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A Probabilistic Algorithm for k-SAT Based on Limited
Local Search and Restart

U. Schoning

Abstract. A simple probabilistic algorithm for solving the NP-complete probles8AT is reconsidered.

This algorithm follows a well-known local-search paradigm: randomly guess an initial assignment and then,
guided by those clauses that are not satisfied, by successively choosing a random literal from such a clause and
changing the corresponding truth value, try to find a satisfying assignment. Papadimitriou [11] introduced this
random approach and applied it to the case of 2-SAT, obtaining an exp@ctéy time bound. The novelty

here is to restart the algorithm aften 8nsuccessful steps of local search. The analysis shows that for any
satisfiablek-CNF formula withn variables the expected number of repetitions until a satisfying assignment is
found this way is(2 - (k — 1)/k)". Thus, for 3-SAT the algorithm presented here has a complexity which is
within a polynomial factor ot%)”. This is the fastest and also the simplest among those algorithms known up
to date for 3-SAT achieving am(2") time bound. Also, the analysis is quite simple compared with other such
algorithms considered before.
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1. Preliminaries. The decision problerk-SAT consists of the set of satisfiable for-
mulas in conjunctive normal form (CNF) where each clause has at knlitstals (a
literal being a variable or a negated variable).Bwe denote the number of variables
that occur in a given formula. For convenience we assume thatkhSAT formula
each clause hasxactly kliterals. This can be achieved by doubling some of the literals.
The “naive algorithm” fork-SAT which tries out all 2 truth value assignments to the

n variables has a complexity which is within a polynomial factor &f By the fact
thatk-SAT is NP-complete [2], [6] for everk > 3, it would follow that P= NP if a
polynomial-time algorithm could be devised for this problem (which seems very difficult
if not impossible). However, it is still interesting and desirable for practical purposes to
find algorithms which are better than the naiVealyorithm. A milestone paper in this
respect is by Monien and Speckenmeyer [9] where a deterministic algorithkrSAT

is presented. For 3-SAT their bound i$18'. The best bounds so far have been obtained
by a probabilistic algorithm (see [10]) which started in the paper [13] and was further
improved by Paturi et al. in [12]. Their algorithm is based on a probabilistic version of
the Davis—Putnam procedure. In the case of 3-SAT the bound given in [1368"1
Here we present a different probabilistic algorithmKeBAT based on local search that
achieves the boun@(k — 1)/k)". In the case of 3-SAT the complexity is therefore
(g)”. This is the fastest known algorithm for 3-SAT up to date (but see the remark at the
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end of this paper). Also, the algorithm and its analysis is quite simple compared with
its predecessors. Comparing our bounds in the dasest, these bounds are slightly
beaten by the probabilistic algorithm developed by Paturi et al. [12]. They ob#aig']
1.569', and 1637 for the casek = 4, 5, 6.

Since we are dealing with exponential complexity bounds here, asymptotically, it is
convenient to ignore polynomial factors. The following notation turns out to be very
useful. Say that the functionf g: N — R are polynomially relatedif there is a
polynomial p such that for alh,

f(n) < pn)-gn and gn) < pn) - f(n).

Symbolically we writef =< g in this case.

2. The Algorithm and Its Analysis. In the following we describe and analyze our
algorithm. First consider the following probabilistic procedure:

Procedurery (F: a formula ink-CNF with n variables): Boolean;

Guess an initial assignmeate {0, 1}", uniformly at random;
Repeat 8 times:
If the formula is satisfied by the actual assignment then return 1;
Let C be some clause not being satisfied by the actual assignment;
Pick one of thek literals in the clause uniformly at random and flip its
value in the current assignment;
Return 0O;

