Collective Communications

Arvind Krishnamurthy

Material adapted from slides by Tianqi Chen & Zhihao Jia (CMU), Tushar Krishna & Divya Mahajan (GTech)

COMMUNICATION AMONG TASKS

What are common communication patterns?

Point-to-point communication

- Single sender, single receiver
- Relatively easy to implement efficiently

Collective communication

- Multiple senders and/or receivers
- Patterns include broadcast, scatter, gather, reduce, all-to-all, …
- Difficult to implement efficiently

POINT-TO-POINT COMMUNICATION

Single-sender, single-receiver per instance

Most common pattern in HPC, where communication is usually to nearest neighbors

3

Collective Communication multiple senders, multiple receivers

All-to-All

Reduce

All-Reduce

What Limits the scalability of distributed applications?

Efficiency of parallel computation tasks

- Amount of exposed parallelism
- Load balance & scheduling overhead

Expense of communications among tasks

- Amount of communication
- Degree of overlap of communication and computation

BROADCAST One sender, multiple receivers

REDUCE

Combine data from all senders; deliver the result to one receiver

GATHER

Multiple senders, one receiver

ALL-GATHER

Gather messages from all; deliver gathered data to all participants

One sender; data is distributed among multiple receivers

REDUCE-SCATTER

Combine data from all senders; distribute result across participants

ALL-TO-ALL

Scatter/Gather distinct messages from each participant to every other

Combine data from all senders; deliver the result to all participants

Combine data from all senders; deliver the result to all participants

Combine data from all senders; deliver the result to all participants

THE CHALLENGE OF COLLECTIVES

Collectives are often avoided because they are expensive. Why?

Having multiple senders and/or receivers compounds communication inefficiencies

- For small transfers, latencies dominate; more participants increase latency
- For large transfers, bandwidth is key; bottlenecks are easily exposed
- May require topology-aware implementation for high performance
- Collectives are often blocking/non-overlapped

THE CHALLENGE OF COLLECTIVES

Many implementations seen in the wild are suboptimal

Depends on various factors:

- 1. Underlying network topology hierarchical, fat-free, etc.
- 2. Implementation ring vs tree-based collectives (logical topology on the network)
- 3. Data scheduling compute and communication overlap

HARDWARE PLATFORMS

- 1. Multi-GPU boxes interconnected by a datacenter network (E.g., NVIDIA, AMD)
- 2. Custom interconnects as in TPUv4

NVLink

Data Parallelism – PCIe based

Data loading and gradient averaging share communication resources \rightarrow congestion

Data Parallelism – NVLink

Datal loading on PCIe, gradient averaging on NVLINK \rightarrow no congestion

Nvidia DGX Machine – A100

Data plane (can be used as

Topology - Fat Trees

- For any switch, the number of links going *down* to its siblings is equal to the number of links going *up* to its parent in the upper level.
- If oversubscribed, the number of uplinks is less than the number of downlinks
- **Non-blocking**: the number of uplinks and downlinks are in proportion of 1:1
	- blocking factor = $\#$ downlink/ $\#$ uplink

4-Tier Topology-Fat Tree

Rail only (Meta)

Across each High Bandwidth Domain, only GPUs of the same index (same rail) are connect via rail interconnection

Only way for Inter-Domain communication of GPU in different rails, are by hopping through GPUs

Google TPUv4 Racks

TPUv4 connections across racks

OCS connection for 1 rack.

- ➔ 16 OCSes per dimension (**connected to nodes in both opposite faces**)
- ➔ **48** OCSes connected to each rack (cube)

Three out of the 48 OCS connections across 64 Racks

 \rightarrow Each OCS is connected to all 64 racks in the pod.

TPUv4 connections across racks

With OCS, we can create any arbitrary topology with 4i x 4j x 4k nodes

- 8x8x8 is 8 racks in assembled as a 3D Torus
- **With 4096 Nodes, we will have a 16x16x16 Topology**

Often deploy these devices in a cluster or a pod

Eight of 64 racks for one 4096-chip supercomputer

Figure Courtesy: Google Cloud

RING-BASED COLLECTIVES: A PRIMER

with unidirectional ring

with unidirectional ring

with unidirectional ring

with unidirectional ring

Step 1: $\Delta t = N/B$ Step 2: $\Delta t = N/B$ Step 3: $\Delta t = N/B$

: bytes to broadcast B : bandwidth of each link

with unidirectional ring

Step 1: $\Delta t = N/B$ Step 2: $\Delta t = N/B$ Step 3: $\Delta t = N/B$ Total time: $(k-1)N/B$ N: bytes to broadcast B : bandwidth of each link : number of GPUs

