Systems for Machine Learning

Arvind Krishnamurthy

Lecture Outline

e What is systems for ML?
e Course information and logistics

® Introduction to transformer models and attention

Machine Learning Applications

Image recognition
Speech recognition
Self-driving cars

Weather predictions

and so on .S s H |g g S E
: challenge

Advent of Generative Al

Content generation

ChatGPT Auto

“A photo of a cat wearing a diwali dress” - my
daughter’s interaction with Bard

Large language model

What should | teach in a systems for machine leaming course?

A “Systems for Maching Learning® course bridges the gap between maching learning algorithms
and the underying hardware and softwarne infrastreciure that enables lirge-scale maching
learning (ML) Here's a structured outling of key topics you might include in the course:

1. Introduction to Systems for Machine Learning

= Overview of Machine Learning Workflows: Highlight the full pipeline, from data collection,
preprocessing, moedel training, and evaluation, to deployment.

» Challenges In ML Systerns: Discuss |ssues Be scalability, rescurce efficlency, and the gap
between thecretical models and practical deployment.

2, Hardware for Machine Learning

« GPUs, TPUs, and Specialized Hardware: Explain the architectures of GPUs, TRPUs, FRGAs,
and ASICs, focusing on why they are suited for ML workloads,

« Performance Trade-offs: Consider power, cost, parallelism, and memory bandwidth.
= Distributed Systems & Data Parallelism: Explore how large ML models require parallefism
and how to distribute workloads across multiple devices.
3. Cloud and Edge ML Infrastructure

» Clowd ML Platforms: AWS SageMaker, Google Cloud Al, Azure ML, etc, Teach how to
leverage cloud platforms for scaling ML ‘l’ﬁkhods.

Systems for ML

e How do we enable development and delivery of ML models as efficiently
as possible?
e Can be viewed through two lenses:

e Life-cycle of ML model development and deployment

®* Systems stack at every stage of the process

Systems for ML

e How do we enable development and delivery of ML models as efficiently
as possible?
e Can be viewed through two lenses:

e Life-cycle of ML model development and deployment

®* Systems stack at every stage of the process

-

Pretraining

~N

Nuanced view of ML life cycle

J

4)
Training
- /
4)
Posttraining
- /

-

-

Specialization

~

J

4)
Inference
- J
4)
Inference
- /

-

-

Integration
with DBs,
tools, systems

~

J

Post-training in Llama 3

Collected Prompts

|

K Generations per
Prompt

DPO Training 1
Reward Model —> Rejection Sampling — SFT Model ? Final DPO Model

T M

Best models from

previous rounds

Best model for next round

Pairwise Annotated and Specialized

Specialized Per-Capability Binary Per-capability @ voue
Preference Data SFT data o

LY o

Reward model training DPO Training

Cross-stack view of ML Systems

ML is expensive! Estimated
investment on x.Al’s cluster is 4B, Distributed Systems & Apps
estimated cost of Llama 3 training is

300M to 700M
Networked Accelerators

ML systems focus is on improving

efficiency & programmability Node-level Systems

Need performance improvements at Compilers Libraries

every layer of the stack
- o e

‘)a@ CEEIREEINEEREEI™
Broceqy '__-"..H"'""ﬂ o e s e

oL BhERBER BREBR BB BB

Hardware

GPUs and TPUs have interesting
hardware models; understanding the Distributed Systems & Apps
hardware model is crucial to

optimizing upper layers
Networked Accelerators

Custom interconnects at the “node”

Node-level Systems
level and the “cluster” level allow for y

fast communications

Compilers Libraries

= & & & &

‘X,@ 1 CEEREEIREEREEI™
Brocess, __-_,,.-"'"f Qa3 aa e az

oL BhERBER BREBR BB BB

Compilers and Libraries

* Target the performance of low-level
kernels that are crucial to overall Distributed Systems & Apps
system performance

