
LLM Serving: Role of Memory

Arvind Krishnamurthy

Material adapted from slides by Woosuk Kwon and Umar Jamil
Paged Attention paper and Umar’s talk

https://arxiv.org/abs/2309.06180
https://github.com/hkproj/retrieval-augmented-generation-notes/blob/main/Slides.pdf

Lecture Outline

● Memory management in GPUs for LLM serving

● Augmented model memory through retrieval augmented generation (RAG)

Efficient Memory Management for Large
Language Model Serving with PagedAttention
Woosuk Kwon1,* Zhuohan Li1,* Siyuan Zhuang1 Ying Sheng1,2 Lianmin Zheng1

Cody Hao Yu3 Joseph E. Gonzalez1 Hao Zhang4 Ion Stoica1

1UC Berkeley 2Stanford University 3Independent Researcher 4UC San Diego
*Equal contribution

SOSP 2023

Inference process of LLMs

LLM

Artificial

the

the

future

LLM LLM

future

of

Intelligence isInput

Output

Why is it slow and inefficient?
● The sequential dependency between output tokens makes it difficult to

fully utilize the parallelism in GPUs

Solution: Batching multiple requests together

LLM

Artificial

the

the

future

LLM LLM

future

of

Intelligence isInput

Output

Alan Turing is

a computer

a computer

scientist

Better utilize the parallel hardware

However, the batch size is significantly limited by the inefficient memory
management for “KV Cache.”

LLM

(Attention) KV Cache

Artificial

the

the

future

Intelligence isInput

Output

Artificial Intelligence is

-0.1
0.3
1.2

0.3
-0.4
-0.7

0.5
-0.9
1.1

KV Cache

LLM

the

-0.8
0.1
0.6

Intermediate
vector repr.
(“Attention

key & value”)

KV Cache dynamically grows and shrinks

future

of

Input

Output

Artificial Intelligence is

-0.1
0.3
1.2

0.3
-0.4
-0.7

0.5
-0.9
1.1

KV Cache

the

-0.8
0.1
0.6

LLM

future

-0.6
0.0
-1.3

Appended

KV Cache is huge:
● Each token: ~1 MB.
● One full request: ~several GBs.

KV Cache management in previous systems

● Pre-allocates contiguous space of memory to the request’s maximum length
○ Useful convention in traditional deep learning workloads where the input/output shapes are

static (e.g., fast pointer arithmetic, efficient memory access)

Artificial Intellige
nce is <resv> <resv> … <resv> <resv>

3 KV Cache slots for
request A’s prompt

Pre-allocated slots for A’s output

0 3 A’s max length

● Results in memory fragmentation
○ Internal fragmentation due to the unknown output length.

○ External fragmentation due to non-uniform per-request max lengths.

… … Alan Turing …

Request BExternal frag.
(Internal frag.)

Significant memory waste in KV Cache space

● Only 20–40% of KV Cache space is utilized to store actual token states

* Yu et al. “Orca: A Distributed Serving System for Transformer-Based Generative Models” (OSDI 22).

PagedAttention

Page 0
Page 1
Page 2
Page 3
Page 4

Process
A

Process
B

Physical Memory

KV Block 0
KV Block 1
KV Block 2
KV Block 3
KV Block 4

Request
A

Request
B

KV Cache

Memory management in OS PagedAttention

● Application-level memory paging and virtualization for attention KV Cache

Artificial Intelligence is the

Paging KV Cache space into KV blocks
KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Block size = 4

● KV block is a fixed-size contiguous chunk
of memory that can store KV token states
from left to right

KV Cache
Space

Virtualizing KV Cache

Request
A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical
block number # Filled

7 4

1 2

– –

– –

Block table

Attention mechanism with virtualized KV Cache

1. Fetch non-contiguous KV blocks using the block table
2. Apply attention operation on the fly

10-15% slowdown in GPU kernel latency
due to memory indirection

Memory management with PagedAttention

Request
A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical
block number # Filled

7 4

1 2

– –

– –

Block table

Completion: “and”

Memory management with PagedAttention

Request
A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical
block number # Filled

7 4

1 2

– –

– –

Block table

Completion: “and”

Memory management with PagedAttention

Request
A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical
block number # Filled

7 4

1 3

– –

– –

Block table

Completion: “and”

