LLM Serving: Role of Memory

Arvind Krishnamurthy

Material adapted from slides by Woosuk Kwon and Umar Jamil [Paged Attention paper](https://arxiv.org/abs/2309.06180) and [Umar's talk](https://github.com/hkproj/retrieval-augmented-generation-notes/blob/main/Slides.pdf)

Lecture Outline

- **● Memory management in GPUs for LLM serving**
- Augmented model memory through retrieval augmented generation (RAG)

VLLM

Efficient Memory Management for Large Language Model Serving with PagedAttention

Woosuk Kwon^{1,}* Zhuohan Li^{1,}* Siyuan Zhuang¹ Ying Sheng^{1,2} Lianmin Zheng¹ . Cody Hao Yu³ Joseph E. Gonzalez¹ Hao Zhang⁴ Ion Stoica¹

*1UC Berkeley 2Stanford University 3 Independent Researcher 4UC San Diego *Equal contribution*

SOSP 2023

Inference process of LLMs

Why is it slow and inefficient?

● The sequential dependency between output tokens makes it difficult to fully utilize the parallelism in GPUs

Solution: Batching multiple requests together

However, the batch size is significantly limited by the inefficient memory management for "*KV Cache*."

(Attention) KV Cache

KV Cache dynamically grows and shrinks

KV Cache management in previous systems

- **Pre-allocates contiguous** space of memory to the request's maximum length
	- Useful convention in traditional deep learning workloads where the input/output shapes are **static** (e.g., fast pointer arithmetic, efficient memory access)
- Results in memory fragmentation
	- **Internal fragmentation** due to the **unknown** output length.
	- **External fragmentation** due to **non-uniform** per-request max lengths.

Significant memory waste in KV Cache space

● Only 20–40% of KV Cache space is utilized to store actual token states

* Yu et al. "Orca: A Distributed Serving System for Transformer-Based Generative Models" (OSDI 22).

PagedAttention

● **Application-level** memory **paging** and **virtualization** for attention KV Cache

Paging KV Cache space into KV blocks

● KV block is a **fixed-size** contiguous chunk of memory that can store KV token states **from left to right**

Virtualizing KV Cache

Attention mechanism with virtualized KV Cache

- 1. Fetch non-contiguous KV blocks using the block table
- 2. Apply attention operation on the fly

Memory efficiency of PagedAttention

- Minimal internal fragmentation
	- Only happens at the last block of a sequence
	- **○ # wasted tokens / seq < block size**
		- Sequence: $O(100) O(1000)$ tokens
		- Block size: O(10) tokens
- No external fragmentation

Configuring the block size

• Block size 16 works generally well in practice

Paging enables sharing

Multiple outputs

Sharing KV blocks

Sharing KV blocks

More complex sharing: beam search

- Similar to process tree (fork & kill)
- Efficiently supported by paged attention and copy-on-write mechanism

Memory saving via sharing

Percentage = (#blocks saved by sharing) / (#total blocks without sharing) OPT-13B on 1x A100-40G with ShareGPT dataset

Out of KV Block Memory

Physical KV blocks

Out of KV Block Memory

Physical KV blocks

Cannot allocate a new physical block for Request B

 $\frac{1}{2}$

Goal: Free some requests' KV cache to let others run first.

Notes on Preemption & Recovery

Swap/recompute the whole request, since all previous tokens are required every step.

Swapping: smaller block sizes → higher overhead due to small data transfers.

Recomputation: surprisingly fast since all token's KV cache can be computed in parallel. *Figure: Swap/Recomputation*

latency of 256 tokens.

vLLM Strategy: Use recomputation when possible with FCFS policy

vLLM Distributed System Architecture & Implementation

Evaluation – Settings

Metric: Serving throughput

Input/Output Length Distribution

- Alpaca dataset (instruction-following)
- ShareGPT dataset (conversation)

Baselines

- NVIDIA FasterTransformer (FT)
- **Orca**
	- Oracle: No over-reserve and know exact output lengths.
	- Pow2: Over-reserve the space for outputs by at most 2x.
	- Max: Over-reserve to the maximum possible output length.

Throughput – Greedy Decoding

OPT-13B on 1xA100 40G with ShareGPT trace.

Throughput – Beam Search

OPT-13B on 1xA100 40G with Alpaca trace. Speedup: vLLM v.s. Orca(Pow2)

vLLM Open-Source Adoption

Lecture Outline

- Memory management in GPUs for LLM serving
- **● Augmented model memory through retrieval augmented generation (RAG)**

Pre-trained LLMs are great

- Capture knowledge in parameters
- Applicably broadly

But:

- They hallucinate
- Struggle to access new information and use updates

Sample Interaction

ChatGPT 4o mini \vee

How many parameters are there in Grok-0 model?