If Fisaformulawhichis unsatisfiable, the resultrgf(F) will always be 0. However,
if F is satisfiable, suppose the probability of obtaining the resulpXigherep depends
onn). Thenitis clear that the expected number of repetitions of the procagunetil we
find a satisfying assignment (itey (F) = 1) is 1/ p. The probability that we do not find a
satisfying assignment afterepetitions with independent random bitgis- p)' < e=Pt.
Therefore, to achieve an acceptable error probability of, ez, one needs to choose
t = 20/ p independent repetitions tfy. It is shown below thap > % < (k/2(k — )"
Therefore, the following algorithm

Fori := 1t0 30- (2¥=2)" Do If try(F) = 1 Then Write (‘F is satisfiable”);
Write (“No satisfying assignment found”)

has complexity which is within a polynomial factor @k — 1) / k)" and achieves a (one-
sided) error probability of no more that2°. A potential error occurs only in the case
when the formula is satisfiable, and the algorithm does not find a satisfying assignment.
Now we calculatep. Suppose- is satisfiable. Fix some satisfying assignmatt
Undera*, in each clause of at least one literal is set to 1. In each clause we fix
exactly onditeral which is set to 1 undea*. Call this literal thespecial literalof the
respective clause. Since each clause has exatitrals, in each step of the procedure
try the probability of selecting the special literalesactlyl/k. Let X; € {0, 1,...,n}
(t=0,1,2,...) be the random variable which counts the number of bits in which the
actual assignmertin the proceduréry differs from our fixed satisfying assignmaeatt,
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i.e. the Hamming distanal(a, a*) betweera anda*. The index refers to the number of
repetitions performed within the procedurg. Since the initial assignmeatis chosen
uniformly at random Xy follows a symmetric binomial distribution,

n
j

Each time a literal is randomly selected in the procedyrend its value is flipped
we either decrease the Hamming distad¢a, a*) by one or we increase it by one, i.e.

Xi+1 = Xi+1or Xi41 = X; — 1. Decreasing the Hamming distance means that we pick
one of those literals in the clause which are satisfied uatié¥otice that it might be the

case that the procedumy finds at a certain stepa satisfying assignment different from

a*. In this case the procedure returns 1 and the stochastic process stops. In this case (and
also in the case that the procedure hitadpwe defineX;, Xy1, X2, ...to be 0.

The actual stochastic proce¥s, X1, Xo, ... is a Markov chain with a reflecting
barrier at stat@, and has varying time- and state-dependent transfer probabilities such
as Yk, 2/k, and so on. Also note that the apparent worst-case of reachingrstate
is not bad at all, since the complementary assignnaeigt a satisfying assignment
in this case. Therefore, one might modify the algorithm such that it always checks
whether the complement of the actual assignment is satisfying. Instead of analyzing this
somewhat complicated stochastic process we choose to analyze closely another process
Yo, Y1, Yo, ..., which is a Markov chain with infinitely many states1)2, .... LetY;
denote the random variable which takes as its value the state number of this Markov chain
aftert steps. Initially, this Markov chain is started like the stochastic process above, i.e.

Yo = Xo. As long as the procedutey is operating we leY;,; = Y; — 1 if the procedure
selects the special literal for flipping, otherwise weXset = Y; + 1 (even if the selected
literal is satisfied undea*). After the procedurdry has stopped we continue with the
same transfer probabilities, namely

Pr(XO:j)=2‘”() for j=0,1,...,n.

k-1

k
By induction ont, it is clear that for each, X; < Y;. Therefore we can lower bound the
above-mentioned probability as follows:

p=Pr@t<3n:X=0>Pr@t<3n:Y;=0)

. 1 . .
Pr(Yt+1=l—1|Yt=J)=E and PriVyi1=j+1|1 =)=

since 3 is the chosen repetition number within the proceduoye

If the Markov chain starts in some stgtéi.e. Yo = j), then it can reach the state 0 in
j steps by transfering through the stafes 1, | — 2, ..., 1, 0. The probability of this
happening ig1/k)!. Also, fori = 1, 2, 3, ... the state 0 can be reached aftetJ steps
where there aresteps which increase the state numberia#dj steps which decrease
the state number. Lef(i, j) be the probability thaY,; = 0, such that the state O is not
reached in any earlier step—under the condition that the Markov chain started in state
j,i.e.Yo = j. More formally,

q@, j) :=Pr(Ysj =0andYy > Oforallk <2i +j | Yo= ).

