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Abstract

Parametric computer-aided design (CAD) tools are the predominant way that engi-
neers specify physical structures, from bicycle pedals to airplanes to printed circuit
boards. The key characteristic of parametric CAD is that design intent is encoded
not only via geometric primitives, but also by parameterized constraints between
the elements. This relational specification can be viewed as the construction of
a constraint program, allowing edits to coherently propagate to other parts of the
design. Machine learning offers the intriguing possibility of accelerating the design
process via generative modeling of these structures, enabling new tools such as
autocompletion, constraint inference, and conditional synthesis. In this work, we
present such an approach to generative modeling of parametric CAD sketches,
which constitute the basic computational building blocks of modern mechanical
design. Our model,1 trained on real-world designs from the SketchGraphs dataset,
autoregressively synthesizes sketches as sequences of primitives, with initial coor-
dinates, and constraints that reference back to the sampled primitives. As samples
from the model match the constraint graph representation used in standard CAD
software, they may be directly imported, solved, and edited according to down-
stream design tasks. In addition, we condition the model on various contexts,
including partial sketches (primers) and images of hand-drawn sketches. Evalua-
tion of the proposed approach demonstrates its ability to synthesize realistic CAD
sketches and its potential to aid the mechanical design workflow.

1 Introduction

Parametric computer-aided design (CAD) tools are at the heart of the design process in mechanical
engineering, aerospace, architecture, and many other disciplines. These tools enable the specification
of two- and three-dimensional structures in a way that empowers the user to explore parameterized
variations on their designs, while also providing a structured representation for downstream tasks
such as simulation and manufacturing. In the context of CAD, parametric refers to the dominant
paradigm for professionals, in which the software tool essentially provides a graphical interface to
the specification of a constraint program which can then be solved to provide a geometric config-
uration. This implicit programmatic workflow means that modifications to the design—alteration
of dimensions, angles, etc.—propagate across the construction, even if it is an assembly with many
hundreds or thousands of components.
At an operational level, parametric CAD starts with the specification of two-dimensional geometric
representations, universally referred to as “sketches” in the CAD community [22, 1, 3]. A sketch

1https://lips.cs.princeton.edu/vitruvion
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Figure 1: CAD sketch generation conditioned on a hand drawing. Our model first conditions on a raster image
of a hand-drawn sketch and generates sketch primitives. Given the primitives, the model generates constraints,
and the resulting parametric sketch is imported and edited in CAD software, ultimately producing a 3D model.

Hand drawing Inferred sketch Editing in CAD software

Figure 2: Editing inferred sketches. We take raster images of hand-drawn sketches (left), infer the intended
sketches using our image-conditional primitive model and constraint model (center), then solve the resultant
sketches in CAD software, illustrating edit propagation arising from the constraints (right).

consists of a collection of geometric primitives (e.g., lines, circles), along with a set of constraints that
relate these primitives to one another.2 Examples of sketch constraints include parallelism, tangency,
coincidence, and rotational symmetry. Constraints are central to the parametric CAD process as they
reflect abstract design intent on the part of the user, making it possible for numerical modifications to
coherently propagate into other parts of the design. Figure 2, which demonstrates a capability made
possible by our approach, illustrates how constraints are used to express design intent: the specific
dimensions of the final model (shown on the right) can be modified while preserving the relationships
(e.g., coincidence, perpendicularity, tangency) between the primitives. These constraints are the
basis of our view of parametric CAD as the specification of a program; indeed the actual file formats
themselves are indistinguishable from conventional computer code.
This design paradigm, while powerful, is often a challenging and tedious process. An engineer may
execute similar sets of operations many dozens of times per design. Furthermore, general motifs
may be repeated across related parts, resulting in duplicated effort. Learning to accurately predict
such patterns has the potential to mitigate the inefficiencies involved in repetitive manual design. In
addition, engineers often begin visualizing a design by roughly drawing it by hand (Fig. 1). The
automatic and reliable conversion of such hand drawings, or similarly noisy inputs such as 3D scans,
to parametric, editable models remains a highly sought feature.
In this work, we introduce Vitruvion, a generative model trained to synthesize coherent CAD sketches
by autoregressively sampling geometric primitives and constraints (Fig. 3). The model employs
self-attention [26] to flexibly propagate information about the current state of a sketch to a next-step
prediction module. This next-step prediction scheme is iterated until the selection of a stop token

2It is important to note that in computer-aided design, the word “sketch” is a term of art that refers to this
combination of primitives and constraints. In particular, it should not be confused with the colloquial use of the
word “sketch” as has sometimes appeared in the machine learning literature as in Ha and Eck [9].
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Constraint ModelPrimitive Model

