
Assignment 2: Understanding LLM

Performance

In this assignment, we will perform deep performance profiling for LLM and understand the

motivation and benefits of FlashAttention.

You will write a report that contains all of your plots as well as your explanations on the

profiling results.

Preliminary

For this homework, we will run Python scripts that implement Llama's Decode layer and

commonly used operators in LLMs. We will measure their performance on AMD's GPU.

Our code is implemented based on PyTorch and the HuggingFace Transformer library.

After you get access to the AMD cluster, request a job with a node equipped with  MI2104x 

GPUs.

You can execute the scripts by submitting a  sbatch  job or running it in an  interactive 

session with a limited job time (less than 30min).

Notice: Please do NOT run any jobs on the login node of the AMD cluster.

Before executing any of these scripts, you need to load the  PyTorch  module via the

command below in the compute node environment of the AMD cluster.

module load pytorch

To know what modules are currently loaded and what modules are available, you can run

 module list  and  module avail .

An example sbatch script  hw2.sbatch  is also provided. Run the following command to

launch a job.

sbatch hw2.sbatch

You can also run the script by using the  srun  command.

module load pytorch

srun -N 1 -n 1 -t 00:30:00 -p devel -o output.%J.log --exact python bench_llama.py

Please also check out the AMD cluster usage guideline for detailed guidance.

https://docs.google.com/document/d/1NcSowQOw5ocqkuZCae-knadjinh8QXEwgrip7vND34c/edit?tab=t.0#heading=h.wwy6kvzrar1


Part-I: Profile Llama Decode Layer (30pt)

We provide the  bench_llama.py  script, which closely implements the Decode layer block of

the Llama model based on the Transformer library.

The script  bench_llama.py  profiles the latency of the Decode layer and breaks down the

profiling into three parts: Self-Attention, MLPs, and misc.

Note: For the example commands below, we expect you to use  srun  or  sbatch  to run it.
The output will be in the output file.

1.(a) Prefill stage (10pt)

In this part, we will profile the performance of the Prefill stage. We use random initialized

tensors

To get an example profiling with  batch 1  and  sequence_length 1024  for  Prefill , please

run.

python bench_llama.py --stage prefill --batch 1 --seq-len 1024

You shall get the output below.

Prefill Stage Time Results (ms)                                                   

Input size: Batch=1, Seq_len=1024, Hidden_dim=4096                                

Self-Attn,     MLPs,     Misc,     Total                                          

    1.967,   13.178,    0.484,    15.628

Q1 (5pt) - Set  batch = 1  and benchmark the  Prefill  stage latency with  seq_len=

[256,512,1024,2048,4096,8192,12288] . Plot the latency of Self-attention and MLPs and

explain the results.

Q2 (5pt) - Set  seq_len = 1024  and sweep the batch size from  [1,2,4,8,16,32,64] .

Plot the latency of Self-attention and MLPs again and explain the results.

1.(b) Decode stage (20pt)

In this part, we will profile the performance of the Decode stage. You will need to implement

the missing section in the  bench_decode()  function before you can run the profiling.

# Implement the part that is marked as below

# All you need to do is to declare random PyTorch tensors that match the shapes of

########## Solution Block ##########

########## End Solution Block ##########

After completing the  bench_decode  function, you can profile the  Decode  stage with the

following command:

https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py


python bench_llama.py --stage decode --batch 1 --seq-len 1024

Q3 (5pt) - Complete the  bench_decode()  function.

Q4 (5pt) - Redo Q1 in 1.(a)

Q5 (5pt) - Redo Q2 in 1.(b)

Q6 (5pt) - What is the dominant operator of the  Prefill  and  Decode  stages when the

sequence length is long?

Part-II: Profile GEMM and Self-attention (70pt)

In Part-II, we will dive deeper into understanding the performance of the dominant

operators, GEMM and Self-Attention, in LLMs.

We provide a script,  bench_llm_ops.py , to benchmark the latency of these operators.

The default  number_of_heads ,  embeded_dim_per_head  and  hidden_dim  in the script are set

to  32, 128, 4096 , which match Llama-7B's configuration.

We will use the throughput v.s. arithmetic intensity plot to help understand the performance.

2.(a) GEMM (20pt)

To benchmark the latency of GEMM operation for certain batch size and sequence length,

please run the following command.

python bench_llm_ops.py --bench gemm  --batch 16 --seq-len 128

You shall get the benchmarking results as below.

