LLM Inference Serving Systems

Arvind Krishnamurthy

Material adapted from slides by Hao Zhang (UCSD) and Amey Agrawal (GTech)

Lecture Outline

® Requirements of LLM Serving Systems
® Interleaved execution in Sarathi Serve

® Disaggregation in DistServe

LLM Systems Today Optimize Throughput

/LLM o

@ DeepSpeed M|

S

NVIDIA.

Beyond State-of-the-art Performance

24X hlgher throughput compared to HF tein

e keguESTE INpUL/OUtpaklgr gths from the ShareGP, n our experim
achieves ug to 24x hlgher throughput compared to HF and ufy.to 3 Bx hlgher throughput than TGI.

LLaMA—13B A100-40GB LLaMA-7B. A10G

100 o]
61.8 e 5U.4
B -l . ' f _—
3 8.3
0 6.4 E s

HF TGI VvLLM HF TGl vLLM

Throughput (reg/min)

o

Serving throughput when each request asks for one output completion. vLLM achieves 14x - 24x
higher throughput than HF and 2.2x - 2.5x higher throughput than TGI.

Motivation: Applications have Diverse SLO

“TTFT ‘TPOT

Time to first token Time per output token
Initial response time Average time between two subsequent generated tokens

oD SCEE08EEE00E0EE
- Fast initial response - Human reading speed (P99 latency = 250ms)

Chatbot

() QUMD | oot outpur generation (P99 latency = 35ms)

Summarization User can tolerate longer initial response

High Throughput # High Goodput

TTFT

A
High
I 'll ' Throughput = 10 rps Throughput
= completed request / time System
e
Y \ ~ J
TPOT Suppose'lo_ requests complete
within 1 second... under SLO
e criteria
can have
200ms |- o= B - —- B -~ f — T — v
. Low Goodput!
X u-{'
i ' Goodput =3 rps .0
I -
som: | N RERERERE = completed request within SLO / time
\ 2N . y
TPOT _ but only 3 (out of 10) hold the

latency target

High Throughput # High Goodput

TTFT
A

I . .. High
aut
High Throughput can
T;;;—s g 9np = Poor UX &
still have Low Goodput
ooms FRERAL ‘~,‘:Ila.l‘1r|
' ' ' ~ Goodput =3 rps
B _______.___i___i_____' = completed request within SLO / time

<

TPOT _ but only 3 (out of 10) hold the
latency target

LLM Performance leaderboard (tokens/sec)

66

|

l
Anyscale I

Bedrock (aws
40

Fireworks.ai l_ :_l
185
o -
a3
Lepton.ai l_,_l
Perplexity.ai | E |
10
Replicate '—'-{
65
Together.ai = E |
80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230

0 10 20 30 40 50 60 70

SAI L))

Taming Throughput-Latency Tradeoft In
LLM Inference with Sarathi-Serve

Amey Agrawal’, Nitin Kedia? Ashish Panwar?, Jayashree Mohan?,
Nipun Kwatra?, Bhargav Gulavani?, Alexey Tumanov!, Ramachandran
Ramjee?

'Georgia Institute of Technology, °“Microsoft Research India

Can we maintain low latency
with high throughput?

« Throughput ? « Latency
_

R —T

®)

Image credits: Redpanda 9

Background: Continuous Batching

Integrate new requests as old requests rotate
off

Need to perform prefill for new request

® Results in a stall for existing requests

Two queues in the system: prefill requests
waiting to be integrated; ongoing decode
requests

/) The Prefill-Decode Scheduling Conundrum

Timeline
A,B,C,
Cp Dp d Dc: d
¥ C, D T v ” Prefill
enter 2 Decodes for requests A, B stalled Prioritizing
v) Eg: vLLM
A, By -
A, B, A, By B, B, C,
A exits B exits

Low batch size poor throughput

[1A The Latency-Throughput Tradeoff

A
vLLM
Sarathi-Serve . .
/ Prefill prioritizing
= ,/'/Paged
s " Attention
m ’
. r
g lteration-level .- gcf?l” oritizi
= batching . refill prioritizing
FasterTransformer
Decode prioritizing
< >
Decode Latency

Existing batching policies make a harsh latency-throughput tradeoff

12

How can we achieve both high
throughput and low-latency? (=

13

/~ The Prefill-Decode Scheduling Conundrum

Timeline
A, B,C
d’ d’ d7
— Cp DlO D
37 C, D =S . y
enter -%_ Decodes for requests A, B stalled
\ o
Aqi By > C|O+AO|,BO| ?

