
LLM Inference Serving Systems

Arvind Krishnamurthy

Material adapted from slides by Hao Zhang (UCSD) and Amey Agrawal (GTech)

Lecture Outline

● Requirements of LLM Serving Systems

● Interleaved execution in Sarathi Serve

● Disaggregation in DistServe

LLM Systems Today Optimize Throughput

Motivation: Applications have Diverse SLO

TTFT TPOT
Time to first token Time per output token
Initial response time Average time between two subsequent generated tokens

Human reading speed (P99 latency = 250ms)

Data output generation (P99 latency = 35ms)

Fast initial response

User can tolerate longer initial responseSummarization

Chatbot

High Throughput ≠ High Goodput

= completed request / time
Throughput = 10 rps

= completed request within SLO / time
Goodput = 3 rps

under SLO
criteria

can have
Low Goodput!

High
Throughput
System

…

🤯

High Throughput ≠ High Goodput

= completed request / time
Throughput = 10 rps

= completed request within SLO / time
Goodput = 3 rps

under SLO
criteria

can have
Low Goodput!

High
Throughput
System

… High Throughput can
 still have Low Goodput

⇒ Poor UX 💔

LLM Performance leaderboard (tokens/sec)

Taming Throughput-Latency Tradeoff in
LLM Inference with Sarathi-Serve

Amey Agrawal1, Nitin Kedia2, Ashish Panwar2, Jayashree Mohan2,
Nipun Kwatra2, Bhargav Gulavani2, Alexey Tumanov1, Ramachandran

Ramjee2

1Georgia Institute of Technology, 2Microsoft Research India

8

9Image credits: Redpanda

🤔
Can we maintain low latency

with high throughput?

Background: Continuous Batching

● Integrate new requests as old requests rotate
off

● Need to perform prefill for new request

• Results in a stall for existing requests

● Two queues in the system: prefill requests
waiting to be integrated; ongoing decode
requests

11

🔎 The Prefill-Decode Scheduling Conundrum

Ad , Bd

Timeline

O
p

ti
on

 1
Cp Dp

Ad , Bd, Cd,
Dd

…

Ad , Bd Ad , Bd Bd Bd Cp
…

A exits
Low batch size poor throughput

B exits

Decode
Prioritizing
Eg: FasterTransformer

Prefill
Prioritizing
Eg: vLLM

Decodes for requests A, B stalled
💥 C, D
enter

O
p

ti
on

 2

12

⚖ The Latency-Throughput Tradeoff

Decode Latency

Th
ro

ug
hp

ut

vLLM
Prefill prioritizing

FasterTransformer
Decode prioritizing

Orca
Prefill prioritizingIteration-level

batching

Paged
Attention

Sarathi-Serve

Existing batching policies make a harsh latency-throughput tradeoff ❗

How can we achieve both high
throughput and low-latency? 🤔

13

14

🔎 The Prefill-Decode Scheduling Conundrum

Ad , Bd

Timeline

O
p

ti
on

 1
Cp Dp

Ad , Bd, Cd,
Dd

…

Ad , Bd Ad , Bd Bd Bd Cp
…

A exits
Low batch size poor throughput

B exits

Decodes for requests A, B stalled
💥 C, D
enter

O
p

ti
on

 2

Cp + Ad , Bd ?

🔎 Mixed Batching

15

Mistral 7B on A100

Challenge

😭 Naively combining prefill and decode
operations leads to increase in latency

Idea

󰳔 Fused computation of prefill and decodes

AD BP+ AD

Latency = 16ms

Orca

AD

vLLM

BP AD, BD

Decode Latency SLO = 10ms

Latency = 24msLatency = 8ms

Key Insight

Prefill computation can be done at a
marginal cost with careful batching💡

16

17

🔎 Observation: Arithmetic Intensity Slack

LLama-2-70B on 4-A100 GPUs

Latency
dominated
by weight
fetch time

Constrained
due to memory
overhead in
decode phase

Latency
dominated
by compute
Grows linearly
with num tokens

Independent
of num tokens

Key Idea

🔪 Split large prefills into smaller
chunks – just enough to consume the
leftover compute budget in decode
batches

🧠 Stall-free Batching

18

AD

Baseline - vLLM

BP AD, BD AD, BD

AD

Sarathi-Serve

BP1+ AD BP2+ AD

Memory
Bound

Compute
Bound

Gain!

