LLM Inference Serving Systems

Arvind Krishnamurthy

Material adapted from slides by Hao Zhang (UCSD) and Amey Agrawal (GTech)

Lecture Outline

- Requirements of LLM Serving Systems
- Interleaved execution in Sarathi Serve
- Disaggregation in DistServe

LLM Systems Today Optimize Throughput

Motivation: Applications have Diverse SLO

•TTFT

Time to first token Initial response time

TPOT

Time per output token

Average time between two subsequent generated tokens

User can tolerate longer initial response

Chatbot

Summarization

Fast initial response

Human reading speed (P99 latency = 250ms)

Data output generation (P99 latency = 35ms)

High Throughput ≠ High Goodput

LLM Performance leaderboard (tokens/sec)

Taming Throughput-Latency Tradeoff in LLM Inference with **Sarathi-Serve**

Amey Agrawal¹, Nitin Kedia², Ashish Panwar², Jayashree Mohan², Nipun Kwatra², Bhargav Gulavani², Alexey Tumanov¹, Ramachandran Ramjee²

¹Georgia Institute of Technology, ²Microsoft Research India

Can we maintain low latency with high throughput?

Background: Continuous Batching

- Integrate new requests as old requests rotate off
- Need to perform prefill for new request
 - Results in a stall for existing requests
- Two queues in the system: prefill requests waiting to be integrated; ongoing decode requests

The Prefill-Decode Scheduling Conundrum

Timeline

The Latency-Throughput Tradeoff

Existing batching policies make a harsh latency-throughput tradeoff

How can we achieve both high throughput and low-latency?

The Prefill-Decode Scheduling Conundrum

Timeline C_p D_p A_d , B_d , C_d C_p D_p A_d , B_d , C_d Decodes for requests A, B stalled $C_p + A_d$, B_d ?

...

Latency = 16ms

Mixed Batching

Idea

Fused computation of prefill and decodes

Challenge

(a) Naively combining prefill and decode operations leads to increase in latency

Decode-only Decode + Full Prefill

Key Insight

Prefill computation can be done at a marginal cost with careful batching

Observation: Arithmetic Intensity Slack

Key Idea

Split large prefills into smaller chunks – just enough to consume the leftover compute budget in decode batches

Avoid Pipeline Bubbles

Sarathi-Serve

Evaluations

Problem: State-of-the-art systems sacrifice decode latency to achieve higher throughput

Key Insight - Low arithmetic intensity of decodes allows for adding compute intensive prefills with negligible decode latency cost

Key Results - We achieve optimality in both latency and throughput simultaneously leading up to 6x higher capacity under SLO constraints

🞉 Industry Adoption - Available in all major serving frameworks and more.

Course Logistics

- Assignment 2 out soon
 - Performance modeling of LLM prefill and decode
 - Use AMD clusters for the assignment
 - Read document on AMD cluster usage
- Information on project logistics will be released next week

Throughput is Not All You Need

Maximizing Goodput in LLM Serving using Prefill-Decode Disaggregation

Hao Zhang @ Hao AI Lab & vLLM Team

DistServe: Disaggregating Prefill and Decoding for Goodput-optimized Large Language Model Serving *Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, Hao Zhang*

Prefill and Decode have Distinct Characteristics

Prefill

Compute-bound

One prefill saturates compute. Batching across context tokens.

Decode

Memory-bound

Must batch many requests together to saturate compute

Prefill and Decode have Distinct Characteristics

Continuous Batching Causes Interference

Continuous Batching Batch R1 and R2 together in 1 GPU

wasted time

Continuous Batching Causes Interference

wasted time

time

Colocation \rightarrow Overprovision Resource to meet SLO

Colocation \rightarrow Coupled Parallelism

TTFT tight, TPOT loose

Prefill and Decode have different preferences

Summary: Problems caused by Colocation

Coupled Parallelism Strategy

Summary: Problems caused by Colocation

DistServe: Disaggregating Prefill and Decode

Disaggregation is a technique that

Request Arrived

Timeline

Disaggregation achieves better goodput

Colocate

GPU

Max System goodput

= Min(Prefill, Decode)

0 0

= 1.6 rps / GPU

Disaggregation achieves better goodput

Colocate

1 GPU for both Prefill and Decode

Disaggregate (2P1D)

2 GPU for Prefill + 1 GPU for Decode

Disaggregation achieves better goodput

Colocate

1 GPU for both Prefill and Decode

Disaggregate (2P1D)

2 GPU for Prefill + 1 GPU for Decode

Simple Disaggregation achieves **2x** goodput (per GPU) What are issues or potential downsides with disaggregation?

Evaluation

Achieves 2.0x - 4.48x compared to vanilla vLLM

- Chatbot: 2.0 3.4x
- Code Completion: 3.2x
- Summarization: 4.5x

DistServe: Disaggregating Prefill and Decoding for Goodput-optimized Large Language Model Serving *Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, Hao Zhang*

Summary

- **Goodput** instead of Throughput
- **Disaggregation** is effective to optimize **goodput**!
- **DistServe** achieves 2.0x 4.48x compared to vLLM
- Integrating into vLLM
- Already adopted by companies like **anyscale**