Networked Accelerators

e Focus on LLMs means that custom

libraries can have broad impact
Node-level Systems

 Compilers have significantly evolved

to generate optimized code for Compilers Libraries
specific tensors, fusing operations,
and generating auto-differentiations. ~ & & & &

‘X,@ 1 CEEREEIREEREEI™
Brocess, __-_,,.-"'"f Qa3 aa e az

oL BhERBER BREBR BB BB

Node-level Systems

Batching & sharding of models,
guantization

Reuse of computed state & managing
use of memory

Orchestration of multiple

accelerators and the CPU _ _ _
Compilers Libraries

Bl Bl

T =~ 5 o B —8i— 0
@ f .. EENMEENEEREL L =l e
‘ Q ' ‘E = =2 ‘ﬂ-ﬂ ss| E‘:-:B. EE

Networked & Distributed Systems

Fast collectives

Training: orchestration of different
kinds of parallelism

Inference: load balancing and cluster

management of nodes

L Compilers } [Libraries }

ol — e

& & @& g m
CEREE BCEINEE) L i
‘EH T ‘n'ﬂ " g rece

Networked & Distributed Systems

ML ecosystem is extremely vibrant; new architectures, new models, new apps, ...

Many questions:
® How to optimize when models are heterogeneous and composed?
® How to disaggregate and optimize for e2e use cases?

® How to integrate Al/ML with generic distributed computing and database
systems?

® How to support Al/ML workloads with data management capabilities?

This Course

Centered around transformers and LLMs, but learnings carry over
Broadly touching on the two lenses of viewing ML

® Systems stack for ML

® Life cycle of ML
Course logistics:

® Three assignments: key-value caching in LLM, GPU performance modeling, and advanced
multi-stage inference

® (Quarter-long course project

® |ectures and readings will evolve during the course! Also, many guest lectures

Transformers & Attention

Evolution from Seg2Seq models
Attention mechanism
Transformer model

Performance implications of Transformer models

Seq2Seq Models for Machine Translation

Generalization of word prediction based on previous k words = translation of a sequence

Encoder-decode models with a fixed context communication mechanism (encoder bottleneck)

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL

o ENCODER DECODER
—

Animations from Jay Alammar

Context Vector

0.11

9.03-
Je suis étudiant

1X3INOD

09.81

-0.62

Attention Mechanism for Seq2Seq

What if the decoder can perform a “soft search” on all of the encoder state?

Find the relevance of the encoder “hidden states” for the current work being generated by decoder

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Encoding Stage Decoding Stage

Encodar Attention
RNN Decoder
RNN

Je suis étudiant

Animations from Jay Alammar

Attention Mechanism (contd.)

Generate context vector for each step of decoding based on all encoder hidden states

Attention at time step 4

o Encoder ;
. il] Decoder hidden
1. Prepare inputs u B hidden state at time step 4
’ states
h1 h> N3
scores

2. Score each hidden state 13 9 9 | Attention weights for
- decoder time step #4

3. Softmax the scores 0.96 | 0.02 | 0.02 | softmax scores
4. Multiply each vector by
its softmaxed score + +

5. Sum up the weighted Context vector for
vectors decoder time step #4

Animations from Jay Alammar

Attention Mechanism (contd.)

Generate context vector for each step of decoding based on all encoder hidden states

Attention at time step 4

o Encoder ;
. il] Decoder hidden
1. Prepare inputs u B hidden state at time step 4
’ states
h1 h> N3
scores

2. Score each hidden state 13 9 9 | Attention weights for
- decoder time step #4

3. Softmax the scores 0.96 | 0.02 | 0.02 | softmax scores
4. Multiply each vector by
its softmaxed score + +

5. Sum up the weighted Context vector for
vectors decoder time step #4

Animations from Jay Alammar

Attention Mechanism (contd.)

