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Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run 

calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce a gradient 

for each trainable weight

3. Weight update: use the accumulated gradients to update model weights 
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Key Concepts

ML training state can be classified into the following:

• Model parameters: eventually becomes the released model

• Gradients: how the loss function varies with small changes to parameters

• Activations: intermediate results from the forward phase required for 

back-propagating gradients

• Optimizer state: maintains information about how parameters change 

over time
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How can we parallelize ML training?
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Goals:

• Scale with training data size

• Scale with model size
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Data Parallelism 

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…
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1. Partition training data into batches 2. Compute the gradients of 

each batch on a GPU 

Gradients 

Aggregation

3. Aggregate gradients 

across GPUs
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Data Parallelism: Parameter Server
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Workers push gradients to 

parameter servers and pull 

updated parameters back
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Inefficiency of Parameter Server

• Centralized communication: all workers communicate with parameter 
servers for weights update; cannot scale to large numbers of workers

• How can we decentralize communication in DNN training?
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Data Parallelism: AllReduce

• AllReduce: perform element-wise reduction across multiple devices
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Data Parallelism

Each worker keeps a replica of the entire model and communicates with 
other workers to synchronize weights updates

Gradients aggregation methods:

• Parameter Server

• Ring AllReduce

• Tree AllReduce

• Butterfly AllReduce

• Etc. 
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How to parallelize DNN Training?

• Data parallelism

• Model parallelism

• Tensor model parallelism

• Pipeline model parallelism
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Tensor Model Parallelism

• Partition parameters/gradients within a layer
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Pipeline Parallelism

• Divide a mini-batch into multiple micro-batches

• Pipeline the forward/backward computations across micro-batches

• Generally combined with model parallelism

14Figure from GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding

Model Parallelism

Model + Pipeline

Parallelism

Computation 

Graph minibatch

4 microbatches
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GPU0

Data0

GPU1

Transformer stack Transformer stack
Data1

Understanding Memory Consumption 
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A 16-layer transformer model = 1 layer

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

Each cell   represents GPU memory used by its corresponding transformer layer
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Understanding Memory Consumption 

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

• FP16 parameter

FP16 ParametersFP16 Parameters
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Understanding Memory Consumption 

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

FP16 Parameters
FP16 Gradient

FP16 Parameters
FP16 Gradient

• FP16 parameter

• FP16 Gradients
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Understanding Memory Consumption 

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

• FP16 parameter

• FP16 Gradients

• FP32 Optimizer States

• Gradients, Variance, Momentum, Parameters
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Understanding Memory Consumption 

Adapted from Minjia Zhang, DeepSpeed Presentation
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GPU0

Data0

Transformer stack

GPU1

Transformer stack
Data1

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

FP16 Parameters

FP32 Parameters

FP32 Momentum

FP16 Gradient

FP32 Variance

FP32 Gradient

• FP16 parameter : 2M bytes

• FP16 Gradients : 2M bytes

• FP32 Optimizer States : 16M bytes

• Gradients, Variance, Momentum, Parameters

M = number of parameters in the model
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Understanding Memory Consumption 

Example 1B parameter model -> 20GB/GPU

Memory consumption doesn’t include:
• Input batch + activations

Adapted from Minjia Zhang, DeepSpeed Presentation
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• ZeRO removes the redundancy across data parallel process

• Stage 1: partitioning optimizer states

• Stage 2: partitioning gradients

• Stage 3: partitioning parameters
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ZeRO-DP: ZeRO powered Data Parallelism
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