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A Probabilistic Algorithm for k-SAT Based on Limited
Local Search and Restart

U. Schöning1

Abstract. A simple probabilistic algorithm for solving the NP-complete problemk-SAT is reconsidered.
This algorithm follows a well-known local-search paradigm: randomly guess an initial assignment and then,
guided by those clauses that are not satisfied, by successively choosing a random literal from such a clause and
changing the corresponding truth value, try to find a satisfying assignment. Papadimitriou [11] introduced this
random approach and applied it to the case of 2-SAT, obtaining an expectedO(n2) time bound. The novelty
here is to restart the algorithm after 3n unsuccessful steps of local search. The analysis shows that for any
satisfiablek-CNF formula withn variables the expected number of repetitions until a satisfying assignment is
found this way is(2 · (k − 1)/k)n. Thus, for 3-SAT the algorithm presented here has a complexity which is
within a polynomial factor of( 4

3)
n. This is the fastest and also the simplest among those algorithms known up

to date for 3-SAT achieving ano(2n) time bound. Also, the analysis is quite simple compared with other such
algorithms considered before.
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1. Preliminaries. The decision problemk-SAT consists of the set of satisfiable for-
mulas in conjunctive normal form (CNF) where each clause has at mostk literals (a
literal being a variable or a negated variable). Byn we denote the number of variables
that occur in a given formula. For convenience we assume that in ak-SAT formula
each clause hasexactly kliterals. This can be achieved by doubling some of the literals.
The “naive algorithm” fork-SAT which tries out all 2n truth value assignments to the
n variables has a complexity which is within a polynomial factor of 2n. By the fact
thatk-SAT is NP-complete [2], [6] for everyk ≥ 3, it would follow that P= NP if a
polynomial-time algorithm could be devised for this problem (which seems very difficult
if not impossible). However, it is still interesting and desirable for practical purposes to
find algorithms which are better than the naive 2n algorithm. A milestone paper in this
respect is by Monien and Speckenmeyer [9] where a deterministic algorithm fork-SAT
is presented. For 3-SAT their bound is 1.618n. The best bounds so far have been obtained
by a probabilistic algorithm (see [10]) which started in the paper [13] and was further
improved by Paturi et al. in [12]. Their algorithm is based on a probabilistic version of
the Davis–Putnam procedure. In the case of 3-SAT the bound given in [12] is 1.362n.
Here we present a different probabilistic algorithm fork-SAT based on local search that
achieves the bound(2(k − 1)/k)n. In the case of 3-SAT the complexity is therefore
( 4

3)
n. This is the fastest known algorithm for 3-SAT up to date (but see the remark at the
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end of this paper). Also, the algorithm and its analysis is quite simple compared with
its predecessors. Comparing our bounds in the casesk ≥ 4, these bounds are slightly
beaten by the probabilistic algorithm developed by Paturi et al. [12]. They obtain 1.476n,
1.569n, and 1.637n for the casesk = 4,5,6.

Since we are dealing with exponential complexity bounds here, asymptotically, it is
convenient to ignore polynomial factors. The following notation turns out to be very
useful. Say that the functionsf, g: N −→ R are polynomially related, if there is a
polynomial p such that for alln,

f (n) ≤ p(n) · g(n) and g(n) ≤ p(n) · f (n).

Symbolically we writef ³ g in this case.

2. The Algorithm and Its Analysis. In the following we describe and analyze our
algorithm. First consider the following probabilistic procedure:

Proceduretry (F : a formula ink-CNF with n variables): Boolean;

Guess an initial assignmenta ∈ {0,1}n, uniformly at random;
Repeat 3n times:

If the formula is satisfied by the actual assignment then return 1;
Let C be some clause not being satisfied by the actual assignment;
Pick one of thek literals in the clause uniformly at random and flip its

value in the current assignment;
Return 0;

If F is a formula which is unsatisfiable, the result oftry (F)will always be 0. However,
if F is satisfiable, suppose the probability of obtaining the result 1 isp (wherep depends
onn). Then it is clear that the expected number of repetitions of the proceduretry until we
find a satisfying assignment (i.e.try (F) = 1) is 1/p. The probability that we do not find a
satisfying assignment aftert repetitions with independent random bits is(1− p)t ≤ e−pt.
Therefore, to achieve an acceptable error probability of, say,e−20 one needs to choose
t = 20/p independent repetitions oftry. It is shown below thatp ≥ 2

3 · (k/2(k − 1))n.
Therefore, the following algorithm

For i := 1 to 30· ( 2(k−1)
k )n Do If try(F)= 1 Then Write (“F is satisfiable”);

Write (“No satisfying assignment found”)

has complexity which is within a polynomial factor of(2(k−1)/k)n and achieves a (one-
sided) error probability of no more thane−20. A potential error occurs only in the case
when the formula is satisfiable, and the algorithm does not find a satisfying assignment.