A,, B, A,, B, B, B, C,

A exits B exits

Low batch size poor throughput

14

/O Mixed Batching XN Decode-only mmm Decode + Full Prefill

—~ Mistral 7B on A100 5 1x

20.3x

Idea

Fused computation of prefill and decodes

1 32 64
Batch Size
VvLLM Decode Latency SLO =10ms

Challenge q - -

% Naively combining prefill and decode I
operations leads to increase in latency Latency = 8ms Latency = 24ms

Orca

Latency = lems
15

Key Insight

Prefill computation can be done at a
marginal cost with careful batching

i

q

16

/) Observation: Arithmetic Intensity Slack

Constrained
due to memory
overhead in
decode phase

Arithmetic Intensity (FLOPs/bytes)

600 -

\4

Compute Bound Region - Low MBU

Prefill

400 -

200 -

Decode

Balanced - Sarathi-Serve

Memory Bound Region - Low MFU

0]

250

500

750 1000 1250 1500

Number of Tokens

1750

Latency
dominated
by compute

Grows linearly
with num tokens

—_—

Latency
dominated

by weight
fetch time

2000

17

¢ Stall-free Batching

Key Idea

% Split large prefills into smaller
chunks — just enough to consume the
leftover compute budget in decode
batches

Baseline - vLLM Decode Latency SLO =10ms

Ap B, Ap By | Ap By

Latency = 8ms Latency = 24ms

Memory Compute
SaxathidServe Bound
Gain!
AD BP'I+ AD BP2+ AD - >

|
COBEMBTN mency

Balaa&€on TBT sLO

18

Avoid Pipeline Bubbles

GPUO
GPU1

GPUO
GPU1

Timeline

Bubble due to prefill
length variation

A

£

N\

Bubble due to prefill
decode interference

A

r

N\

\/

Ap’ B Cp’ Dp Ad1 ’ Bd1 Cd1 ’ Dd1
A, B, € D A, By,
Orca
Minimal Bubbles
p1 Bp1 Ap2 sz Ad1 ’ Cp1 Bd1 ’ Dp1 Ad2’ Cd1 de' Dd1 Ad3’ Cd2
Ap1 Bp1 Ap2 Bp2 Ad1 2 Cp1 Bd1 2 I:)p1 Ad2’ Cd1 Bd2’ I:)d1

Sarathi-Serve

Evaluations

20

Serving Capacity under SLOs

adapt using different

‘ > chunk sizes

ShareGPT4 trace on on A100 GPUs with strict (S) and relaxed (R) latency SLOs

Max Capacity
o =
n o

=
o

XY Orca vLLM [Sarathi-Serve

6.31x
5.54x 5.62x
4.69x
// 7
W% N% W% &%
SLO-S SLO-R SLO-S SLO-R
LLaMA2-70B Falcon-180B

5-6x higher capacity /%

21

Summary

2 Problem: State-of-the-art systems sacrifice decode latency to achieve higher
throughput

. Key Insight - Low arithmetic intensity of decodes allows for adding compute
intensive prefills with negligible decode latency cost

== Key Results - We achieve optimality in both latency and throughput
simultaneously leading up to 6x higher capacity under SLO constraints

&; Industry Adoption - Available in all major serving frameworks and more.

C S | | ERAE || E
/LLM (centML OU || Sl | R
anyscale

GitHub Use in vLLM

22

Course Logistics

e Assignment 2 out soon
o Performance modeling of LLM prefill and decode
o Use AMD clusters for the assignment
o Read document on AMD cluster usage

e Information on project logistics will be released next week

Throughput is Not All You Need

Maximizing Goodput in LLM Serving
using Prefill-Decode Disaggregation

Hao Zhang @ Hao AI Lab & vLLM Team

DistServe: Disaggregating Prefill and Decoding for Goodput-optimized Large Language Model Serving
Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, Hao Zhang

Prefill and Decode have Distinct Characteristics

* Prefill
.
Compute-bound

One prefill saturates compute. Batching across context tokens.

* Decode SEEE08808E0

Memory-bound
Must batch many requests together to saturate compute

Throughput (tokens/s)

Prefill and Decode have Distinct Characteristics

Prefill Decode
10000 __10000
Q —o— input length: 128
8000- g 80001 —e— input length: 256
600019 § 60001 !nput length: 512
y —e— input length: 1024
4000- & 4000
=
2000+ o 2000
A o
= i
0 03—

1 2 4 8 16 32 64128 1 2 4 8 16 32 64128
Batch Size Batch Size

Continuous Batching Causes Interference

Continuous Batching
Batch R1 and R2 together in 1 GPU

Time wasted for decode

—
cn ~000__ 088
- S 088
~— ~time

Time wasted for prefiII'