Memory management with PagedAttention

Request
A

Alan Turing is a

computer scientist and mathema
tician

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and mathem
atician

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical
block number # Filled

7 4

1 4

– –

– –

Block table

Completion: “and mathematician”

Memory management with PagedAttention

Request
A

Alan Turing is a

computer scientist and mathema
tician

renowned

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and mathem
atician

renowned

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical
block number # Filled

7 4

1 4

5 1

– –

Block table

Completion: “and mathematician renowned”

Allocated on demand

Memory efficiency of PagedAttention

● Minimal internal fragmentation
○ Only happens at the last block of a sequence
○ # wasted tokens / seq < block size

■ Sequence: O(100) – O(1000) tokens
■ Block size: O(10) tokens

● No external fragmentation

Alan Turing is a

computer scientist and mathematic
ian

renowned

Internal fragmentation

2.5-5x improvement

Configuring the block size

Low spatial locality Large internal
fragmentation

● Block size 16 works generally well in practice

Paging enables sharing

The future of cloud computing
is likely to be characterized
by several key trends

LLM

Prompt

that will shape the industry and
its impact on businesses and
individuals…

each playing a pivotal role in
reshaping how businesses
leverage technology…

which will not only transform the
way organizations operate but
also empowering them…

Multiple outputs

Shared btw. sequences

Example: Parallel sampling

Sharing KV blocks

Logical KV blocks

key trends

The future of cloud

comput-
ing is likely to

be charac-
terized by several

Physical KV blocks

Sample
B

Sample
A

Logical KV blocks

The future of cloud

comput-
ing is likely to

be charac-
terized by several

key trends

The future of cloud

comput-
ing is likely to

be charac-
terized by several

key trends

Sharing KV blocks

Logical KV blocks

key trends each

The future of cloud

key trends that

comput-
ing is likely to

be charac-
terized by several

Physical KV blocks

Sample
B

Sample
A

Logical KV blocks

The future of cloud

comput-
ing is likely to

be charac-
terized by several

key trends that

The future of cloud

comput-
ing is likely to

be charac-
terized by several

key trends each

Copy-on-Write

All prompt blocks (except the last)
are shared across samples

More complex sharing: beam search

Alan Turing is a

famous

British

Prompt

computer

mathemati
cian

Beam 0

Beam 2

scientist

and

who

computer

created

scientist

ledBeam 1

Shared btw. two beams

Shared btw. three beams

● Similar to process tree (fork & kill)
● Efficiently supported by paged attention and copy-on-write mechanism

Memory saving via sharing

Percentage = (#blocks saved by sharing) / (#total blocks without sharing)
OPT-13B on 1x A100-40G with ShareGPT dataset

Out of KV Block Memory

The future of cloud

computer scientist and mathe-
matician

computing is likely to

renowned

Alan Turing is a

Physical KV blocks

Request
A

Request
B

Full

Out of KV Block Memory

The future of cloud

computer scientist and mathe-
matician

computing is likely to

renowned for

Alan Turing is a

Physical KV blocks

Request
A

Request
B

be

Cannot allocate a
new physical block
for Request B

Request Preemption & Recovery

Swap to
CPU

Swap back
to GPU

Option 1: Swapping

Recompute

Delete

Option 2: Recomputation

Goal: Free some requests’ KV cache to let others run first.

Notes on Preemption & Recovery

Swap/recompute the whole request, since all
previous tokens are required every step.

Swapping: smaller block sizes → higher
overhead due to small data transfers.

Recomputation: surprisingly fast since all
token’s KV cache can be computed in parallel. Figure: Swap/Recomputation

latency of 256 tokens.

vLLM Strategy: Use recomputation when possible with FCFS policy

Worker 1

Worker 2

Worker N

…

Block Manager

vLLM Engine

CPU Block
Allocator

GPU Block
Allocator

Block tables

Scheduler

vLLM Distributed System Architecture & Implementation

Model
Shard 1

Model
Shard 2

Model
Shard N

Cache
Engine

Cache
Engine

Cache
Engine

Megatron-LM
Custom Ops

vLLM
(13K LoC in Python, 3K LoC in C++/CUDA)

Evaluation – Settings

Input/Output Length Distribution
● Alpaca dataset (instruction-following)
● ShareGPT dataset (conversation)

Baselines
● NVIDIA FasterTransformer (FT)
● Orca

○ Oracle: No over-reserve and know exact output lengths.
○ Pow2: Over-reserve the space for outputs by at most 2x.
○ Max: Over-reserve to the maximum possible output length.

