Assignment 1: Optimizing LLMs Inference with
KV-Caching

In this assignment, you will extend the nanoGPT codebase by Andrej Karpathy
to optimize the performance of transformer inference through KV-caching.

Step 1: Understanding Transformer and Self-Attention Im-
plementations

First, we will explore the implementation of transformer-based models. Please
watch the let’s build GPT: from scratch video, and answer the following questions:

e Q1. (2 points): In Karpathy’s implementation of “self-attention” for one
head, what are the dimensions of q,k,v matrices? Answer in-terms of B,T,
C, vocab_size, block_size, num_heads

¢« Q2. (2 points): Complete the following code block to calculate the
attention scores from the q and k tokens for all tokens. Recall that for
“causal” attention, an “attention mask” matrix ensures that attention scores
are only calculated for previous tokens and not future tokens.

tril = torch.tril(torch.ones(block_size, block_size))
mask = tril[:T,:T] ==
wei = q @ k.transpose(-2,-1) * C*x(-0.5)

* Q3. (2 points): What do you expect the value of mask to be when
calculating the token at position i?

e Q4. (4 points): Write code to extract the value of mask from tril for
calculating the token at position i.

For the rest of the assignment, use the provided colab to write code and run
experiments. While the code can run either using the CPU or the free GPU
version. Initially, use the CPU version for debugging and experimentation. Use
the GPU version only for generating final graphs to avoid exceeding GPU usage
limits.

Step 2: Benchmarking Token Generation (10 points)

Read through and run the code in step 2 of the colab. Submit your answers to
the following questions:

¢ Q5. (2 points): Submit the generated graph.

« Q6. (8 points): What key trends do you observe in the per-token
generation time?

https://github.com/karpathy/nanogpt
https://www.youtube.com/watch?v=kCc8FmEb1nY
https://colab.research.google.com/drive/1RlFx85zIPiGM1nHZqxgsI0M7zCgKydtb#scrollTo=TjUWaOb-PWvH

Step 3: Implementing and Benchmarking KV caching (50
points)

What is KV-Caching?
The following is a snippet from the generate method in nanoGPT:

def generate(self, idx, max_new_tokens...):
for _ in range(max_new_tokens):
Forward the model to get logits for the sequence
Extract the logits at the final step
logits, _ = self(idx)

logits = logits[:, -1, :]

Apply softmax to convert logits to probabilities
Sample from the distribution
idx_next = torch.multinomial (F.softmax(logits, ...)...)

Append sampled index to the sequence and continue
idx = torch.cat((idx, idx_next), ...)
return idx

Here, the model computes logits for all previous tokens at every step, leading to
an increase in computational load as the sequence grows. Only the logits from
the final step are needed, while the rest are discarded. In this assignment, you
will implement KV-caching to reuse intermediate values from previous steps to
avoid recalculations and allow the model to compute logits for the latest token
directly.

How Does KV-Caching Work?

Transformer models process input tokens by computing key (K'), value (V'), and
query (Q) vectors for each token, which are used in the self-attention mechanism.
Without KV-caching, the model recalculates K, V', and @ for the entire sequence
at every step, even though only the newly generated token has changed. KV-
caching resolves this by storing the K and V vectors for all previously generated
tokens.

o Initial Step: When generating the first token, the model calculates K, V,
and @ for the entire input sequence. The K and V values are stored in a
cache.

e Subsequent Steps: For each new token, the model only computes K, V,
and @ for the new token and appends them to the cached K and V values.

e Self-Attention: The cached K and V vectors are used for all previous
tokens, while only the new K, V, and @) vectors are computed for the
current token.

By reusing the cached K and V vectors, KV-caching ensures that the per-token
generation time remains constant, regardless of the length of the input sequence.
This makes token generation much more efficient, especially for long sequences.

Implementing KV-caching
You are provided with a code template containing placeholders marked as:

Solution Block #H####
End Solution Block

Your task is to implement the missing functionalities within these blocks to
enable KV caching in the transformer model. Each solution block has a unique
identifier to help you navigate and organize your work effectively. Follow the
detailed comments within each block to implement the required functionality.
Hint: Implement and use output_check to validate the correctness of your code.

e Q7. (40 points): Submit your solutions for each block, along with brief
explanations.

Benchmarking KV-caching

« Q8. (5 points): Run the benchmarking code GPTWithCaching.generate_with_cache
and submit the generated graph?

¢ Q9. (5 points): Interpret the results based on KV-caching and discuss
trade-offs compared to the original implementation?

Step 4: Submission & Private Evaluation (30 points)

e Submit the modified .ipynb file with changes only in the solution blocks,
along with a report containing your answers to the above questions. Re-
member to generate the graphs using the T4 GPUs on colab.

* (30 points) We will run your submitted code on our GPUs to test the
correctness and performance of your implementation.

	Assignment 1: Optimizing LLMs Inference with KV-Caching
	Step 1: Understanding Transformer and Self-Attention Implementations
	Step 2: Benchmarking Token Generation (10 points)
	Step 3: Implementing and Benchmarking KV caching (50 points)
	What is KV-Caching?
	How Does KV-Caching Work?
	Implementing KV-caching
	Benchmarking KV-caching

	Step 4: Submission & Private Evaluation (30 points)