Compute-Memory
Balance

Decode Latency SLO = 10ms

Latency = 8ms Latency = 24ms

Latency = 9ms
~Uniform inter-token latency
based on TBT SLO

19

Avoid Pipeline Bubbles

Evaluations 🧮

20

21

🧮 Serving Capacity under SLOs

Setup
ShareGPT4 trace on on A100 GPUs with strict (S) and relaxed (R) latency SLOs

2-4x higher capacity 🎉

adapt using different
chunk sizes

5-6x higher capacity 🎊

😨 Problem: State-of-the-art systems sacrifice decode latency to achieve higher
throughput

💡 Key Insight - Low arithmetic intensity of decodes allows for adding compute
intensive prefills with negligible decode latency cost

🧮 Key Results - We achieve optimality in both latency and throughput
simultaneously leading up to 6x higher capacity under SLO constraints

🎉 Industry Adoption - Available in all major serving frameworks and more.

22

🗒 Summary

Course Logistics

● Assignment 2 out soon

○ Performance modeling of LLM prefill and decode

○ Use AMD clusters for the assignment

○ Read document on AMD cluster usage

● Information on project logistics will be released next week

Throughput is Not All You Need
Maximizing Goodput in LLM Serving
using Prefill-Decode Disaggregation

Hao Zhang @ Hao AI Lab & vLLM Team

DistServe: Disaggregating Prefill and Decoding for Goodput-optimized Large Language Model Serving
Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, Hao Zhang

Prefill and Decode have Distinct Characteristics

Prefill

Decode

Compute-bound

Memory-bound

One prefill saturates compute. Batching across context tokens.

Must batch many requests together to saturate compute

Prefill and Decode have Distinct Characteristics

Prefill Decode

wasted time

Continuous Batching Causes Interference

R1

R2
time

R2 arrivesRequest
arrival

Time wasted for decode

Time wasted for prefill

Continuous Batching
Batch R1 and R2 together in 1 GPU

R1

R2
time

R2 arrivesRequest
arrival

Time wasted for decode

Time wasted for prefill

R1

R2

timeRequest
arrival R2 R3 R4

R3

R4

wasted time

Continuous Batching Causes Interference

Continuous Batching
Batch R1 and R2 together in 1 GPU

Continuous Batching
Batch R1~R4 together in 1 GPU

Higher cost 💰💰💰💰

x1
add more GPU

x4

Colocation → Overprovision Resource to meet SLO

Poor UX 💔 Good UX 🥰
lower cost 💰

⚖

Colocation → Coupled Parallelism

TTFT tight, TPOT loose

Prefill

Decode

PP TP

Prefill and Decode have
different preferences

😐 ❤

❤ 😐

Coupled Parallelism Strategy

Summary: Problems caused by Colocation

Continuous Batching
Cause Interference

Summary: Problems caused by Colocation

Continuous Batching
Cause Interference

Is there a better way to
achieve better

Goodput per GPU?

Coupled Parallelism Strategy

DistServe: Disaggregating Prefill and Decode

Colocate
1 GPU for both Prefill and Decode

😐

Disaggregation achieves better goodput

Colocate Disaggregate (2P1D)
2 GPU for Prefill + 1 GPU for Decode1 GPU for both Prefill and Decode

😎😐

Disaggregation achieves better goodput

goodput

Colocate Disaggregate (2P1D)
2 GPU for Prefill + 1 GPU for Decode1 GPU for both Prefill and Decode

😎😐

Simple Disaggregation

achieves 2x goodput
(per GPU)

Disaggregation achieves better goodput

goodput

What are issues or potential downsides with
disaggregation?

Achieves 2.0x - 4.48x
compared to vanilla vLLM
● Chatbot: 2.0 - 3.4x
● Code Completion: 3.2x
● Summarization: 4.5x

Evaluation

DistServe: Disaggregating Prefill and Decoding for Goodput-optimized Large Language Model Serving
Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, Hao Zhang

Summary

● Goodput instead of Throughput
● Disaggregation is effective to optimize goodput!
● DistServe achieves 2.0x - 4.48x compared to vLLM
● Integrating into
● Already adopted by companies like

