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Lecture Outline

® Requirements of LLM Serving Systems
® Interleaved execution in Sarathi Serve

® Disaggregation in DistServe



LLM Systems Today Optimize Throughput
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Serving throughput when each request asks for one output completion. vLLM achieves 14x - 24x
higher throughput than HF and 2.2x - 2.5x higher throughput than TGI.




Motivation: Applications have Diverse SLO

“TTFT ‘TPOT

Time to first token Time per output token
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- Fast initial response - Human reading speed (P99 latency = 250ms)

Chatbot
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Summarization User can tolerate longer initial response
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LLM Performance leaderboard (tokens/sec)
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Taming Throughput-Latency Tradeoft In
LLM Inference with Sarathi-Serve

Amey Agrawal’, Nitin Kedia? Ashish Panwar?, Jayashree Mohan?,
Nipun Kwatra?, Bhargav Gulavani?, Alexey Tumanov!, Ramachandran
Ramjee?
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Can we maintain low latency
with high throughput?
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Background: Continuous Batching

Integrate new requests as old requests rotate
off

Need to perform prefill for new request

® Results in a stall for existing requests

Two queues in the system: prefill requests
waiting to be integrated; ongoing decode
requests




/) The Prefill-Decode Scheduling Conundrum
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[1A The Latency-Throughput Tradeoff
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Existing batching policies make a harsh latency-throughput tradeoff
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How can we achieve both high
throughput and low-latency? (=
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/~ The Prefill-Decode Scheduling Conundrum
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/O Mixed Batching XN Decode-only mmm Decode + Full Prefill
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Fused computation of prefill and decodes
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Key Insight

Prefill computation can be done at a
marginal cost with careful batching

i

q

16



/) Observation: Arithmetic Intensity Slack

Constrained
due to memory
overhead in
decode phase

Arithmetic Intensity (FLOPs/bytes)
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¢ Stall-free Batching

Key Idea

% Split large prefills into smaller
chunks — just enough to consume the
leftover compute budget in decode
batches

Baseline - vLLM Decode Latency SLO =10ms
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Avoid Pipeline Bubbles
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Evaluations
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Serving Capacity under SLOs

adapt using different

‘ > chunk sizes

ShareGPT4 trace on on A100 GPUs with strict (S) and relaxed (R) latency SLOs
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Summary

2 Problem: State-of-the-art systems sacrifice decode latency to achieve higher
throughput

. Key Insight - Low arithmetic intensity of decodes allows for adding compute
intensive prefills with negligible decode latency cost

== Key Results - We achieve optimality in both latency and throughput
simultaneously leading up to 6x higher capacity under SLO constraints

&; Industry Adoption - Available in all major serving frameworks and more.
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GitHub Use in vLLM
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Course Logistics

e Assignment 2 out soon
o Performance modeling of LLM prefill and decode
o Use AMD clusters for the assignment
o Read document on AMD cluster usage

e Information on project logistics will be released next week



Throughput is Not All You Need

Maximizing Goodput in LLM Serving
using Prefill-Decode Disaggregation

Hao Zhang @ Hao AI Lab & vLLM Team

DistServe: Disaggregating Prefill and Decoding for Goodput-optimized Large Language Model Serving
Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, Hao Zhang



Prefill and Decode have Distinct Characteristics

* Prefill
.
Compute-bound

One prefill saturates compute. Batching across context tokens.

* Decode SEEE08808E0

Memory-bound
Must batch many requests together to saturate compute



Throughput (tokens/s)

Prefill and Decode have Distinct Characteristics
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Continuous Batching Causes Interference

Continuous Batching
Batch R1 and R2 together in 1 GPU

Time wasted for decode
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Request R2 arrives
arrival

wasted time



Continuous Batching Causes Interference

Continuous Batching
Batch R1 and R2 together in 1 GPU

Time wasted for decode
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Colocation — Overprovision Resource to meet SLO
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Colocation — Coupled Parallelism
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Summary: Problems caused by Colocation

Time wasted for decode
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Summary: Problems caused by Colocation

Is there a better way to
w achieve better
= Goodput per GPU?

TP | DP
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Continuous Batching

Cause Interference Coupled Parallelism Strategy




DistServe: Disaggregating Prefill and Decode

Disaggregation is a technique that

Request Arrived

Prefill Worker H i:;’ Decode Worker “ i:”

Request

Timeline



Disaggregation achieves better goodput

Colocate

1 GPU for both Prefill and Decode

P9O TTFT

P90 TPOT

Colocate

). TR0 [TET £= 300 ms
: Prefill = 3 rps
>

'
'
2 344 6 % 10

Request rate per second

Colocate

P90 TPOT <=40 ms

Decode = 1.6 rps

1.@ 4 6 22 10
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Max System goodput

= Min(Prefill, Decode)
= 1.6 rps / GPU 20



Disaggregation achieves better goodput

Colocate
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Disaggregation achieves better goodput

Colocate
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wWhat are issues or potential downsides with
disaggregation?



s VLM
B DistServe
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Evaluation
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DistServe: Disaggregating Prefill and Decoding for Goodput-optimized Large Language Model Serving
Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, Hao Zhang



Summary

Goodput instead of Throughput
Disaggregation is effective to optimize goodput!
DistServe achieves 2.0x - 4.48x compared to vLLM

Integrating into LM
Already adopted by companies like cmyscqle