Metric: Serving throughput

Throughput – Greedy Decoding

OPT-13B on 1xA100 40G with ShareGPT trace.

Average number of batched requests.

2.4x speedup

Throughput – Beam Search

Beam width = 2
2.4x speedup

Beam width = 4
3.2x speedup

Beam width = 6
3.5x speedup

No beam search
1.8x speedup

OPT-13B on 1xA100 40G with Alpaca trace.
Speedup: vLLM v.s. Orca(Pow2)

vLLM Open-Source Adoption

github.com/vllm-project/vll

m
$ pip install vllm

8.8K Stars

lm-sys/FastChat allenai/open-instruct

Open-Source Projects

Companies

…

95+ Contributors

https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm

Lecture Outline

● Memory management in GPUs for LLM serving

● Augmented model memory through retrieval augmented generation (RAG)

Pre-trained LLMs are great

● Capture knowledge in parameters

● Applicably broadly

But:

● They hallucinate

● Struggle to access new information and use updates

Sample Interaction

Inaccurate result as the LLM wasn’t trained with the data!

Possible Fixes

● Fine-tuning

● Prompt engineering

● Retrieval augmented generation

Fine Tuning

● Run additional training steps with additional data that is now available

• Example: LLM trained in English cannot output French. To teach new concepts, add

new training data to a pre-trained model and fine tune the model

● Downsides of fine tuning:

• Expensive

• Number of parameters might not be sufficient to incorporate new information

• Language model can “forget” earlier capabilities

Prompt Engineering

Possible to teach a new model to incorporate new information but limited by context lengths!

Retrieval is great

● Externally-retrieved information is useful for many NLP tasks

• Precise and accurate knowledge access mechanism

• Easy to update with new information

But:

● Lack ability to generate or “creativity”

● Need task-specific ways to integrate with applications/downstream tasks

RAG: Combine Retrieval with Generation

● Jointly learn to retrieve and generate

• General recipe for any generation task

• Latent retrieval - no labels needed for docs; just retrieval

RAG models combine parametric and non-parametric memory for knowledge

intensive tasks

Widely used?

RAG Pipeline Illustration

RAG Components

Need the following components:

● Pretrained generator model or language model

● Pretrained retriever model for generating embeddings of query, info

● Indexed knowledge base of text documents

● Use retriever model to identify relevant documents efficiently

Embedding Vectors

● Map semantic information of words to a high-dimensional space

● Related words will have “similar” vectors (e.g., cosine similarity or

Euclidean distance) and can be used in the same context

● Words that appear in the same context can be inferred to be similar

Generating Embeddings

● Train a model that can predict the missing word that is masked out

● For example, “Rome is the ___ of Italy, which is why it hosts many

government buildings”

● Train an encode model (e.g., BERT)

● Use the Self-Attention mechanism to relate all the input tokens with each

other

Generating Embeddings

Sentence Embeddings

● Use the Self-Attention mechanism also to capture entire sentences

● For example, encode every word and take the average of the embeddings

● But previous optimization is insufficient

• Encodings should be such that the average across the words produces high cosine

similarity with related words

● Sentence BERT: BERT specifically trained to generate similar embeddings

for equivalent sentences

Vector DB

● Stores embedding vectors and supports similarity queries

● Used already for finding similar songs (Spotify), products (Amazon)

K-Nearest Neighbor Search

● Naive approaches uses exhaustive pairwise comparisons

● Approximate searches reduce the search space but at the cost of accuracy

• For example, Hierarchical Navigable Small Worlds (HNSW)

• Navigable small worlds builds a graph of entries with links connecting similar entries

• Insert new entries by starting at random points and moving along directions that increase

similarities

• Establish connections between new entry and those that are closest to it

• HNSW establishes a hierarchy of graphs with fewer elements in them, with each element

randomly selected to be in the higher level graph

• Search starts with the top-level of the hierarchy and proceeds to lower levels

RAG Pipeline Illustration

Updating LLMs using Fine Tuning and RAG

