# Performance of Transmormers

Arvind Krishnamurthy Chien-Yu Lin

Material adapted from: <u>https://www.baseten.co/blog/llm-transformer-inference-guide</u> <u>https://www.anyscale.com/blog/continuous-batching-llm-inference</u> <u>https://arxiv.org/pdf/2402.16363</u>

#### Lecture Outline

- Breaking down the components of a Transformer model
- Phases of a transformer model
- Dependencies in a transformer model
- Performance considerations
- Optimizations

# Transformer Model

- Two primary components:
  - Self-attention block
  - Feed-forward network block
- Two primary workloads:
  - Prefill workload (process the prompt, context)
  - Autoregression workload (token generation)



#### **Prefill & Autoregression**

- Prefill: ingest all of the prompt & context that came with the query
- Autoregression: generate the response, one token at a time



## State in a Transformer Model

- For each token, at each layer of the transformer model:
  - Has an associated K, Q, and V vectors
- State can be regenerated as the computation is deterministic
  - But preferable to have this information be retained across autoregression steps
- Memory requirements of a transformer model:
  - Parameters of the model
  - K, Q, V vectors generated during inference

# Dependencies for the Autoregression Step



- Output of each layer is the "token input" for the next layer
- K, Q, V values of prior tokens are required for subsequent tokens at each layer
- Output of the last layer is the generated token; subsequent autoregression step has a sequential dependency on this

#### Dependencies for the Prefill Step



- All tokens in the prompt/context are already available
  - Fewer dependencies and greater parallelism

#### What determines the performance of LLMs?

# **Transformer Performance**

- Key considerations:
  - Compute requirements
  - Memory bandwidth of accelerator
  - Memory capacity of accelerator
  - For larger models, communication across GPUs
- Performance can be analyzed as the following cross-product
  - [Prefill, Autoregression] x [Perf. of Attention block, Perf. of FFN block]

#### Typical GPU Performance Parameters

• A10 GPU – slightly lower end, used more for inference than training

| FP32                 | 31.2 TF               |  |
|----------------------|-----------------------|--|
| TF32 Tensor Core     | 62.5 TF   125 TF*     |  |
| FP16 Tensor Core     | 125 TF   250 TF*      |  |
| INT8 Tensor Core     | 250 TOPS   500 TOPS*  |  |
| INT4 Tensor Core     | 500 TOPS   1000 TOPS* |  |
| GPU Memory           | 24 GB GDDR6           |  |
| GPU Memory Bandwidth | 600 GB/s              |  |
| Max TDP Power        | 150W                  |  |

#### Key Accelerator Metric

- What is the balance between compute and memory?
  - Compute capability: 125TF
  - Memory bandwidth: 600GB/s
  - Ops/byte = 125TF / 600GB/s

= 208.3 ops/byte

- GPU will be compute bound if we can do ~200 ops/byte
  - Else it will be memory bandwidth bound

# Analyzing Compute/Memory Boundedness

- We will consider the Llama 2, 7B model
- Let us focus on just the attention block
  - Per-head dimension d, # heads = h [For Llama 2, d = 128, h = 32]
  - D = h\*d
- Sequence length, N, of the input. Typical value = 4096
- FFN layers typically expand D to a larger size and project it down
  - Llama 2 expands D to an FFN size of 11008 and then projects it down to 4096

# Analyzing Compute/Memory Boundedness

• Let us focus on just the attention block

 ${\bf Algorithm} \ 0 \ {\rm Standard} \ {\rm Attention} \ {\rm Implementation}$ 

**Require:** Matrices  $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$  in HBM.

- 1: Load **Q**, **K** by blocks from HBM, compute  $\mathbf{S} = \mathbf{Q}\mathbf{K}^{\top}$ , write **S** to HBM.
- 2: Read **S** from HBM, compute  $\mathbf{P} = \text{softmax}(\mathbf{S})$ , write **P** to HBM.
- 3: Load **P** and **V** by blocks from HBM, compute  $\mathbf{O} = \mathbf{PV}$ , write **O** to HBM.

4: Return **O**.

- We can calculate compute flops and memory loads/stores per head
  - Compute = 2\*d\*N\*N + 3\*N\*N + 2\*N\*N\*d
  - Loads/stores = 2\*2\*d\*N + 2\*N\*N + 2\*N\*N + 2\*N\*N + 2(N\*N + N\*d) + 2\*N\*d

## Analyzing Compute/Memory Boundedness

- Compute FLOPs/Memory ops = 62 ops/byte
- Significantly less than the desired ~200 ops/byte
- What is the underlying reason for this?
  - Compute = (4\*d+3)\*N^2
  - Loads/stores = 8\*N^2 + 8\*N\*d
- How can we address this issue?

