
Distributed Training

Arvind Krishnamurthy

Material adapted from slides by Tianqi Chen & Zhihao Jia (CMU), Minjia Zhang (UIUC)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run

calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce a gradient

for each trainable weight

3. Weight update: use the accumulated gradients to update model weights

2

Forward propagation

Model inputs Model prediction

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run

calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce a gradient

for each trainable weight

3. Weight update: use the accumulated gradients to update model weights

3

Backward propagation

Model inputs Model prediction

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run

calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce a gradient

for each trainable weight

3. Weight update: use the accumulated gradients to update model weights

4

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Key Concepts

ML training state can be classified into the following:

• Model parameters: eventually becomes the released model

• Gradients: how the loss function varies with small changes to parameters

• Activations: intermediate results from the forward phase required for

back-propagating gradients

• Optimizer state: maintains information about how parameters change

over time

5

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

How can we parallelize ML training?

6

Goals:

• Scale with training data size

• Scale with model size

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Data Parallelism

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…

7

1. Partition training data into batches 2. Compute the gradients of

each batch on a GPU

Gradients

Aggregation

3. Aggregate gradients

across GPUs

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Data Parallelism: Parameter Server

8

Workers push gradients to

parameter servers and pull

updated parameters back

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Inefficiency of Parameter Server

• Centralized communication: all workers communicate with parameter
servers for weights update; cannot scale to large numbers of workers

• How can we decentralize communication in DNN training?

9

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Data Parallelism: AllReduce

• AllReduce: perform element-wise reduction across multiple devices

10

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Data Parallelism

Each worker keeps a replica of the entire model and communicates with
other workers to synchronize weights updates

Gradients aggregation methods:

• Parameter Server

• Ring AllReduce

• Tree AllReduce

• Butterfly AllReduce

• Etc.

11

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

How to parallelize DNN Training?

• Data parallelism

• Model parallelism

• Tensor model parallelism

• Pipeline model parallelism

12

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Tensor Model Parallelism

• Partition parameters/gradients within a layer

13

Wx xy =

GPU 1

W1x xy1 =

GPU 2

W2x x=

Tensor Model Parallelism (partition output)

y2

GPU 1

W1

x1 xy1 =

GPU 2

W2

x=y2 x2

+

input parametersoutput

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Pipeline Parallelism

• Divide a mini-batch into multiple micro-batches

• Pipeline the forward/backward computations across micro-batches

• Generally combined with model parallelism

14Figure from GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding

Model Parallelism

Model + Pipeline

Parallelism

Computation

Graph minibatch

4 microbatches

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

GPU1

Transformer stack Transformer stack
Data1

Understanding Memory Consumption

15

A 16-layer transformer model = 1 layer

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

Each cell represents GPU memory used by its corresponding transformer layer

16

Understanding Memory Consumption

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

• FP16 parameter

FP16 ParametersFP16 Parameters

17

Understanding Memory Consumption

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

FP16 Parameters
FP16 Gradient

FP16 Parameters
FP16 Gradient

• FP16 parameter

• FP16 Gradients

18

Understanding Memory Consumption

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

• FP16 parameter

• FP16 Gradients

• FP32 Optimizer States

• Gradients, Variance, Momentum, Parameters

19

Understanding Memory Consumption

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

• FP16 parameter : 2M bytes

• FP16 Gradients : 2M bytes

• FP32 Optimizer States : 16M bytes

• Gradients, Variance, Momentum, Parameters

M = number of parameters in the model

20

Understanding Memory Consumption

Example 1B parameter model -> 20GB/GPU

Memory consumption doesn’t include:
• Input batch + activations

Adapted from Minjia Zhang, DeepSpeed Presentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

• ZeRO removes the redundancy across data parallel process

• Stage 1: partitioning optimizer states

• Stage 2: partitioning gradients

• Stage 3: partitioning parameters

21

ZeRO-DP: ZeRO powered Data Parallelism

	Slide 1: Distributed Training
	Slide 2: Stochastic Gradient Descent (SGD)
	Slide 3: Stochastic Gradient Descent (SGD)
	Slide 4: Stochastic Gradient Descent (SGD)
	Slide 5: Key Concepts
	Slide 6: How can we parallelize ML training?
	Slide 7: Data Parallelism
	Slide 8: Data Parallelism: Parameter Server
	Slide 9: Inefficiency of Parameter Server
	Slide 10: Data Parallelism: AllReduce
	Slide 11: Data Parallelism
	Slide 12: How to parallelize DNN Training?
	Slide 13: Tensor Model Parallelism
	Slide 14: Pipeline Parallelism
	Slide 15: Understanding Memory Consumption
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: ZeRO-DP: ZeRO powered Data Parallelism

