LLM Serving: Role of Memory

Arvind Krishnamurthy

Material adapted from slides by Woosuk Kwon and Umar Jamil Paged Attention paper and Umar's talk

Lecture Outline

- Memory management in GPUs for LLM serving
- Augmented model memory through retrieval augmented generation (RAG)

Efficient Memory Management for Large Language Model Serving with PagedAttention

Woosuk Kwon^{1,*} Zhuohan Li^{1,*} Siyuan Zhuang¹ Ying Sheng^{1,2} Lianmin Zheng¹ Cody Hao Yu³ Joseph E. Gonzalez¹ Hao Zhang⁴ Ion Stoica¹

¹UC Berkeley ²Stanford University ³Independent Researcher ⁴UC San Diego *Equal contribution

SOSP 2023

Inference process of LLMs

Why is it **slow** and **inefficient**?

• The sequential dependency between output tokens makes it difficult to fully utilize the parallelism in GPUs

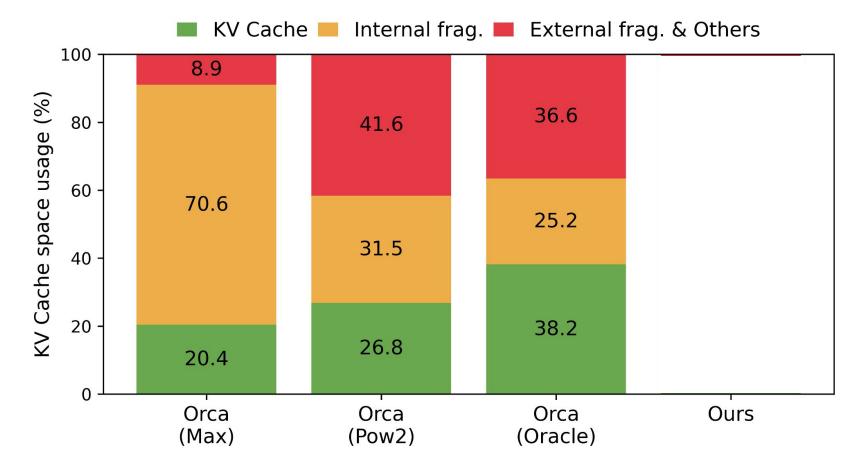
Solution: Batching multiple requests together

However, the batch size is significantly limited by the inefficient memory management for "*KV Cache*."

(Attention) KV Cache

KV Cache dynamically grows and shrinks

KV Cache management in previous systems

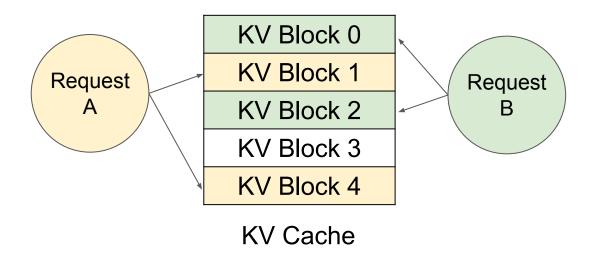


• **Pre-allocates contiguous** space of memory to the request's maximum length

- Useful convention in traditional deep learning workloads where the input/output shapes are static (e.g., fast pointer arithmetic, efficient memory access)
- Results in memory fragmentation
 - Internal fragmentation due to the unknown output length.
 - **External fragmentation** due to **non-uniform** per-request max lengths.

Significant memory waste in KV Cache space

• Only **20–40%** of KV Cache space is utilized to store actual token states


* Yu et al. "Orca: A Distributed Serving System for Transformer-Based Generative Models" (OSDI 22).

PagedAttention

• Application-level memory paging and virtualization for attention KV Cache

PagedAttention

Paging KV Cache space into KV blocks

 KV block is a fixed-size contiguous chunk of memory that can store KV token states from left to right

Virtualizing KV Cache

Attention mechanism with virtualized KV Cache

- 1. Fetch non-contiguous KV blocks using the block table
- 2. Apply attention operation on the fly



Memory efficiency of PagedAttention

- Minimal internal fragmentation
 - Only happens at the last block of a sequence
 - # wasted tokens / seq < block size
 - Sequence: O(100) O(1000) tokens
 - Block size: O(10) tokens
- No external fragmentation