⋮ ⋮

Circle(x, y, r) Circle(x, y, r)

Line(x1, y1, x2, y2) Line(x1, y1, x2, y2)

Tangent(1, 3) Coincident(1, 3.start)

Equal(3, 4)Tangent(1, 4)

Figure 3: We factorize CAD sketch synthesis into two sequence modeling tasks: primitive generation (left) and
constraint generation (right). The constraint model conditions on the present primitives and outputs a sequence
of constraints, serving as edges in the corresponding geometric constraint graph. A separate solver (standard in
CAD software) is used to adjust the primitive coordinates, if necessary.

signals a completed sample. The resultant geometric constraint graph is then handed to a solver
that identifies the final configuration of the sketch primitives. By generating sketches via constraint
graphs, we allow for automatic edit propagation in standard CAD software. Constraint supervision for
the model is provided by the SketchGraphs dataset [20], which pairs millions of real-world sketches
with their ground truth geometric constraint graphs.
In addition to evaluating the model via log-likelihood and distributional statistics, we demonstrate the
model’s ability to aid in three application scenarios when conditioned on specific kinds of context.
In autocomplete, we first prime the model with an incomplete sketch (e.g., with several primitives
missing) and query for plausible completion(s). In autoconstrain, the model is conditioned on
a set of primitives (subject to position noise), and attempts to infer the intended constraints. We
also explore image-conditional synthesis, where the model is first exposed to a raster image of a
hand-drawn sketch. In this case, the model is tasked with inferring both the primitives and constraints
corresponding to the sketch depicted in the image. Overall, we find the proposed model is capable of
synthesizing realistic CAD sketches and exhibits potential to aid the mechanical design workflow.

2 Related Work

CAD sketch generation The SketchGraphs dataset [20] was recently introduced to target the underly-
ing relational structure and construction operations found in mechanical design software. Specifically,
the dataset provides ground truth geometric constraint graphs, and thus the original design steps, for
millions of real-world CAD sketches created in Onshape.3 Initial models are trained in Seff et al. [20]
for constraint graph generation, but without any learned attributes for the positions of the primitives;
the sketch configuration is determined via constraints alone, limiting the sophistication of output
samples.
Following SketchGraphs, several works concurrent to ours explore generative modeling of CAD
sketches [28, 7, 18]. In [28], modeling is limited to primitives, without any learned specification of
geometric constraints. The explicitly defined constraints output by Vitruvion enable edit propagation
in standard CAD software; components of generated sketches are updated appropriately in response to
user-imposed changes. Similar to our approach, both primitives and constraints are modeled in [7, 18].
In contrast to our work, these do not condition on hand-drawn sketches nor consider imperfect/noisy
inputs when training on the constraint inference task (which proves crucial for generalization in
Section 4.4).
Geometric program synthesis CAD sketch generation may be viewed via the broader lens of
geometric program synthesis. This comprises a practical subset of program synthesis generally

3https://www.onshape.com
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concerned with inferring a set of instructions (a program) for reconstructing geometry from some
input specification. Recent examples include inferring TikZ drawing commands from images [6] and
constructive solid geometry programs from voxel representations [23]. Related to these efforts is the
highly-sought ability to accurately reverse engineer a mechanical part given underspecified and noisy
observations of it (e.g., scans, photos, or drawings). One of the conditional generation settings we
explore in this work is training a version of our model that generates parametric sketches when given
a raster hand drawing. Note that previous work on geometric program synthesis have not generally
considered constraints, which are critical to the CAD application.
Vector graphics generation Generative models have been successfully applied to vector graphics in
recent years. Sketch-RNN [9] is trained on sequences of human drawing strokes to learn to produce
vector drawings of generic categories (dog, bus, etc.). Note the common meaning of the word sketch
differs slightly from its usage as a term of art in mechanical design (as we use it in this work).
DeepSVG [2] models SVG icons, demonstrating flexible editing with latent space interpolation. Less
recent are tracing programs, which can convert raster drawings to vector graphics and have been
widely available for decades (e.g., Selinger [21]). None of this previous work considers constraints
as a mechanism for specifying design intent as performed in CAD. The image-conditional version of
Vitruvion also takes as input a raster image (hand-drawn) and can output vector graphics. Unlike
tracing, which attempts to faithfully reproduce an input image as closely as possible, our model
attempts to infer the sequence of geometric primitives and constraints intended by the user, learning
to ignore noise in the input.
Graph-structured modeling This work is also related to modeling of graph structures, as we model
CAD sketches as geometric constraint graphs. Graphs constitute a natural representation of relational
structure across a variety of domains, including chemistry, social networks, and robotics. In recent
years, message-passing networks [8, 5, 13], building off of Scarselli et al. [19], have been extensively
applied to generative modeling of graph-structured data, such as molecular graphs [12, 15]. These
networks propagate information along edges, learning node- or graph-level representations that serve
as input to node- and edge-prediction modules.
While message passing between adjacent nodes can be a useful inductive bias, it can also be an
impediment to effective learning when communication between distant nodes is necessary, e.g., in
sparsely connected graphs [14]. The constraint graphs of concern in our work are sparse, as the
constraints (edges) grow at most linearly in the number of primitives (nodes). Recent work leverages
the flexible self-attention mechanism of transformers [26] to generate graph-structured data without
the limitations of fixed, neighbor-to-neighbor communication paths, such as for polygonal mesh
generation [17]. Our work similarly bypasses edge-specific message passing, using self-attention to
train a generative model of geometric constraint graphs representing sketches.

