
Distributed Training (Contd.)

Arvind Krishnamurthy

Material adapted from slides by Tianqi Chen & Zhihao Jia (CMU), Minjia Zhang (UIUC)



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

How can we parallelize ML training?
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Goals:

• Scale with training data size (ensure that compute efficiency is high)

• Scale with model size (ensure that memory efficiency is high)

Approaches:

• Data parallelism

• Model parallelism (tensor & pipeline)
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Training State

• Model parameters: eventually becomes the released model

• Gradients: how the loss function varies with small changes to parameters

• Optimizer state: maintains information about how parameters change 

over time

• Activations: intermediate results from the forward phase required for 

back-propagating gradients
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Data Parallelism

• Approach:

• Split data into batches for each training iteration

• Further split batch into mini-batches, each processed by a separate node

• Perform forward/backwards pass to generate per-node gradients

• Accumulate gradients across nodes

• Update parameters based on averaged gradients
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Data Parallelism 

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…
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1. Partition training data into batches 2. Compute the gradients of 

each batch on a GPU 

Gradients 

Aggregation

3. Aggregate gradients 

across GPUs
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Collectives Synchronous - Communication Handling

Compute Nodes directly talk to each other to globally reduce their gradients and update 
the model through All-Reduce communication pattern.
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GPU0 GPU1 GPU2 GPU3

A0+B0+ 

C0+D0

A1+B1+ 

C1+D1

A2+B2+ 

C2+D2

A3+B3+ 

C3+D3

Other variants – ReduceScatter

Combine data from all senders; distribute result across participants

reduce-
scatter

GPU0 GPU1 GPU2 GPU3

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

Slides from Nvidia
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Other variants -- AllGather

Gather messages from all; deliver gathered data to all participants

GPU0 GPU1 GPU2 GPU3

A B C D

GPU0 GPU1 GPU2 GPU3

A A A A

B B B B

C C C C

D D D D

all-gather

Slides from Nvidia
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Data Parallelism

• Does it achieve high compute efficiency?

• Does it achieve high memory efficiency as in being able to run large 

models?
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Model parallelism

• No node maintains the entire model

• Two forms:

• Tensor parallelism

• Pipeline parallelism
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Tensor Model Parallelism

• Partition parameters/gradients within a layer
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Wx xy =

GPU 1

W1x xy1 =

GPU 2

W2x x=

Tensor Model Parallelism (partition output)

y2

GPU 1

W1

x1 xy1 =

GPU 2

W2

x=y2 x2

+

input parametersoutput
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Tensor Parallelism

• Compute efficiency?

• Memory efficiency?
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Pipeline Parallelism

• Divide a mini-batch into multiple micro-batches

• Pipeline the forward/backward computations across micro-batches

• Generally combined with model parallelism

13Figure from GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding

Model Parallelism

Model + Pipeline

Parallelism

Computation 

Graph minibatch

4 microbatches
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Pipeline Parallelism

• Compute efficiency?

• Memory efficiency?
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Revisiting Data Parallelism

• How much can we achieve with just simple modifications to data 

parallelism?

• Can we improve DP’s memory efficiency?
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GPU0

Data0

GPU1

Transformer stack Transformer stack
Data1

Understanding Memory Consumption 

16

A 16-layer transformer model = 1 layer

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

Each cell   represents GPU memory used by its corresponding transformer layer
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Understanding Memory Consumption 

Adapted from Minjia Zhang, DeepSpeed Presentation



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

• FP16 parameter

FP16 ParametersFP16 Parameters
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Understanding Memory Consumption 

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

FP16 Parameters
FP16 Gradient

FP16 Parameters
FP16 Gradient

• FP16 parameter

• FP16 Gradients
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Understanding Memory Consumption 

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

• FP16 parameter

• FP16 Gradients

• FP32 Optimizer States

• Gradients, Variance, Momentum, Parameters

20

Understanding Memory Consumption 

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

• FP16 parameter : 2M bytes

• FP16 Gradients : 2M bytes

• FP32 Optimizer States : 16M bytes

• Gradients, Variance, Momentum, Parameters

M = number of parameters in the model
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Understanding Memory Consumption 

Example 1B parameter model -> 20GB/GPU

Memory consumption doesn’t include:
• Input batch + activations

Adapted from Minjia Zhang, DeepSpeed Presentation
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• ZeRO removes the redundancy across data parallel process