Configuring the block size

• **Block size 16** works generally well in practice

Paging enables sharing

Multiple outputs

Sharing KV blocks

Sharing KV blocks

More complex sharing: beam search

- Similar to process tree (fork & kill)
- Efficiently supported by paged attention and copy-on-write mechanism

Memory saving via sharing

Percentage = (#blocks saved by sharing) / (#total blocks without sharing) OPT-13B on 1x A100-40G with ShareGPT dataset

Out of KV Block Memory

Physical KV blocks

Out of KV Block Memory

Request	The	future	of	cloud
A	computer	scientist	and	mathe- matician
	computing	is	likely	to
Request	renowned	for		
В	Alan	Turing	is	а

Physical KV blocks

Cannot allocate a new physical block for Request B

Goal: Free some requests' KV cache to let others run first.

Notes on Preemption & Recovery

Swap/recompute the whole request, since all previous tokens are required every step.

Swapping: smaller block sizes \rightarrow higher overhead due to small data transfers.

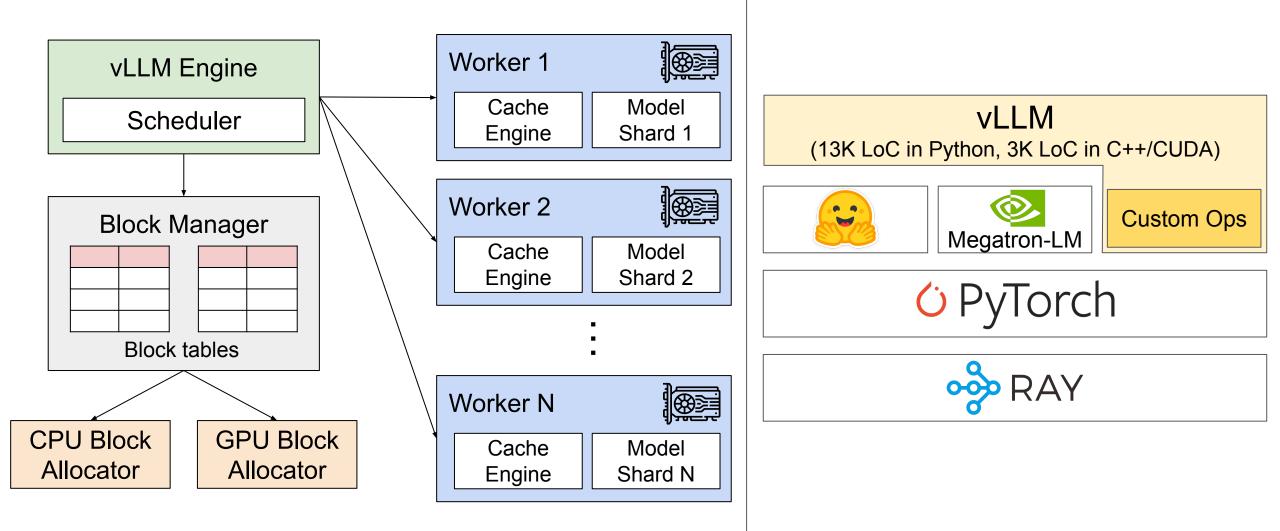

Recomputation: surprisingly fast since all token's KV cache can be computed in parallel.

Figure: Swap/Recomputation latency of 256 tokens.

vLLM Strategy: Use recomputation when possible with FCFS policy

LLM Distributed System Architecture & Implementation

Evaluation – Settings

Metric: Serving throughput

Input/Output Length Distribution

- Alpaca dataset (instruction-following)
- ShareGPT dataset (conversation)

Baselines

- NVIDIA FasterTransformer (FT)
- Orca
 - Oracle: No over-reserve and know exact output lengths.
 - Pow2: Over-reserve the space for outputs by at most 2x.
 - Max: Over-reserve to the maximum possible output length.

Throughput – Greedy Decoding

OPT-13B on 1xA100 40G with ShareGPT trace.

Throughput – Beam Search

OPT-13B on 1xA100 40G with Alpaca trace. Speedup: vLLM v.s. Orca(Pow2)

LLM Open-Source Adoption

Lecture Outline

- Memory management in GPUs for LLM serving
- Augmented model memory through retrieval augmented generation (RAG)

Pre-trained LLMs are great

- Capture knowledge in parameters
- Applicably broadly

But:

- They hallucinate
- Struggle to access new information and use updates

Sample Interaction

ChatGPT 40 mini $\, \sim \,$

How many parameters are there in Grok-0 model?