3 Method

We aim to model a distribution over parametric CAD sketches. Each sketch is comprised of both
a sequence of primitives, P , and a sequence of constraints, C. We note that these are sequences,
as opposed to unordered sets, due to the ground truth orderings included in the data format [20].
Primitives and constraints are represented similarly in that both have a categorical type (e.g., Line,
Arc, Coincidence) as well as a set of additional parameters which determine their placement/behavior
in a sketch. Each constraint includes reference parameters indicated precisely which primitive(s) (or
components thereof) must adhere to it. Rather than serving as static geometry, CAD sketches are
intended to be dynamic—automatically updating in response to altered design parameters. Likewise,
equipping our model with the ability to explicitly constrain generated primitives serves to ensure the
preservation of various geometric relationships during downstream editing.
We divide the sketch generation task into three subtasks: primitive generation, constraint generation,
and constraint solving. In our approach, the first two tasks utilize learned models, while the last step
may be conducted by any standard geometric constraint solver.4 We find that independently trained
models for primitives and constraints allows for a simpler implementation. This setup is similar to
that of Nash et al. [17], where distinct vertex and face models are trained for mesh generation.

4We use D-Cubed (Siemens PLM) for geometric constraint solving via Onshape’s public API.
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Arc Circle Line Point
(x0, y0, xmid, ymid, x1, y1) (x, y, r) (x0, y0, x1, y1) (x, y)

Table 1: Primitive parameterizations. We convert the native Onshape numerical parameters to the above forms
for modeling. Subscripts of 0, mid, and 1 indicate start, mid, and endpoints, respectively.

The overall sketch generation proceeds as

pθ(P, C | ctx) = pθ(C | P)pθ(P | ctx)
S = solve(P, C) (1)

where:
• P is a sequence of primitives, including parameters specifying their positions;
• C is a sequence of constraints, imposing mandatory relationships between primitives;
• S is the resulting sketch, formed by invoking a solve routine on the (P, C) pair; and
• ctx is an optional context for conditioning, such as an image or prefix (primer).

This factorization assumes C is conditionally independent of the context given P . For example, in an
image-conditional setting, access to the raster representation of a sketch is assumed to be superfluous
for the constraint model given accurate identification of the portrayed primitives and their respective
positions in the sketch. Unconditional samples may be generated by providing a null context.

3.1 Primitive Model
The primitive model is tasked with autoregressive generation of a sequence of geometric primitives.
For each sketch, we factorize the distribution as a product of successive conditionals,

pθ(P | ctx) =
NP∏
i=1

pθ(Pi | {Pj}j<i, ctx), (2)

