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Lecture Outline

● Memory management in GPUs for LLM serving

● Augmented model memory through retrieval augmented generation (RAG)
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Inference process of LLMs
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Why is it slow and inefficient?
● The sequential dependency between output tokens makes it difficult to 

fully utilize the parallelism in GPUs



Solution: Batching multiple requests together
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Better utilize the parallel hardware

However, the batch size is significantly limited by the inefficient memory 
management for “KV Cache.”
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KV Cache dynamically grows and shrinks
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KV Cache is huge: 
● Each token: ~1 MB. 
● One full request: ~several GBs.



KV Cache management in previous systems

● Pre-allocates contiguous space of memory to the request’s maximum length
○ Useful convention in traditional deep learning workloads where the input/output shapes are 

static (e.g., fast pointer arithmetic, efficient memory access)

Artificial Intellige
nce is <resv> <resv> … <resv> <resv>

3 KV Cache slots for 
request A’s prompt

Pre-allocated slots for A’s output

0 3 A’s max length

● Results in memory fragmentation
○ Internal fragmentation due to the unknown output length.

○ External fragmentation due to non-uniform per-request max lengths.

… … Alan Turing …

Request BExternal frag.
(Internal frag.)



Significant memory waste in KV Cache space

● Only 20–40% of KV Cache space is utilized to store actual token states

* Yu et al. “Orca: A Distributed Serving System for Transformer-Based Generative Models” (OSDI 22).



PagedAttention
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Memory management in OS PagedAttention

● Application-level memory paging and virtualization for attention KV Cache



Artificial Intelligence is the

Paging KV Cache space into KV blocks
KV blocks
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● KV block is a fixed-size contiguous chunk 
of memory that can store KV token states 
from left to right

KV Cache 
Space



Virtualizing KV Cache
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Attention mechanism with virtualized KV Cache

1. Fetch non-contiguous KV blocks using the block table
2. Apply attention operation on the fly

10-15% slowdown in GPU kernel latency 
due to memory indirection



Memory management with PagedAttention
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Memory management with PagedAttention

Request
A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical
block number # Filled

7 4

1 2

– –

– –

Block table

Completion: “and”



Memory management with PagedAttention
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Memory management with PagedAttention
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Memory management with PagedAttention
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Memory efficiency of PagedAttention

● Minimal internal fragmentation
○ Only happens at the last block of a sequence
○ # wasted tokens / seq < block size

■ Sequence: O(100) – O(1000) tokens
■ Block size: O(10) tokens

● No external fragmentation

Alan Turing is a

computer scientist and mathematic
ian

renowned

Internal fragmentation

2.5-5x improvement



Configuring the block size

Low spatial locality Large internal 
fragmentation

● Block size 16 works generally well in practice



Paging enables sharing

The future of cloud computing 
is likely to be characterized 
by several key trends

LLM

Prompt

that will shape the industry and 
its impact on businesses and 
individuals…

each playing a pivotal role in 
reshaping how businesses 
leverage technology…

which will not only transform the 
way organizations operate but 
also empowering them…

Multiple outputs

Shared btw. sequences

Example: Parallel sampling



Sharing KV blocks
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Sharing KV blocks
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are shared across samples



More complex sharing: beam search
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● Similar to process tree (fork & kill)
● Efficiently supported by paged attention and copy-on-write mechanism



Memory saving via sharing

Percentage = (#blocks saved by sharing) / (#total blocks without sharing)
OPT-13B on 1x A100-40G with ShareGPT dataset



Out of KV Block Memory
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Out of KV Block Memory
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Request Preemption & Recovery

Swap to 
CPU

Swap back 
to GPU

Option 1: Swapping

Recompute

Delete

Option 2: Recomputation

Goal: Free some requests’ KV cache to let others run first. 



Notes on Preemption & Recovery

Swap/recompute the whole request, since all 
previous tokens are required every step.

Swapping: smaller block sizes → higher 
overhead due to small data transfers.

Recomputation: surprisingly fast since all 
token’s KV cache can be computed in parallel. Figure: Swap/Recomputation 

latency of 256 tokens.

vLLM Strategy: Use recomputation when possible with FCFS policy
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Evaluation – Settings

Input/Output Length Distribution
● Alpaca dataset (instruction-following)
● ShareGPT dataset (conversation)

Baselines
● NVIDIA FasterTransformer (FT)
● Orca

○ Oracle: No over-reserve and know exact output lengths.
○ Pow2: Over-reserve the space for outputs by at most 2x.
○ Max: Over-reserve to the maximum possible output length.