Now we calculatep. SupposeF is satisfiable. Fix some satisfying assignmenta∗.
Under a∗, in each clause ofF at least one literal is set to 1. In each clause we fix
exactly oneliteral which is set to 1 undera∗. Call this literal thespecial literalof the
respective clause. Since each clause has exactlyk literals, in each step of the procedure
try the probability of selecting the special literal isexactly1/k. Let Xt ∈ {0,1, . . . ,n}
(t = 0,1,2, . . .) be the random variable which counts the number of bits in which the
actual assignmenta in the proceduretry differs from our fixed satisfying assignmenta∗,
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i.e. the Hamming distanced(a,a∗) betweena anda∗. The indext refers to the number of
repetitions performed within the proceduretry. Since the initial assignmenta is chosen
uniformly at random,X0 follows a symmetric binomial distribution,

Pr(X0 = j ) = 2−n

(
n

j

)
for j = 0,1, . . . ,n.

Each time a literal is randomly selected in the proceduretry and its value is flipped
we either decrease the Hamming distanced(a,a∗) by one or we increase it by one, i.e.
Xt+1 = Xt +1 or Xt+1 = Xt −1. Decreasing the Hamming distance means that we pick
one of those literals in the clause which are satisfied undera∗. Notice that it might be the
case that the proceduretry finds at a certain stept a satisfying assignment different from
a∗. In this case the procedure returns 1 and the stochastic process stops. In this case (and
also in the case that the procedure hits ona∗) we defineXt , Xt+1, Xt+2, . . . to be 0.

The actual stochastic processX0, X1, X2, . . . is a Markov chain with a reflecting
barrier at staten, and has varying time- and state-dependent transfer probabilities such
as 1/k, 2/k, and so on. Also note that the apparent worst-case of reaching staten
is not bad at all, since the complementary assignmentā is a satisfying assignment
in this case. Therefore, one might modify the algorithm such that it always checks
whether the complement of the actual assignment is satisfying. Instead of analyzing this
somewhat complicated stochastic process we choose to analyze closely another process
Y0,Y1,Y2, . . ., which is a Markov chain with infinitely many states 0,1,2, . . .. Let Yt

denote the random variable which takes as its value the state number of this Markov chain
aftert steps. Initially, this Markov chain is started like the stochastic process above, i.e.
Y0 = X0. As long as the proceduretry is operating we letYt+1 = Yt −1 if the procedure
selects the special literal for flipping, otherwise we setYt+1 = Yt+1 (even if the selected
literal is satisfied undera∗). After the proceduretry has stopped we continue with the
same transfer probabilities, namely

Pr(Yt+1 = j − 1 | Yt = j ) = 1

k
and Pr(Yt+1 = j + 1 | Yt = j ) = k− 1

k
.

By induction ont , it is clear that for eacht , Xt ≤ Yt . Therefore we can lower bound the
above-mentioned probabilityp as follows:

p = Pr(∃t ≤ 3n : Xt = 0) ≥ Pr(∃t ≤ 3n : Yt = 0)

since 3n is the chosen repetition number within the proceduretry.
If the Markov chain starts in some statej (i.e.Y0 = j ), then it can reach the state 0 in

j steps by transfering through the statesj − 1, j − 2, . . . ,1,0. The probability of this
happening is(1/k) j . Also, fori = 1,2,3, . . . the state 0 can be reached after 2i + j steps
where there arei steps which increase the state number andi + j steps which decrease
the state number. Letq(i, j ) be the probability thatY2i+ j = 0, such that the state 0 is not
reached in any earlier step—under the condition that the Markov chain started in state
j , i.e.Y0 = j . More formally,

q(i, j ) := Pr(Y2i+ j = 0 andYk > 0 for all k < 2i + j | Y0 = j ).

Clearly,q(0, j ) = (1/k) j . In the general case,q(i, j ) is ((k−1)/k)i ·(1/k)i+ j times the
number of ways of arrangingi increasing steps andi + j decreasing steps such that the
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whole sequence starts in statej , ends in state 0 and does not reach 0 before the last step.
By theballot theorem(see 3.10 (6), page 77, of [8] or page 73 of [5]), this number is(

2i + j

i

)
· j

2i + j
.