where NP is the number of primitives in the sequence. Each primitive is represented by a tuple
of tokens indicating the type of primitive and its parameters. The primitive type may be one of
four possible shapes (here either arc, circle, line, or point), and the associated parameters include
both continuous positional coordinates and an isConstruction Boolean.5 We use sequence to
emphasize that our model treats sketches as constructions arising from a step-by-step design process.
The model is trained in order to maximize the log-likelihood of θ with respect to the observed token
sequences.
Ordering. Abstractly, the mapping from constructions sequences to final sketch geometries is clearly
non-injective; it is typical for many construction sequences to result in the same final geometry.
Nevertheless, empirically, we know that the design routes employed by engineers often admit evident
patterns, e.g., greater involvement of earlier “anchor” primitives in constraints [20]. In our training
data from SketchGraphs, the order of the design steps taken by the original sketch creators is preserved.
Thus, instead of enforcing order-invariance in our model, we specifically expose it to this ordering,
training our model to autoregressively predict subsequent design steps conditioned on prefixes. By
following an explicit representation of this ordering, our model remains amenable to applications
in which conditioning on such a prefix of design steps is required, such as autocompleting a sketch.
Finally, ordering substantially constrains the target distribution in the sense that the model is not
required to distribute its capacity among all possible orderings.
Parameterization. SketchGraphs provides the original parameterization for each primitive as em-
ployed by Onshape. In order to accommodate the interface to the Onshape constraint solver, these are
often over-parameterizations; line segments, for example, are defined by six continuous parameters
rather than four. We compress the original Onshape parameterizations into minimal canonical param-
eterizations for modeling (Table 1) and inflate them back to the original encoding prior to constraint
solving.
Normalization. The sketches in SketchGraphs exhibit widely varying scales in physical space,
spanning orders of magnitude from millimeters to meters. In addition, because Onshape users are
free to place sketches anywhere in the coordinate plane, they are often not centered with respect to

5Construction or virtual geometry is employed in CAD software to aid in applying constraints to regular
geometry. isConstruction specifies whether the given primitive is to be physically realized (when false) or
simply serve as a reference for constraints (when true).
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the origin in the coordinate space. To reduce modeling ambiguity, for each sketch we modify the
primitive coordinates such that the sketch’s square bounding box has a width of one meter and is
centered at the origin.
Quantization. The sketch primitives are inherently described by continuous parameters such as x, y
Cartesian coordinates, radii, etc. As is now a common approach in various continuous domains, we
quantize these continuous variables and treat them as discrete. This allows for more flexible, yet
tractable, modeling of arbitrarily shaped distributions [25, 17]. Following the sketch normalization
procedure described in Section 3.1, we apply 6-bit uniform quantization to the primitive parameters.
Lossy quantization is tolerable as the constraint model and solver are ultimately responsible for the
final sketch configuration.
Tokenization. Each parameter (whether categorical or numeric) in the input primitive sequence is
represented using a three-tuple comprised of three different token types: value, ID, and position.
Value tokens play a dual role. First, a small portion of the range for value tokens is reserved to
enumerate the primitive types. Second, the remainder of the range is treated separately as a set of
(binned) values to specify the numerical value of some parameter, for example, the radius of a circle
primitive. ID tokens specify the type of parameter being described by each value token. For example,
an ID token xCenter indicates that the corresponding value token is the x coordinate of a circle’s
center. Position tokens specify the ordered index of the primitive that the current element belongs to
(e.g., a position of 3 means the given token is part of the third primitive).
Embeddings. We use learned embeddings for all tokens. That is, each value, ID, and position
token associated with a parameter is independently embedded into a fixed-length vector. Then, we
compute an element-wise sum across each of these three token embedding vectors to produce a
single, fixed-length embedding to represent the parameter embedding. The sequence of parameter
embeddings are then fed as input to the decoder described below.
Architecture. The unconditional primitive model is based on a decoder-only transformer [26]
operating on the flattened primitive sequences. To respect the temporal dependencies of the primitive
sequence during parallel training, the transformer decoder leverages standard triangular masking
during self-attention. The last layer of the transformer outputs a final representation for each token that
then passes through a linear layer to produce a logit for each possible value token. Taking a softmax
over these logits gives the categorical distribution for the next token prediction task. We discuss
conditional variants in Section 3.3. See the appendix for further architectural and hyperparameter
details.

3.2 Constraint Model
Given a sequence of primitives, the constraint model is tasked with autoregressive generation of a
sequence of constraints. As with the primitive model, we factorize the constraint model as a product
of successive conditionals,

pθ(C | P) =
NC∏
i=1

pθ(Ci | {Cj}j<i,P), (3)