Outline

- Collective Communication
	- Collective Patterns mathematical operators
	- Collective Algorithm the way it is logically executed in the network
	- Collective Scheduling the schedule of the data transfer and compute

with unidirectional ring

with unidirectional ring

with unidirectional ring

Split data into S messages Step 1: $\Delta t = N/(SB)$ Step 2: $\Delta t = N/(SB)$

39

with unidirectional ring

Split data into S messages Step 1: $\Delta t = N/(SB)$ Step 2: $\Delta t = N/(SB)$ Step 3: $\Delta t = N/(SB)$

with unidirectional ring

Split data into S messages Step 1: $\Delta t = N/(SB)$ Step 2: $\Delta t = N/(SB)$ Step 3: $\Delta t = N/(SB)$ Step 4: $\Delta t = N/(SB)$

with unidirectional ring

Split data into S messages Step 1: $\Delta t = N/(SB)$ Step 2: $\Delta t = N/(SB)$ Step 3: $\Delta t = N/(SB)$ Step 4: $\Delta t = N/(SB)$... Total time: $SN/(SB) + (k - 2) N / (SB)$ $= N(S + k - 2)/(SB) \rightarrow N/B$

with unidirectional ring

GPU0 GPU1 GPU2 GPU3 43

Chunk: 1

Step:

with unidirectional ring

Chunk: 1 Step: 1

with unidirectional ring

Chunk: 1 Step: 2

with unidirectional ring

Chunk: 1 Step: 3

with unidirectional ring

Chunk: 1 Step: 4

with unidirectional ring

Chunk: 1 Step: 5

with unidirectional ring

Chunk: 1 Step: 6

ALL-REDUCE with unidirectional ring

Chunk: 1 Step: 7

with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Slides from Nvidia

Chunk: 2 Step:

with unidirectional ring

GPU0 GPU1 GPU2 GPU3

Slides from Nvidia

Chunk: 2 Step: 1

with unidirectional ring

Chunk: 2 Step: 2

with unidirectional ring

done

RING-BASED COLLECTIVES

A primer

RING-BASED COLLECTIVES

A primer

RING-BASED COLLECTIVES

…apply to lots of possible topologies

THE CHALLENGE OF COLLECTIVES

Many implementations seen in the wild are suboptimal

Scaling requires efficient communication algorithms and careful implementation

Communication algorithms are implementation and topology-dependent

Topologies can be complex – not every system is a fat tree

Most collectives amenable to bandwidth-optimal implementation on rings, and many topologies can be interpreted as one or more rings [P. Patarasuk and X. Yuan]

Challenge: Collectives on Multi-dimensional networks

Underutilization!!

Hierarchical Collective Algorithms

1. Reduce-Scatter on dim 1 (rows)

2. Reduce-Scatter on dim 2 (cols) 3. All-Gather on dim 2 (cols) 4. All-Gather on dim 1 (rows)

Congestion? No

Link Utilization?

All links utilized equally over time. But at any instant, only ~50% of the links utilized!

This is where Collective "Scheduling" comes in

- A 2D torus with: $BW(dim1) = 2*BW(dim2)$
- Hierarchical All-Reduce on a 64 MB data chunk

- A 2D torus with: $BW(dim1) = 2*BW(dim2)$
- Hierarchical All-Reduce on a 64 MB data chunk

- A 2D torus with: $BW(dim1) = 2*BW(dim2)$
- Hierarchical All-Reduce on a 64 MB data chunk

- A 2D torus with: $BW(dim1) = 2*BW(dim2)$
- Hierarchical All-Reduce on a 64 MB data chunk

- A 2D torus with: $BW(dim1) = 2*BW(dim2)$
- Hierarchical All-Reduce on a 64 MB data chunk

Solution: Pipelined Scheduling of multiple independent chunks

Scheduling Collectives (Baseline)

- A 2D torus with: $BW(dim1) = 2*BW(dim2)$
- Hierarchical All-Reduce on a 64 MB data chunk

Pipeline All-Reduce across multiple chunks to utilize all dims

Summary of Hierarchical All-Reduce Challenge

- Data is broken into multiple chunks and chunks go to the Reduce-Scatter/All-Gather pipeline stages in order
- Load Imbalance Challenge
	- Chunk size changes across stages \rightarrow Algorithm constraint
	- Static scheduling of chunks \rightarrow Baseline scheduling
	- Hybrid Bandwidths across dimensions \rightarrow Technology constraint