Example translation and how attention associates relevant words

Encoder

hidden ! am a student

state
hidden
state #1

J e hidden

state #1

suis [

hidden
state #2

étudiant [Pese

hidden
state #3

Animations from Jay Alammar

Transformers & Attention

Generalization as well as a more focused use of attention

I am a student

1
(7 : V)
ENCODER » [DECODER J
- 7y 7y DECODER
ENCODER (DECODER)
Feed Forward
3 7 ENCODER 4
ENCODER (DECODER]
- Y Feed Forward Encoder-Decoder Attentio
ENCODER [DECODER] &
3 3 [Self-Attent ion Self-Attent ion
ENCODER [DECODER J i
L) 4
-
ENCODER [DECODER J
.
. ? J

INPUT | Je suis étudiant

Animations from Jay Alammar

Self Attention Mechanism

View this as the “communication phase” of a transformer model; tokens interact with each other

"The animal didn't cross the street because it was too tired”

Layer:| 5 3| Attention:| Input - Input v

. The_ The_
animal_ animal_
didn_ didn_
t_ i_
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it_ it
was_ was_
too_ too_
tire tire
d d

Animations from Jay Alammar

Self Attention in Detail

View this as the “communication phase” of a transformer model; tokens interact with each other

 Query, key, and value vectors are
obtained from the embeddings

Input

Embedding LT T T1] [T TT1]
 Represent different abstractions of
Queri 1 2 wa
e v el the token

® Query: what the token is interested in
oy T T finding out from other tokens

®* Key: what semantics the token is offering

to other tokens

Values [T T] [T 1] ®* Value: what is the value associated with

the semantics

Animations from Jay Alammar

Input

Embedding
Queries

Keys

Values

Score

Divide by 8 (vdj)
Softmax

Softmax

X

Sum

Animations from Jay Alammar

Self Attention in Detail

Query * Key represents the strength
of communication between tokens

Softmaxed weighted sum of value
represents the overall meaning
associated with a token

This resulting “z” value is fed through
the feed-forward network (a multi-
layer perceptron with no cross
interactions)

® FFNisthe”compute” phase

®* Typically there are “multiple heads”,

ow_
Z

each producing a value, and they are

all concatenated before the FFN phase

Which word in our vocabulary
is associated with this index?

Get the index of the cell

with the highest value
(argmax)

log_probs

logits

Decoder stack output

Animations from Jay Alammar

am

Final Layer

912345

4

-~ Vocab_size

(

Softmax

)

*

812345

4

. Vocab_size

C

Linear

)

4
LLLL]

Compute logits for every possible
token

Transform them into probabilities

Identify a token based on the
probabilities

Some other details

Popular LLMs are primarily decoder-only models that perform predictions
of the next token

Can serve as multi-model as long as there is a way to tokenize the input

“Prefill” stage is performing the decoder computation on the input
sequence

“Decode” stage is the prediction process that terminates when the end-
of-string token is generated

	Slide 1: Systems for Machine Learning
	Slide 2: Lecture Outline
	Slide 3: Machine Learning Applications
	Slide 4: Advent of Generative AI
	Slide 5: Systems for ML
	Slide 6: Systems for ML
	Slide 7: Nuanced view of ML life cycle
	Slide 8: Post-training in Llama 3
	Slide 9: Cross-stack view of ML Systems
	Slide 10: Hardware
	Slide 11: Compilers and Libraries
	Slide 12: Node-level Systems
	Slide 13: Networked & Distributed Systems
	Slide 14: Networked & Distributed Systems
	Slide 15: This Course
	Slide 16: Transformers & Attention
	Slide 17: Seq2Seq Models for Machine Translation
	Slide 18: Attention Mechanism for Seq2Seq
	Slide 19: Attention Mechanism (contd.)
	Slide 20: Attention Mechanism (contd.)
	Slide 21: Attention Mechanism (contd.)
	Slide 22: Transformers & Attention
	Slide 23: Self Attention Mechanism
	Slide 24: Self Attention in Detail
	Slide 25: Self Attention in Detail
	Slide 26: Final Layer
	Slide 27: Some other details