• Stage 1: partitioning optimizer states

• Stage 2: partitioning gradients

• Stage 3: partitioning parameters

22

ZeRO-DP: ZeRO powered Data Parallelism
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Data0

Transformer stack

Activations

Transformer stack

Activations

Data1

• ZeRO Stage 1

GPU0 GPU1

ZeRO Stage 1: Partitioning Optimizer States

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients

ZeRO Stage 1: Partitioning Optimizer States

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and ReduceScatter to average

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and ReduceScatter to average

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• ZeRO Stage 1

• Partitions optimizer states across GPUs

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and ReduceScatter to average

• Update the FP32 weights with ADAM optimizer

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and ReduceScatter to 

average

• Update the FP32 weights with ADAM optimizer

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and ReduceScatter to 

average

• Update the FP32 weights with ADAM optimizer

• Update the FP16 weights 

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and ReduceScatter to 

average

• Update the FP32 weights with ADAM optimizer

• Update the FP16 weights

• All Gather the FP16 weights to complete the iteration 

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

ZeRO Stage 1: Partitioning Optimizer States

• Run Forward across the transformer blocks

• Backward propagation to generate FP16 gradients and AllReduce to 

average

• Update the FP32 weights with ADAM optimizer

• Update the FP16 weights

• All Gather the FP16 weights to complete the iteration 
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ZeRO: Zero Redundancy Optimizer

• Progressive memory savings and communication volume

• Turning NLR 17.2B is powered by Stage 1 and Megatron

Stage 1

Stage 2

Stage 3
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• Partitioning gradients across GPUs

• The forward process remains the same as stage 1

ZeRO Stage 2: Partitioning Gradients
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• Partitioning gradients across GPUs

• Perform Reduce right after back propagation of each layer

ZeRO Stage 2: Partitioning Gradients

Reduce
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• Partitioning gradients across GPUs

• Only one GPU keeps the gradients after Reduce

ZeRO Stage 2: Partitioning Gradients

Reduce



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• Partitioning gradients across GPUs

• Reduce gradients on GPUs responsible for updating parameters

ZeRO Stage 2: Partitioning Gradients

AllReduce
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GPU0

Data0

Transformer stack

Activations

GPU1

Transformer stack

Activations

Data1

Loss Loss

• Partitioning gradients across GPUs

• Reduce gradients on GPUs responsible for updating parameters

ZeRO Stage 2: Partitioning Gradients
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ZeRO: Zero Redundancy Optimizer

• Progressive memory savings and communication volume

• Turning NLR 17.2B is powered by Stage 1 and Megatron

Stage 1

Stage 2

Stage 3
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ZeRO Stage 3: Partitioning Parameters

• In data parallel training, all GPUs keep all parameters during training

Conv1

W1

Conv2

W2

Loss

Conv1’ Conv2’

∆W2

GPU1

∆W1

Conv1

W1

Conv2

W2

Loss

Conv1’ Conv2’

∆W2

GPU2

∆W1
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ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

56

Conv1

W1

Conv2

GPU1

Conv1 Conv2

W2

GPU2
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ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

• GPUs broadcast their parameters during forward (allgather)

57

Conv1

W1

Conv2

Loss

GPU1

Conv1 Conv2

W2

Loss

GPU2

W2 W1
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ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

• Parameters are discarded right after use
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Conv1

W1

Conv2

Loss

GPU1

Conv1 Conv2

W2

Loss

GPU2
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ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

• GPUs broadcast their parameters again during backward
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Conv1

W1

Conv2

Loss

Conv1’ Conv2’

GPU1

Conv1 Conv2

W2

Loss

Conv1’ Conv2’

GPU2

W2 W1

∆W2∆W1 ∆W2∆W1
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ZeRO: Zero Redundancy Optimizer

• ZeRO has three different stages

• Progressive memory savings and communication volume

Stage 1

Stage 2

Stage 3
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Memory Footprint of Large Models – Activations

https://arxiv.org/pdf/2205.05198.pdf
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Activation Stashing vs Checkpointing

• Stashing of activations is the baseline strategy here
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Activation Stashing vs Checkpointing

• Stashing of activations is the baseline strategy here

• Activation checkpointing is a technique used for reducing the memory 
footprint at the cost of more compute



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Summary

• Forms of parallelism
• Data parallelism

• Model parallelism

• Memory optimizations in data parallelism
• ZeRO: zero redundancy optimizer

• Reduce activation storage by activation checkpointing

64
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