where NC is the number of constraints. Each constraint is represented by a tuple of tokens indicating
its type and parameters. Like the primitive model, the constraint model is trained in order to maximize
the log-likelihood of θ with respect to the observed token sequences.
Here, we focus our constraint modeling on handling all categorical constraints containing one or two
reference parameters. This omits constraints with numerical parameters (such as scale constraints) as
well as “hyperedge” constraints that have more than two references.
Ordering. We canonicalize the order of constraints according to the order of the primitives they
act upon, similar to Seff et al. [20]. That is, constraints are sorted according to their latest member
primitive. For each constraint type, we arbitrarily canonicalize the ordering of its tuple of parameters.
Constraint tuples specify the type of constraint and its reference parameters.
Tokenization. The constraint model employs a similar tokenization scheme to the primitive model in
order to obtain a standardized sequence of integers as input. For each parameter, a triple of value, ID,
and position tokens indicate the parameter’s value, what type of parameter it is, and which ordered
constraint it belongs to, respectively.
Architecture. The constraint model employs an encoder-decoder transformer architecture which
allows it to condition on the input sequence of primitives. A challenge with the constraint model
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is that it must be able to specify references to the primitives that each constraint acts upon, but
the number of primitives varies among sketches. To that end, we utilize variable-length softmax
distributions (via pointer networks [27]) over the primitives in the sketch to specify which primitives
the constraint references. This is similar to the methodology utilized in PolyGen [17], but importantly
distinct in that our constraint model is equipped to reference hierarchical entities (i.e., primitives or
sub-primitives).
Embeddings. Two embedding schemes are required for the constraint model. Both the input prim-
itive token sequence as well as the target output sequence (constraint tokens) must be embedded.
The input primitive tokens are embedded in identical fashion as with the standalone primitive model,
leveraging standard lookup tables. A transformer encoder then produces a sequence of final repre-
sentations for the primitive tokens. These representation vectors serve a dual purpose: conditioning
the constraint model and embedding references in the constraint sequence. The architecture of the
encoder is similar to that of the primitive model, except it does not have the output linear layer and
softmax.
From the tuple of representations for each primitive, we extract reference embeddings for both the
primitive as a whole (e.g., a line segment) and each of its sub-primitives (e.g., a line endpoint) that
may be involved in constraints.
Noise injection. The constraint model must account for potentially imperfect generations from the
preceding primitive model. Accordingly, the constraint model is conditioned on primitives whose
parameters are subjected to independent Gaussian noise during training.

3.3 Context Conditioning
Our model may be optionally conditioned on a context. As described below Eq. (1), we directly
expose the primitive model to the context while the constraint model is only implicitly conditioned
on it via the primitive sequence. Here, we consider two specific cases of context evocative of two
applications: primers and images of hand-drawn sketches, corresponding to autocompletion and
image-conditional generation applications, respectively.
Primer-conditional generation. Here, a primer is a sequence of primitives representing the prefix
of an incomplete sketch. Conditioning on a primer consists of presenting the corresponding sequence
prefix to a trained primitive model; the remainder of the primitives are sampled from the model until
a stop token is sampled, indicating termination of the sequence. This emulates a component of an
“autocomplete” application, where CAD software interactively suggests next construction operations
to the user.
Image-conditional generation. In the image-conditional setting, we are interested in accurately
recovering a parametric sketch from a raster image of a hand-drawn sketch. This setup is inspired
by the fact that engineers often draw a design on paper or whiteboard from various orthogonal
views prior to investing time building it in a CAD program. Accurate inference of parametric CAD
models from images or scans remains a highly-sought feature in CAD software, with the potential to
dramatically reduce the effort of translating from rough paper scribble to CAD model.
When conditioning on an image, the primitive model is augmented with an image encoder. We
leverage an architecture similar to a vision transformer [4], first linearly projecting flattened local
image patches to a sequence of initial embeddings, then using a transformer encoder to produce a
learned sequence of context embeddings. In order to condition on the image, the primitive decoder
cross-attends into the image context embeddings. The overall model is trained to maximize the
probability of the ground truth primitives portrayed in the image. In preliminary experiments, we
found conditioning on a sequence of patch embeddings to be more effective than a single, global
embedding per image. This is a similar setup to the image-conditioning route taken in Nash et al.
[17] for mesh generation, which also leverages a sequence of context embeddings (instead produced
by residual networks [10]).
Hand-drawn simulation. We aim to enable generalization of the image-conditional model described
above to hand-drawn sketches, which can potentially support a much wider array of applications than
only conditioning on perfect renderings. This requires the specification of a noise model to emulate
the distortions introduced by imprecise hand drawing, as compared to the precise rendering of a
parametric sketch using software. Two reasonable noise injection targets are the parameters underlying
sketch primitives and the raster rendering procedure. Our noise model takes a hybrid approach,
subjecting sketch primitives to random translations/rotations in sketch space, and augmenting the
raster rendering with a Gaussian process model. A full description is provided in Appendix A.
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Bits per Primitive Bits per Sketch Accuracy

Uniform 33.41 350.2 1.3%
Compression 15.34 160.7 — %
Unconditional 6.35 66.6 71.7%
Unconditional (permuted) 7.84 82.1 62.8%
Image-conditional 3.80 39.8 80.2%

Table 2: Primitive model evaluation. We express negative log-likelihood on the test set in both bits per primitive
and bits per sketch. Next-step prediction accuracy (per-token average) is also provided.

