenge

S. Rashidi, W. Won, S. Srinivasan, S. Sridharan, T. Krishna, ” Themis: A Network Bandwidth-Aware Collective Scheduling Policy for Distributed Training of DL Models”. ISCA 2022.

• Data is broken into multiple chunks and chunks go to the Reduce-Scatter/All-
Gather pipeline stages in order

• Load Imbalance Challenge
• Chunk size changes across stages à Algorithm constraint
• Static scheduling of chunks à Baseline scheduling
• Hybrid Bandwidths across dimensions à Technology constraint