# Analyzing Compute/Memory for FFN + Q,K,V

- Linear layer, essentially a GEMM: X \* W
  - Shape: X (N, K), W(K, M)
- Compute: 2\*N\*K\*M
- Memory: 2\*N\*K + 2\*K\*M + 2\*N\*M



# Analyzing Compute/Memory for FFN

- Compute FLOPs/Memory ops = 1365 ops/byte
  - N = K = M = 4096
- Much higher than the desired ~200 ops/byte
  - Compute bound
- How about decoding: N = 1?
  - Becomes GEMV, memory bound



# Simple E2E Performance Model

- Assume that prefill is compute bound and decode is memory bound
- Execution time prediction = S\*(2\*#params/FLOPS) + G\*(2\*#params/MBW)
  - where S is prefill length and G is generated length



### Batching to the rescue?

- Can we use batching to improve arithmetic intensity of attention?
  - Batch across tokens within the same request
  - Batch across tokens from different requests
- When is batching actually helpful?

## **Batching Optimization**

- When a vectors can be utilized across different matmuls, then we can improve the arithmetic intensity
- Two scenarios where this reuse can take place:
  - One of the vectors in a matmul is a "model parameter"
    - Example: " $X^*W_0$ ,  $X^*W_k$ ,  $X^*W_v$ , FFN layers
  - One of the vectors in a matmul is token state, but the same vector is involved in multiple operations with different token states
    - Example K of token 0 is interacted with Q of tokens 1, 2, 3, ...

#### **Batching Optimization**

• We can now analyze the value of batching in the context of Prefill and Autoregression (aka decode) for Attention and FFN layers

|         | Attention                      | FFN                        |
|---------|--------------------------------|----------------------------|
| Prefill | Batching useful                | Batching useful            |
| Decode  | Batching across ops not useful | Batching across ops useful |

#### How much batching is possible?

- Depends on the memory available on the GPU
- GPU needs to accommodate parameters and kv-attention-state
  - KV-attention state = 2 \* 2 \* Num-layers \* D \* N
  - For Llama 2 with 4K tokens, KV-attention state is ~2GB
    - Parameter size is ~14GB
    - On A10, this means that we can have ~5 resident queries

## **Batching Implementation**

- Batching of autoregression isn't straightforward given heterogeneous requests
- Naive batching technique:
  - Accumulate "b" requests
  - Perform prefills for them in parallel (heterogeneity in costs with different lengths)
  - Start autoregression on b requests; wait for all requests to complete





## Continuous Batching [Orca - OSDI'22]

- Integrate new requests as old requests rotate off
- Need to perform prefill for new request
  - Results in a stall for existing requests
- Broader question, what are SLOs?
  - TTFT: time to first token requirement
  - TPOT: time per output token requirement
- Systems need to satisfy SLO requirements



#### LLM Performance leaderboard (tokens/sec)



# LLM Performance Optimizations

- KV Cache
- Mixture of Experts (MoE)
- Operation fusion
- Speculative decoding
- Quantization
- Pruning & Distillation
- Contextual Sparsity
- •

#### KV Cache

• Avoid recomputation of K and V for previous generated tokens



#### https://medium.com/@joaolages/kv-caching-explained-276520203249

# Mixture of Experts (MoE)

- Decouple computation and parameter counts for FFN
  - Keep inference FLOPs while increasing total parameters counts



https://huggingface.co/blog/moe

#### **Operator Fusion**

- Fuse neighbor operators on the computational graph
- Reduce memory movement on intermediate data
  - Intermediate data must not have dependencies to other ops
- Increase throughput for memory bounds ops





#### Speculative Decoding

- Predict tokens with small & fast models
- Verify with LLM to ensure generation quality
  - Verification is similar as Prefill, or "Append"





https://medium.com/@TitanML/in-the-fast-lane-speculative-decoding-10x-larger-model-no-extra-cost-f33ea39d065a

# LLM Performance Optimizations

- KV Cache
- Mixture of Experts (MoE)
- Operation fusion
- Speculative decoding
- Quantization
  - Reduce size of each parameters
- Pruning & Distillation
  - Reduce number of parameters
- Contextual Sparsity
  - Skip tokens when decoding