The Grok-0 model has 1.2 billion parameters. If you have any specific questions about its architecture or capabilities, feel free to ask!

்

Inaccurate result as the LLM wasn't trained with the data!

Possible Fixes

- Fine-tuning
- Prompt engineering
- Retrieval augmented generation

Fine Tuning

- Run additional training steps with additional data that is now available
	- Example: LLM trained in English cannot output French. To teach new concepts, add new training data to a pre-trained model and fine tune the model
- Downsides of fine tuning:
	- **Expensive**
	- Number of parameters might not be sufficient to incorporate new information
	- Language model can "forget" earlier capabilities

Prompt Engineering

Possible to teach a new model to incorporate new information but limited by context lengths!

Retrieval is great

- Externally-retrieved information is useful for many NLP tasks
	- Precise and accurate knowledge access mechanism
	- Easy to update with new information

But:

- Lack ability to generate or "creativity"
- Need task-specific ways to integrate with applications/downstream tasks

RAG: Combine Retrieval with Generation

- Jointly learn to **retrieve** and **generate**
	- General recipe for any generation task
	- Latent retrieval no labels needed for docs; just retrieval

RAG models combine parametric and non-parametric memory for knowledge intensive tasks

Widely used?

 \equiv

ChatGPT \vee

 \varnothing

Answer the following question: how many parameters does the Grok-0 LLM contain?

֍ Searched 5 sites ^

- Q "how many parameters does Grok-0 LLM contain" bing.com
- DailyAl Grok LLM details and how it stacks up against ChatGPT | DailyAl dailyai.com
- $xA Announcing Grok$ x.ai
- Weights & Biases xAI Launches Grok, a New LLM with Real-Time Knowledge wandb.ai
- Info InfoQ xAl Introduces Large Language Model Grok InfoQ infog.com

The Grok-0 model, developed by xAI, contains 33 billion parameters. This was the prototype for their later models, including Grok-1, which is expected to have a larger parameter count but specific details have not been disclosed. Despite its smaller size compared to models like GPT-3.5 (175 billion parameters), Grok-0 has shown competitive performance on several machine learning benchmarks DAILYAI INFOQ.

 Q^n \bigoplus \bigoplus Q^n \mathbb{C} \vee

↓

RAG Pipeline Illustration

RAG Components

Need the following components:

- Pretrained generator model or language model
- Pretrained retriever model for generating embeddings of query, info
- Indexed knowledge base of text documents
- Use retriever model to identify relevant documents efficiently

Embedding Vectors

- Map semantic information of words to a high-dimensional space
- Related words will have "similar" vectors (e.g., cosine similarity or Euclidean distance) and can be used in the same context
- Words that appear in the same context can be inferred to be similar

Source: Speech and Language Processing 3rd Edition Draft, Dan Jurafsky and James H. Martin

Generating Embeddings

- Train a model that can predict the missing word that is masked out
- For example, "Rome is the <u>sea</u> of Italy, which is why it hosts many government buildings"
- Train an encode model (e.g., BERT)
- Use the Self-Attention mechanism to relate all the input tokens with each other

Generating Embeddings

Rome is the [mask] of Italy, which is why it hosts many government buildings.

Sentence Embeddings

- Use the Self-Attention mechanism also to capture entire sentences
- For example, encode every word and take the average of the embeddings
- But previous optimization is insufficient
	- Encodings should be such that the average across the words produces high cosine similarity with related words
- Sentence BERT: BERT specifically trained to generate similar embeddings for equivalent sentences

Vector DB

- Stores embedding vectors and supports similarity queries
- Used already for finding similar songs (Spotify), products (Amazon)

K-Nearest Neighbor Search

- Naive approaches uses exhaustive pairwise comparisons
- Approximate searches reduce the search space but at the cost of accuracy
	- For example, Hierarchical Navigable Small Worlds (HNSW)
	- Navigable small worlds builds a graph of entries with links connecting similar entries
		- Insert new entries by starting at random points and moving along directions that increase similarities
		- Establish connections between new entry and those that are closest to it
	- HNSW establishes a hierarchy of graphs with fewer elements in them, with each element randomly selected to be in the higher level graph
	- Search starts with the top-level of the hierarchy and proceeds to lower levels

RAG Pipeline Illustration

Updating LLMs using Fine Tuning and RAG