Request R2 arrives
arrival

wasted time

Continuous Batching Causes Interference

Continuous Batching
Batch R1 and R2 together in 1 GPU

Time wasted for decode

f_H
wn 000 0008
o
- S 000
(- time

Time wasted for prefill=

Request R2 arrives
arrival

Continuous Batching
Batch R1~R4 together in 1 GPU

~ 08 8 8 88
- D8 8 88

R3

R4
Request T T T time
arrival R2 R3 R4

wasted time

Colocation — Overprovision Resource to meet SLO

TTFT TTFT
A A
200ms |- = ERa= _ _ER. _ S= _ _Soi2S _ _ :ffPl.J_
1) we—i
e B > add more GPU
50ms _______.___.____. ______
Y
TPOT TPOT /
Poor UX & m Good UX &
; ALY Wi

lower cost & Higher cost ¢ & & &

~ o~ o~ o~

Colocation — Coupled Parallelism

TTFT

A
PP | TP
200ms----—-—.- ———————————— o Prefil | @ @ @
.Il.l.lll. e Decode | @)
.1010] g 13 "R S
7
TPOT
TTET tight, TPOT loose Prefill and Decode have

different preferences

Summary: Problems caused by Colocation

Time wasted for decode

——
- N]| BN
[GPU_
= S 088
(o time

ol
Time wasted for prefill

Request R2
ol :
ot arrives

Continuous Batching
Cause Interference

PP | TP | DP

* Prefill D O v

e Decode | ¥ @ &

Coupled Parallelism Strategy

Summary: Problems caused by Colocation

Is there a better way to
w achieve better
= Goodput per GPU?

TP | DP

3
<
a
@

Continuous Batching

Cause Interference Coupled Parallelism Strategy

DistServe: Disaggregating Prefill and Decode

Disaggregation is a technique that

Request Arrived

Prefill Worker H i:;’ Decode Worker “ i:”

Request

Timeline

Disaggregation achieves better goodput

Colocate

1 GPU for both Prefill and Decode

P9O TTFT

P90 TPOT

Colocate

). TR0 [TET £= 300 ms
: Prefill = 3 rps
>

'
'
2 344 6 % 10

Request rate per second

Colocate

P90 TPOT <=40 ms

Decode = 1.6 rps

1.@ 4 6 22 10

Request rate per second

Max System goodput

= Min(Prefill, Decode)
= 1.6 rps / GPU 20

Disaggregation achieves better goodput

Colocate

1 GPU for both Prefill and Decode

Colocate

[
L
=
o O P90 TTFT <= 400 ms
=P SRS AU
Q. ' | Prefill =3 rps

>

2 34 6 % 10

Request rate per second

Colocate

P90 TPOT <=40 ms

P90 TPOT

. | Decode = 1.6 rps
l& « 6 s 0

Request rate per second

Max System goodput

= Min(Prefill, Decode)
= 1.6 rps / GPU ullld

Disaggregate (2P1D)

2 GPU for Prefill + 1 GPU for Decode

Prefill-only
m
— Prefill = 5.6 rps
|._
o F-==-=@T--- -
o i P90 TTFT <= 400 ms
a e
2 45.6¢6 £ 10

Request rate per second

Decode-only
=
8 P390 TPOT <= 40 ms
e S O A
o
4 Decode = 10 rps

Disaggregate (2P1D) goodput

= Min (5.6 x 2, 10) rps / 3 GPU
=3.3rps / GPU L4

-

Disaggregation achieves better goodput

Colocate

1 GPU for both Prefill and Decode

Colocate

[
L
=
o O P90 TTFT <= 400 ms
=P SRS AU
Q. ' | Prefill =3 rps
>

'
'
2 344 6 % 10

Request rate per second

Colocate

P90 TPOT <=40 ms

i | Decode = 1.6 rps
1.@ 4 6 % 10

Request rate per second

P90 TPOT

Max System goodput

= Min(Prefill, Decode)
= 1.6 rps / GPU 2L

Disaggregate (2P1D)

2 GPU for Prefill + 1 GPU for Decode

—
c Prefill= 5.6 rps Simple Disaggregation
2 = P90 TTFT <= 400 ms
T achieves 2X goodput
- Decode-only (per GPU)
8 P90 TPOT <= 40 ms
- e ___ gl _.
o
4 Decode = 10 rps

Disaggregate (2P1D) goodput

= Min (5.6 x 2, 10) rps / 3 GPU
=3.3rps / GPU L4

-

wWhat are issues or potential downsides with
disaggregation?

s VLM
B DistServe

AN

Evaluation
3.4x

4.5x
3.2x
2.2x
2.0x
1.0x 1.0x 1.0x I 1.0x 1.0%

Chatbot1 Chatbot2 Chatbot3 Code Completion Summarization

Achieves 2.0x - 4.48x
compared to vanilla vLLM
e Chatbot: 2.0 - 3.4x
e Code Completion: 3.2x
e Summarization: 4.5x

w

N

Completed Requests
within latency requirement
per Second per GPU (normalized)

—

DistServe: Disaggregating Prefill and Decoding for Goodput-optimized Large Language Model Serving
Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, Hao Zhang

Summary

Goodput instead of Throughput
Disaggregation is effective to optimize goodput!
DistServe achieves 2.0x - 4.48x compared to vLLM

Integrating into LM
Already adopted by companies like cmyscqle