Clearly,q(0, j) = (1/k)!. Inthe general casq(i, j)is (k—1)/k)' - (1/k)'*} times the
number of ways of arranginigincreasing steps andt j decreasing steps such that the
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whole sequence starts in stateends in state 0 and does not reach 0 before the last step.

By theballot theorem(see 3.10 (6), page 77, of [8] or page 73 of [5]), this number is

2 + | . i
[ 2i+j°
Therefore, we have

S (2 +] j k—1\" /1\'"
win=("7) w5 (50) ()

The expression is not defined in the case j = 0. In this caseq(0, 0) = 1. Thus we
get

p>Pr@t<3n:Y;=0)

%
N
5

X
N
5

X
N

=}
n ]
o
Y
[

k n _ _
(Z(k — 1)> by the binomial theorem

Here, the asymptotic estimation

SC) )0 - ()

is justified as follows. We sét= «j and estimate the summand
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this holds since by Stirling’s inequality < (n/e)", and then

ny _ n! _ (n/e" /MK n \"X
(k) T kl-(n—k! T (k/e)k- (n—k)/enk (E) ' (n — k) '

Therefore, forO< o < 1,

n 5 1 o 1 1-o "
BRION=NE
wherean is assumed to be an integer.

Since there are just polynomially many summands the value of the sumis polynomially
related to its greatest summand. The greatest summand can be determined by setting the
derivative of the above expression in brackets to zero. It turns out that the greatest
summand is obtained fer = 1/(k — 2). Inserting this value fow yields (1/(k — 1))]

as claimed.
We have proved the following theorem.

THEOREM. For every k> 2 there is a probabilistic algorithm which solves theSIAT
problem in time which is within a polynomial factor (#(k — 1)/k)" where n is the
number of variables in the input formula

Symbolically,

k-SAT € RTIME (poly(n) : (2(kk_ 1)) ) .

The complexity class RTIME&(n)) denotes those decision problems that can be solved
by probabilistic algorithms with expected running titrga) having just one-sided errors
(with probability less than 1/2), denoting a generalization of the class RP, see [1].

3. Final Remarks. This paper is based on the conference presentation [14].

Very recently, the algorithm presented here has been further extended and improved
for the special case of 3-SAT [15]. Instead of guessing the initial assignments unifomly
at random, a different probability distribution is used which depends on the foffmula
The improvement is fron(\%)“ to 1.3303".

The deterministic algorithms presented in [3] and [4] can be considered as deran-
domized versions of our probabilistic algorithm here. The obtained bound in the case of
3-SAT is 1481".
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Hollas, O. Kullmann, P. PueK, R. Schuler, T. Thierauf, and E. Welzl. The unknown
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simplifying the presentation of the paper.
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Appendix. In this appendix we give an alternative analysis of the algorithm using
calculations involving power series. These calculations have been generously supplied
to the author by Emo Welzl. The advantage here is that no polynomial “slack” terms
occur.

Again, consider the Markov chain given by the random varialfe¥, Yo, .... We
want to estimatd’r(3t < 3n: Y; = 0). Letq = 1/k be the probability of decreasing
the state number on the Markov chain by 1. DNptbe the random variable that counts
the number of steps until the first encounter of state 0, assuming that the process starts
in statej, i.e. Yo = j. (Notice that it is possible that the state O will never be reached.)

LEMMA 1. Forq < 1 and j € Np it holds that

j
Pr(N; < o0) = (]_ﬂ—q) .