4 Experiments

We evaluate several versions of our model in both primitive generation and constraint generation
settings. Quantitative assessment is conducted by measuring negative log-likelihood (NLL) and
predictive accuracy on a held-out test set as well as via distributional statistics of generated sketches.
We also examine the model’s performance on conditional synthesis tasks.

4.1 Training Dataset
Our models are trained on the SketchGraphs dataset [20], which consists of several million CAD
sketches collected from Onshape. We use the filtered version, which is restricted to sketches
comprised of the four most common primitives (arcs, circles, lines, and points), a maximum of 16
primitives per sketch (convenient for mini-batch training), and a non-empty set of constraints. We
further filter out any sketches with fewer than six primitives to eliminate most trivial sketches (e.g., a
simple rectangle). We randomly divide the filtered collection of sketches into a 92.5% training, 2.5%
validation, and 5% testing partition. Training is performed on a server with four Nvidia V100 GPUs,
and our models take between three and six hours to train. See Appendix B.2 for full details of the
training procedure.
Deduplication. As components of larger parts and assemblies, CAD sketches may sometimes be
reused across similar designs. Onshape’s native document-copying functionality supports this. In
addition, similar sketches may result from users of Onshape following online tutorials, importing
files from popular CAD collections, or by just coincidentally designing for the same use case. As a
result, a portion of the examples in SketchGraphs may be considered to be duplicates, depending
on the precise notion of duplicate adopted. For example, two sketches may exhibit visually similar
geometry yet differ in their ordering of construction operations, placement in the coordinate plane, or
constraints used.
We devise a straightforward, conservative deduplication procedure to help ensure a diversity of
training data, but note that the ideal process here is ultimately subjective and may vary by application.
First, we normalize each sketch via centering and uniform rescaling. The numerical parameters in the
primitive sequence are quantized to six bits, effectively mapping their coordinates to a 64× 64 grid.
At this stage, for any set of sketches with identical sequences of primitives (including their quantized
parameters), we keep only one, resulting in a collection of 1.7 million unique sketches. The above
procedure removes all sketches that have approximately equivalent geometry with the same ordering
of construction operations.

4.2 Baselines
We report the performance of two baselines on the tasks of interest here: 1) A uniform sampler that
randomly selects tokens with equal probability at each time step. 2) A compression baseline based
on a LZMA compressor (see Appendix D for details). These baselines are accompanied by several
ablation and conditional variants of our model.

4.3 Primitive Model Performance
Unconditional model. The unconditional variant of our model is trained to approximate the raw
distribution over primitive sequences without regard to any context. As shown in Table 2, the uncon-
ditional primitive model achieves a substantially lower NLL than both the uniform and compression
baselines. We employ nucleus sampling [11] with a commonly used cumulative probability parameter
of p = 0.9 to remove low-probability tokens at each sampling step and avoid sample degradation.
Fig. 4 displays a set of random samples from the unconditional primitive model.
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SketchGraphs dataset Vitruvion

Figure 4: Random examples from the SketchGraphs dataset (left) and random samples from the unconditional
primitive model (right).

To assess the degree to which the predictive performance of the model depends on information exposed
through the sequence order, we conduct the following ablation study. We train an unconditional
primitive model on sequences where the order of primitives has been shuffled uniformly randomly,
removing the model’s exposure to the ground truth ordering. As shown in Table 2, this results in
performance degradation on next-step prediction. Importantly, the erasure of primitive ordering
removes useful local hierarchical structure (e.g., high-level primitive constructs like rectangles — see
Fig. 5) as well as global temporal structure.
Image-conditional generation. Table 2 displays the performance of the basic image-conditional
variant of the primitive model. By taking a visual observation of the primitives as input, this model is
able to place substantially higher probability on the target sequence.
In Table 3, we evaluate the performance of several image-conditional models on a set of human-drawn
sketches. These sketches were hand-drawn on a tablet computer in a 128× 128-pixel bounding box,
where the drawer first eyeballs a test set sketch, and then attempts to reproduce it. Likewise, each
image is paired up with its ground truth primitive sequence, enabling log-likelihood evaluation.
We test three versions of the image-conditional model on the human hand drawings which are trained
on three different types of renderings: precise renderings, renderings from the hand-drawn simulator,

6Rectangles in Onshape are typically added via a rectangle button, which inserts four line segments automati-
cally in a canonical [bottom, top, left, right] order.
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Figure 5: Average NLL per primitive position for the unconditional primitive model. In general, the model
achieves lower NLL for primitives residing later in a sequence, as ambiguity regarding the final sketch decreases.
However, a staircase pattern of length four is also apparent, due to the high prevalence of rectangles (consisting
of four line segment primitives6) in the data.