The Grok-0 model has 1.2 billion parameters. If you have any specific questions about its architecture or capabilities, feel free to ask!

Ð

Inaccurate result as the LLM wasn't trained with the data!

Possible Fixes

- Fine-tuning
- Prompt engineering
- Retrieval augmented generation

Fine Tuning

- Run additional training steps with additional data that is now available
 - Example: LLM trained in English cannot output French. To teach new concepts, add new training data to a pre-trained model and fine tune the model
- Downsides of fine tuning:
 - Expensive
 - Number of parameters might not be sufficient to incorporate new information
 - Language model can "forget" earlier capabilities

Prompt Engineering

Possible to teach a new model to incorporate new information but limited by context lengths!

Retrieval is great

- Externally-retrieved information is useful for many NLP tasks
 - Precise and accurate knowledge access mechanism
 - Easy to update with new information

But:

- Lack ability to generate or "creativity"
- Need task-specific ways to integrate with applications/downstream tasks

RAG: Combine Retrieval with Generation

- Jointly learn to **retrieve** and **generate**
 - General recipe for any generation task
 - Latent retrieval no labels needed for docs; just retrieval

RAG models combine parametric and non-parametric memory for knowledge intensive tasks

Widely used?

_

ChatGPT ~

C

Answer the following question: how many parameters does the Grok-0 LLM contain?

Searched 5 sites ^

- Q "how many parameters does Grok-0 LLM contain" bing.com
- DailyAI Grok LLM details and how it stacks up against ChatGPT | DailyAI dailyai.com
- xAI Announcing Grok x.ai
- Weights & Biases xAI Launches Grok, a New LLM with Real-Time Knowledge wandb.ai
- InfoQ xAl Introduces Large Language Model Grok InfoQ infoq.com

The Grok-0 model, developed by xAI, contains 33 billion parameters. This was the prototype for their later models, including Grok-1, which is expected to have a larger parameter count but specific details have not been disclosed. Despite its smaller size compared to models like GPT-3.5 (175 billion parameters), Grok-0 has shown competitive performance on several machine learning benchmarks DAILYAI INFOQ.

() ር ር ር ረ «

 $(\mathbf{1})$

RAG Pipeline Illustration

RAG Components

Need the following components:

- Pretrained generator model or language model
- Pretrained retriever model for generating embeddings of query, info
- Indexed knowledge base of text documents
- Use retriever model to identify relevant documents efficiently

Embedding Vectors

- Map semantic information of words to a high-dimensional space
- Related words will have "similar" vectors (e.g., cosine similarity or Euclidean distance) and can be used in the same context
- Words that appear in the same context can be inferred to be similar

Source: Speech and Language Processing 3rd Edition Draft, Dan Jurafsky and James H. Martin

Generating Embeddings

- Train a model that can predict the missing word that is masked out
- For example, "Rome is the ____ of Italy, which is why it hosts many government buildings"
- Train an encode model (e.g., BERT)
- Use the Self-Attention mechanism to relate all the input tokens with each other

Generating Embeddings

Rome is the [mask] of Italy, which is why it hosts many government buildings.

Sentence Embeddings

- Use the Self-Attention mechanism also to capture entire sentences
- For example, encode every word and take the average of the embeddings
- But previous optimization is insufficient
 - Encodings should be such that the average across the words produces high cosine similarity with related words
- Sentence BERT: BERT specifically trained to generate similar embeddings for equivalent sentences

Vector DB

- Stores embedding vectors and supports similarity queries
- Used already for finding similar songs (Spotify), products (Amazon)

K-Nearest Neighbor Search

- Naive approaches uses exhaustive pairwise comparisons
- Approximate searches reduce the search space but at the cost of accuracy
 - For example, Hierarchical Navigable Small Worlds (HNSW)
 - Navigable small worlds builds a graph of entries with links connecting similar entries
 - Insert new entries by starting at random points and moving along directions that increase similarities
 - Establish connections between new entry and those that are closest to it
 - HNSW establishes a hierarchy of graphs with fewer elements in them, with each element randomly selected to be in the higher level graph
 - Search starts with the top-level of the hierarchy and proceeds to lower levels

RAG Pipeline Illustration

Updating LLMs using Fine Tuning and RAG