Metric: Serving throughput



Throughput – Greedy Decoding

OPT-13B on 1xA100 40G with ShareGPT trace. 

Average number of batched requests.

2.4x speedup



Throughput – Beam Search

Beam width = 2
2.4x speedup

Beam width = 4
3.2x speedup

Beam width = 6
3.5x speedup

No beam search
1.8x speedup

OPT-13B on 1xA100 40G with Alpaca trace.
Speedup: vLLM v.s. Orca(Pow2) 



vLLM Open-Source Adoption

github.com/vllm-project/vll

m
$ pip install vllm

8.8K Stars

lm-sys/FastChat allenai/open-instruct

Open-Source Projects

Companies

…

95+ Contributors 

https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm


Lecture Outline

● Memory management in GPUs for LLM serving

● Augmented model memory through retrieval augmented generation (RAG)



Pre-trained LLMs are great

● Capture knowledge in parameters

● Applicably broadly

But:

● They hallucinate

● Struggle to access new information and use updates



Sample Interaction

Inaccurate result as the LLM wasn’t trained with the data!



Possible Fixes

● Fine-tuning

● Prompt engineering

● Retrieval augmented generation



Fine Tuning

● Run additional training steps with additional data that is now available

• Example: LLM trained in English cannot output French. To teach new concepts, add 

new training data to a pre-trained model and fine tune the model

● Downsides of fine tuning:

• Expensive

• Number of parameters might not be sufficient to incorporate new information

• Language model can “forget” earlier capabilities



Prompt Engineering

Possible to teach a new model to incorporate new information but limited by context lengths!



Retrieval is great

● Externally-retrieved information is useful for many NLP tasks

• Precise and accurate knowledge access mechanism

• Easy to update with new information

But:

● Lack ability to generate or “creativity”

● Need task-specific ways to integrate with applications/downstream tasks



RAG: Combine Retrieval with Generation

● Jointly learn to retrieve and generate

• General recipe for any generation task

• Latent retrieval - no labels needed for docs; just retrieval

RAG models combine parametric and non-parametric memory for knowledge 

intensive tasks



Widely used?



RAG Pipeline Illustration



RAG Components

Need the following components:

● Pretrained generator model or language model

● Pretrained retriever model for generating embeddings of query, info

● Indexed knowledge base of text documents

● Use retriever model to identify relevant documents efficiently



Embedding Vectors

● Map semantic information of words to a high-dimensional space

● Related words will have “similar” vectors (e.g., cosine similarity or 

Euclidean distance) and can be used in the same context

● Words that appear in the same context can be inferred to be similar



Generating Embeddings

● Train a model that can predict the missing word that is masked out

● For example, “Rome is the ___ of Italy, which is why it hosts many 

government buildings”

● Train an encode model (e.g., BERT)

● Use the Self-Attention mechanism to relate all the input tokens with each 

other



Generating Embeddings



Sentence Embeddings

● Use the Self-Attention mechanism also to capture entire sentences

● For example, encode every word and take the average of the embeddings

● But previous optimization is insufficient

• Encodings should be such that the average across the words produces high cosine 

similarity with related words

● Sentence BERT: BERT specifically trained to generate similar embeddings 

for equivalent sentences



Vector DB

● Stores embedding vectors and supports similarity queries

● Used already for finding similar songs (Spotify), products (Amazon)



K-Nearest Neighbor Search

● Naive approaches uses exhaustive pairwise comparisons

● Approximate searches reduce the search space but at the cost of accuracy

• For example, Hierarchical Navigable Small Worlds (HNSW)

• Navigable small worlds builds a graph of entries with links connecting similar entries

• Insert new entries by starting at random points and moving along directions that increase 

similarities

• Establish connections between new entry and those that are closest to it

• HNSW establishes a hierarchy of graphs with fewer elements in them, with each element 

randomly selected to be in the higher level graph

• Search starts with the top-level of the hierarchy and proceeds to lower levels



RAG Pipeline Illustration



Updating LLMs using Fine Tuning and RAG