Bits per Primitive Bits per Sketch Accuracy

Image-conditional 22.8 292.3 47.0%
Image-conditional (hand-drawn) 10.59 135.5 65.5%
Image-conditional (hand-drawn + affine) 6.14 78.6 75.9%

Table 3: Image-conditional primitive model evaluated on real hand-drawn sketches. Training of the hand-drawn
variant includes noise injected by our Gaussian process noise model, while the affine augmentation introduces
small affine transformations as a data augmentation strategy during training. The accuracy column denotes
per-token average argmax accuracy.

and renderings with random affine augmentations of the hand-drawn simulator. Both the hand-drawn
simulation and augmentations substantially improve performance. Despite never observing a real
hand drawing during training, the model is able to effectively interpret these.
Figure 6 displays random samples from the primitive model when conditioned on images of hand-
drawn sketches. For each drawing, four independent samples are generated.
Primer-conditional generation. We assess the model’s ability to complete primitive sequences
when only provided with an incomplete sketch. Here, we randomly select a subset of test set sketches,
deleting 40% of the primitives from the suffix of the sequence. Four example, a sketch with ten
primitives has the last four primitives deleted. The remaining sequence prefix then serves to prime
the primitive model.
Fig. 7 displays random examples of priming the primitive model with incomplete sketches. Because
just over half of the original primitives are present in the primer, there is a wide array of plausible
completions. In some cases, despite only six completions for each input, the original sketch is
recovered. We envision this type of conditioning as part of an interactive application where the user
may query for k completions from a CAD program and then select one if it resembles their desired
sketch.

4.4 Constraint Model Performance
We train and test our constraint model with two different types of input primitive sequences: noiseless
primitives and noise-injected primitives. Noise-injection proves to be a crucial augmentation in
order for the constraint model to generalize to imprecise primitive placements (such as in the image-
conditional setting). As shown in Table 4, while both versions of the model perform similarly
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SamplesHand-drawn

Figure 6: Image-conditional samples from our primitive model. Raster images of real hand-drawn sketches
(left) are input to the primitive model. Four independent samples are then generated for each input. The model
makes occasional mistakes, but tends to largely recover the depicted sketch with only a few samples.
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Original Primer Inferred

Figure 7: Primer-conditional generation. We take held-out sketches (left column) and delete 40% of their
primitives, with the remaining prefix of primitives (second column from left) serving as a primer for the primitive
model. To the right are the inferred completions, where the model is queried for additional primitives until
selecting the stop token. Note that only the primitive model is used in these examples.

Noiseless Testing Noisy Testing

Model Perplexity Accuracy Perplexity Accuracy

Uniform 4.984 0.6% 4.984 0.6%
Noiseless training 0.184 91.5% 0.903 68.6%
Noisy training 0.198 90.3% 0.203 90.6%

Table 4: Constraint model evaluation. We express per-token negative log-likelihood (perplexity) and accuracy,
for both noisy and noiseless input. We note that a model trained only on noiseless input degrades very quickly in
the presence of noise.

on a noiseless test set, the model trained according to the original primitive locations fails to
generalize outside this distribution. In contrast, exposing the model to primitive noise during training
substantially improves performance.
Sketch editing. Figure 2 illustrates an end-to-end workflow enabled by our model. Our model is
first used to infer primitives and constraints from a hand-drawn sketch. Subsequently, we show how
editing the resulting solved sketch keeps the sketch in a coherent state due to edit propagation arising
from the inferred constraints.