Benchmarking for GEMM in ms

Input size: Batch=16, Seq_len=128, Hidden_dim=4096

   Total

   0.534

Q7 (10pt) - Set  hidden_dim=4096 , benchmark GEMM's latency for the combinations of

 batch=[1,4,8,16,32,64]  and  seq_len=[1,64,128,256,512] . Calculate the compute

throughput (FLOPs/s) and arithmetic intensity (FLOPs/Bytes) for each data point and

plot them in a figure (5pt), where X-axis is the arithmetic intensity and Y-axis is the

compute throughput. You can use different colors for dots of different sequence

lengths. Provide a writeup on the profiling results (5pt).

Q8 (10pt) - Set  hidden_dim=8192 , re-do Q7. Notice  hidden_dim=8192  is the

configuration used in Llama-70B model.

2.(b) Attention and Fused attention - Prefill (20pt)



To benchmark the latency of the self-attention operation for the  Prefill  stage given a

certain batch size and sequence length, run the following command.

python bench_llm_ops.py --bench attn --stage prefill  --batch 16 --seq-len 256

You shall get the benchmarking results as below.

Benchmarking for Attention prefill stage in ms

Input size: Batch=16, Seq_len=256, Num_heads=32, Embed_dim=128

   Q_K^T,  Masking,  Softmax,   Attn_V,     Total

   0.294,    0.210,    0.453,    0.534,     1.491

To benchmark the latency of the fused self-attention implementation provided in PyTorch,

put  --fused  in the command.

python bench_llm_ops.py --bench attn --stage prefill  --batch 16 --seq-len 256 --f

You shall get the benchmarking results as below.

Benchmarking for Attention prefill stage in ms

Input size: Batch=16, Seq_len=256, Num_heads=32, Embed_dim=128

    Total

    0.381

Q9 (10pt) - Benchmark the latency of the regular attention for  seq_len=

[256,512,1024,2048,4096,8192,12288,16384]  and  batch=[1,4,8,16,32] . Ignore the

cases when the GPU is out of memory. Calculate the plot of the compute throughput vs.

arithmetic intensity figure. You can use different colors for dots of different batch sizes.

Explain the results in your writeup.

Q10 (10pt) - Benchmark the latency of the fused attention and calculate the speedup

against the regular attention. Plot the speedups in a line chart. You can use different

colors for lines of different batches. Explain the results in your writeup.

Bonus (5pt) - Given the profiling results, provide some ideas that can further accelerate

the attention in  Prefill  stage and explain why.

2.© Attention and Fused attention - Decode (30pt)

In this part, we will profile the attention performance for the Decode stage. You will need to

implement the missing section in the  bench_attn_decode()  function in  bench_llm_ops.py .

The missing section is marked as in 1.(b).

After completing the  bench_attn_decode()  function, you can run the profiling with



python bench_llm_ops.py --bench attn --stage decode  --batch 16 --seq-len 256

You shall get the benchmarking results as below.

Benchmarking for Attention decode stage in ms

Input size: Batch=16, Seq_len=256, Num_heads=32, Embed_dim=128

   Q_K^T,  Masking,  Softmax,   Attn_V,     Total

   0.172,    0.001,    0.016,    0.127,     0.316

Q11 (10pt) - Implement  bench_attn_decode()  function. Implement it in a way that the

KV-Cache optimization is used.

Q12 (5pt) - Set  batch=16 . Benchmark the latency of the regular attention for  seq_len=

[256,512,1024,2048,4096,8192,16384,32768] . Calculate the plot of the compute

throughput vs. arithmetic intensity figure. Explain the results in your writeup.

Q13 (5pt) - Set  seq_len=2048 . Benchmark the latency of the regular attention for

 batch=[16,32,64,128,256,512,1024] . Calculate the plot of the compute throughput vs.

arithmetic intensity figure. Explain the results in your writeup.

Q14 (10pt) - Benchmark latency of the fused attention for the cases we tested in Q11
and Q12. Compare the speed of fused attention and regular attention. Explain the

results in your writeup.

Bonus (5pt) - Given the profiling results, provide some ideas that can further accelerate

the attention in  Decode  stage and explain why.

Submission

Put your report in PDF format. Put the report and code under a single folder. Compress the

folder and name your compressed file as  firstname_StudentID.tar.gz . Submit it to

Canvas.