ProOF By the ballot theorem the number of walks of lengiht2j from j to 0 where
the first encounter of 0 happens in the last ste(ﬁ'rs‘)(j/(Zi + j)). Hence,

o (2 + ] ' i it
Pr(N; < o0) Z( ij>2i#+j(l—0|)q+J
i=0

o (204 j :
_ ] _ I
= q i}_o( i )2i+j(q(1 Q)
= g/ (B(q(1—q)))’,

for B2(z) being the generalized Binomial series defined by

2i+1\ 2 1-V1—-4z
BZ(Z):Z( i >2i+l: 22

for which

2i .
(o) = Z( | i+r)2i r+rzl

forallr € Ny, see [7]. So

2(1-a)q

1_,/1—4q+4q2)j _qj( 1 )J’ o
=d(1=5)

Pr(N; < o0) = ¢’ (

LEMMA 2. Forq < 1 and j € Np it holds that

E(Nj | Nj <OO)=

1-2q
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PrROOF

N _ A+1Y._d i _gigt
E(N; | Nj < 00) = Pr(N] Z(zu < i ) ] (1-q)'q

. P (24 _
—o)l. — )
jid-0q ; ( i )(q(l Q) (by Lemma 1)
1 q . Lad -

v1-4q(1—-q)
_ 0 o
1-2q

Notice that it is not really necessary to resort to power series to prove Lemmas 1 and
2. The standard approach of putting up a difference equation works as well (for similar
examples see [8]).

Let N be the random variable that counts the number of steps until state 0 is encoun-
tered for the first time. Here the initial distributidfy of the Markov chain is taken into

account.

LEMMA 3. Forq < 1 it holds that

Pr(N < o0) = <2(11_q)> .

PROOF
n

PN <o00) = ) <rj‘>2” Pr(N; < 00)

j=0

Xn: (?)2‘“ . <1j;q)l (by Lemma 1)

j=0

1 n
= — by the binomial theorem O
(al—m) (by :

LEMMA 4. For g < 1 it holds that

E(N|N < o0) =

1-2q

PROOFE
E(N | N < o0) =Zi.Pr(N=i|N<oo)

Z Z( )2” Pr(N; =i | N < 00)
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2" 1. /n ) )
= PN o0+ Q)'Z:“P“Niz”

j=0

2-n D /n
- . CE(N; | N; - Pr(N;

n N~ (M) g \
1-0q) Z (J) : 1-2q . <m) (by Lemmas 1-3)

j=0

_nd-g" n-1 (IR
T 1-29 £ <j—1>'<1—q)

:n(l—q)”' q .1+L n—l= ng O
1-29 1-—q 1—q 1-2q9°

o

LEMMA 5. Forq < 3 andx > 1it holds that

Agn 1 1 "
Pr<N = 1—2q) g <1_ X) <2<1—q)> '

ProOr Write u for E(N | N < o0). Observe that

1
Pr(N>AM|N<oo)<X
by Markov’s inequality, and
Pr(N <Xxu) = Pr(N<Xiu | N <o0):-Pr(N < o0)

since(N < Au AN <o0) & (N <Aw). O
Now usingq = 1/k, k > 3, andi = 3, we obtain
Pr@t<3n:Y; =0 =Pr(N <3n) 2 k ’
. = = > - | — .
= ! = 3 \2kk-1

Thus the number of repetitions necessary to obtain an error probability which is less than

e Djs
3 /2(k-=1\"
20- = .
(%)

whereas, for a satisfiable formula, thepectechumber of repetitions of procedutey
until a satisfying assignment is found is at most

3 /2(k-=D\"
2 k '
It is interesting to note here that we did not work with a reflecting barrier at state
In this case the expected number of steps until zero is reached for the first time is on the
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order of 2, which forbids a direct application of Markov’s inequality. The (apparent)
detour via omitting this barrier works here, because then, conditional on the event that
zero is reached at all, the expected number of steps until this happens is on the order of
n, which makes the tail estimate an easy consequence of Markov’s inequality.

Finally, we remark that it is possible to use Lemma 2 directly to prove the estimate

E(N|N<oo)§1_2q

which is somewhat weaker than Lemma 4. This estimate implies

1 k "

This would be good enough if the searchtipwas be for 4 steps instead oft8
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