5 Conclusion and Future Work

In this work, we have introduced a method for modeling and synthesis of parametric CAD sketches,
the fundamental building blocks of modern mechanical design. Adapting recent progress in modeling
irregularly structured data with graph and attention-based models, our model leverages the flexibility
of self-attention to propagate sketch information during autoregressive generation.
Avenues for future work include extending the generative modeling framework to capture the more
general class of 3D inputs; including modeling 3D construction operations and synthesis conditioned
on noisy 3D scans or voxel representations.
The goal of this work is to automate a tedious process and enable greater creativity in design, but
we acknowledge the potential societal impact from eliminating human labor. Moreover, there is the
potential risk in high-stakes applications for automatically synthesizing mechanical systems that
do not meet human structural standards. We view this work, however, as being part of a larger
human-in-the-loop process which will still involve human expertise for validation and deployment.
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Original Perturbed
Constraint model


(trained w/out noise)
Constraint model

(trained w/ noise)

Figure 8: Constraining primitives. We take test set sketches (leftmost column) and perturb the coordinates of
the primitives with Gaussian noise (second from left). The constraint model trained without noise (second from
right) often fails to correct the primitive locations, unlike the constraint model trained on noise-augmented data
(rightmost column).
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A Hand-drawn Noise Model

The noise model renders lines as drawn from a zero-mean Gaussian process with a Matérn-3/2 kernel
that have been rotated into the correct orientation. Arcs are rendered as Matérn Gaussian process
paths in polar coordinates with angle as the input and the random function modulating the radius. No
additional observation noise is introduced beyond the standard “jitter” term. The length-scale and
amplitude are chosen, and the Gaussian process truncated, so that scales are consistent regardless of
the length of the line or arc.

B Experimental Details

This section provides details of the model architecture and training regime.

B.1 Model Architecture
Our models all share a main transformer responsible for processing the sequence of primitives or
constraints which is the target of the inference problem. This transformer architecture is identical
across all of the models, using a standard transformer decoder with 12 layers, 8 attention heads, and a
total embedding dimension of 256. No significant hyper-parameter optimization was performed. The
raw primitive generative model is only equipped with the decoder on the primitive sequence, and is
trained in an autoregressive fashion. The constraint model, in addition to the transformer decoder on
the constraint sequence, also performs standard cross-attention into an encoded representation of the
primitive sequence.
The image-to-primitive model is additionally equipped with an image encoder based on a vision
transformer [4], which is tasked with producing a sequence of image representations into which the
primitive decoder performs cross-attention. We use 128× 128-sized images as input to the model.
Non-overlapping square patches of size 16 × 16 are extracted from an input image and flattened,
producing a sequence of 64 flattened patches. Each then undergoes a linear transformation to the
model’s embedding dimension (in this case, 256) before entering a standard transformer encoder.
This transformer encoder has the same size as the decoder used in our other models.

B.2 Training
Training was performed on cluster servers equipped with four Nvidia V100 GPUs. Total training
time was just under 2 hours for the primitive model, and 5.5 hours for the image-to-primitive model
and the constraint model. The primitive model and the constraint model were each trained for 30
epochs, and the image-to-primitive model was trained for 40 epochs, although the total number of
epochs did not appear to cause significant differences in performance. The models were trained using
the Adam optimizer with “decoupled weight decay regularization” [16], with the learning rate set
according to a “one-cycle” learning rate schedule [24]. The initial initial learning rate was set to
3e-5 (at reference batch size 128, scaled linearly with the total batch size). The batch size was set
according to the memory usage of the different models at 1024 / GPU for the raw primitive model,
512 / GPU for the image-to-primitive model, and 384 / GPU for the constraint model.

B.3 Image-to-primitive data
Prior to training the image-to-primitive model, we generate samples from our hand-drawn noise
model (see Appendix A) in a separate process. Five samples are generated for each sketch in the
dataset, taking a total of approximately 160 CPU-hours. This process is parallelized on a computing
cluster. During each training epoch, one random image (out of the five generated samples) is selected
to be used by the model. An additional data augmentation process is used during training, whereby
random affine transformations are applied to the images. The augmentation is chosen randomly
among all affine transformations which translate the image by at most 8 pixels, rotate by at most 10
degrees, shear the image by at most 10 degrees, and scale the image by at most 20%.

C Distributional Statistics

We quantitatively compare distributional statistics for generated sketches and those from the test set.
10K sketches are sampled from our full unconditional model (both primitives and constraints). In
particular, we compare the number of generated primitives, constraints, total degrees of freedom,
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Figure 9: Comparison of various statistics between between generated and dataset sketches. Shaded regions
represent bootstrapped 95% confidence intervals.

degrees of freedom removed by constraints and net degrees of freedom across generated sketches in
Fig. 9.

D Compression Baseline

The compression baseline is computed by first tokenizing primitives according to the tokenization
scheme described in section 3.1, representing the token sequences as 8-bit integers, and compressing
the given data using the LZMA compression algorithm. The compression is performed over the entire
dataset (including training, validation and test splits), and the reported quantities are averages over
the entire dataset. In particular, note that we may expect the entropy rate of the data to be lower than
reported.
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