# **Attention Optimizations**

Chien-Yu Lin Zihao Ye

Slides are largely contributed by Tianqi Chen and Zhihao Jia from CMU

1

## Why Optimizing Attention?

- Compute and memory complexity are quadratic to sequence length (N)
  - Compute = (4\*d+3)\*N^2
  - Loads/stores = 8\*N^2 + 8\*N\*d
- Dominant runtime when sequence is long
  - For both training and inference



## Attention: $O = Softmax(QK^T) V$



#### Challenges:

- Large intermediate results
- Repeated reads/writes from GPU device memory
- Cannot scale to long sequences due to O(N^2) intermediate results

## **Outline: Attention Optimizations**

Part 1: LLM Training

FlashAttention

Part 2: LLM Inference

- Flash Decoding
- FlashInfer (Zihao)

These techniques are highly tailored for GPUs

#### **GPU Memory Hierarchy**



1.5 TB/s (80 GB)

#### **GPU FLOPs and Memory Bandwidth Trend**

Growth of compute outpace memory bandwidth



#### FlashAttention

Key idea: compute attention by blocks to reduce global memory access

**Two main Techniques:** 

**1. Tiling:** restructure algorithm to load query/key/value block by block from global to shared memory

**2. Recomputation:** don't store attention matrix from forward, recompute it in backward





# Tiling: Decompose Large Softmax into smaller ones by Scaling

- 1. Load inputs by blocks from global to shared memory
- 2. On chip, compute attention output wrt the block
- 3. Update output in device memory by scaling

$$softmax([A_1, A_2]) = [\alpha \times softmax(A_1), \beta \times softmax(A_2)]$$

$$softmax([A_1, A_2]) \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \alpha \times softmax(A_1)V_1 + \beta \times softmax(A_2)V_2$$







#### **Recomputation: Backward Pass**

By storing softmax normalization factors from forward (size N), recompute attention in the backward from inputs in shared memory

| Attention         | Standard | FlashAttention |
|-------------------|----------|----------------|
| GFLOPs            | 66.6     | 75.2           |
| Global mem access | 40.3 GB  | 4.4 GB         |
| Runtime           | 41.7 ms  | 7.3 ms         |



#### Speed up backward pass with increased FLOPs

#### FlashAttention: Threadblock-level Parallelism

How to partition FlasshAttention across thread blocks?

(An A100 has 108 SMs -> 108 thread blocks)

• Step 1: assign different heads to different thread blocks (16-64 heads)



#### FlashAttention: Threadblock-level Parallelism

How to partition FlasshAttention across thread blocks?

(An A100 has 108 SMs -> 108 thread blocks)

- Step 1: assign different heads to different thread blocks (16-64 heads)
- Step 2: assign different queries to different thread blocks (Why?)

Thread blocks cannot communicate; cannot perform softmax when partitioning keys/values



#### FlashAttention: Threadblock-level Parallelism



Forward pass

#### Do we need to handle workload imbalance?

No. GPU scheduler automatically loads the next block once the current one completes.

#### FlashAttention: Warp-Level Parallelism

How to partition FlashAttention across warps within a thread block?







#### FlashAttention: 2-4x speedup, 10-20x memory reduction





#### **Memory linear in sequence length**

## **Outline: Attention Optimizastions**

Part 1: LLM Training

FlashAttention

#### Part 2: LLM Inference (Auto-regressive Decoding)

- Flash Decoding
- FlashInfer (Zihao)







- **Pre-filling phase** (0-th iteration):
  - Process all input tokens at once
- **Decoding phase** (all other iterations):
  - Process a *single* token generated from previous iteration
  - Use attention keys & values of all previous tokens
- Key-value cache:
  - Save attention keys and values for the following iterations to avoid recomputation

## Can We Apply FlashAttention to LLM Inference?



#### **Pre-filling phase:**

• Yes, compute different queries using different thread blocks/warps



#### **Decoding phase:**

• No, there is a single query in the decoding phase

#### FlashAttention Processes K/V Sequentially



#### Inefficient for requests with long context (many keys/values)

## Flash-Decoding Parallelizes Across Keys/Values

- 1. Split keys/values into small chunks
- 2. Compute attention with these splits using FlashAttention
- 3. Reduce over all splits



Key insight: attention is associative and commutative

#### Flash-Decoding is up to 8x faster than prior work



## **Advanced Attention Optimizations**



https://github.com/flashinfer-ai/flashinfer

#### **Recap: Techniques for Optimizing Attention**

- FlashAttention: tiling to reduce GPU global memory access
- Auto-regressive Decoding: pre-filling and decoding phases, KV cache
- FlashDecoding: improving attention's parallelism by splitting keys/values
- PagedAttention: paging and virtualization to reduce KV cache's memory requirement