Therefore, we have

q(i, j ) =
(

2i + j

i

)
· j

2i + j
·
(

k− 1

k

)i

·
(

1

k

)i+ j

.

The expression is not defined in the casei = j = 0. In this case,q(0,0) = 1. Thus we
get

p ≥ Pr(∃t ≤ 3n : Yt = 0)

=
n∑

j=0

2−n

(
n

j

) ∑
2i+ j≤3n

q(i, j )

≥ 2−n
n∑

j=0

(
n

j

) j∑
i=0

q(i, j )

= 2−n
n∑

j=0

(
n

j

) j∑
i=0

(
2i + j

i

)
· j

2i + j
·
(

k− 1

k

)i

·
(

1

k

)i+ j

³ 2−n
n∑

j=0

(
n

j

) j∑
i=0

(
2i + j

i

)
·
(

k− 1

k

)i

·
(

1

k

)i+ j

³ 2−n
n∑

j=0

(
n

j

)(
1

k− 1

) j

=
(

k

2(k− 1)

)n

by the binomial theorem.

Here, the asymptotic estimation

j∑
i=0

(
2i + j

i

)
·
(

k− 1

k

)i

·
(

1

k

)i+ j

³
(

1

k− 1

) j

is justified as follows. We seti = α j and estimate the summand(
2i + j

i

)
·
(

k− 1

k

)i

·
(

1

k

)i+ j

by [(
1+ 2α

α

)α
·
(

1+ 2α

1+ α
)1+α

·
(

k− 1

k

)α
·
(

1

k

)1+α] j

;
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this holds since by Stirling’s inequalityn! ³ (n/e)n, and then(
n

k

)
= n!

k! · (n− k)!
³ (n/e)n

(k/e)k · ((n− k)/e)n−k
=
(n

k

)k
·
(

n

n− k

)n−k

.

Therefore, for 0≤ α ≤ 1,(
n

αn

)
³
[(

1

α

)α
·
(

1

1− α
)1−α]n

,

whereαn is assumed to be an integer.
Since there are just polynomially many summands the value of the sum is polynomially

related to its greatest summand. The greatest summand can be determined by setting the
derivative of the above expression in brackets to zero. It turns out that the greatest
summand is obtained forα = 1/(k− 2). Inserting this value forα yields(1/(k − 1)) j

as claimed.
We have proved the following theorem.

THEOREM. For every k≥ 2 there is a probabilistic algorithm which solves the k-SAT
problem in time which is within a polynomial factor of(2(k − 1)/k)n where n is the
number of variables in the input formula.

Symbolically,

k-SAT ∈ RTIME

(
poly(n) ·

(
2(k− 1)

k

)n)
.

The complexity class RTIME(t (n)) denotes those decision problems that can be solved
by probabilistic algorithms with expected running timet (n) having just one-sided errors
(with probability less than 1/2), denoting a generalization of the class RP, see [1].

3. Final Remarks. This paper is based on the conference presentation [14].
Very recently, the algorithm presented here has been further extended and improved

for the special case of 3-SAT [15]. Instead of guessing the initial assignments unifomly
at random, a different probability distribution is used which depends on the formulaF .
The improvement is from( 4

3)
n to 1.3303n.

The deterministic algorithms presented in [3] and [4] can be considered as deran-
domized versions of our probabilistic algorithm here. The obtained bound in the case of
3-SAT is 1.481n.

Acknowledgments. For valuable remarks and discussions I thank S. Baumer, B.
Hollas, O. Kullmann, P. Pudl´ak, R. Schuler, T. Thierauf, and E. Welzl. The unknown
referee has done an excellent job by giving several very useful hints for improving and
simplifying the presentation of the paper.
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Appendix. In this appendix we give an alternative analysis of the algorithm using
calculations involving power series. These calculations have been generously supplied
to the author by Emo Welzl. The advantage here is that no polynomial “slack” terms
occur.

Again, consider the Markov chain given by the random variablesY0,Y1,Y2, . . .. We
want to estimatePr(∃t ≤ 3n : Yt = 0). Let q = 1/k be the probability of decreasing
the state number on the Markov chain by 1. LetNj be the random variable that counts
the number of steps until the first encounter of state 0, assuming that the process starts
in state j , i.e.Y0 = j . (Notice that it is possible that the state 0 will never be reached.)

LEMMA 1. For q < 1
2 and j ∈ N0 it holds that

Pr(Nj <∞) =
(

q

1− q

) j

.

PROOF. By the ballot theorem the number of walks of length 2i + j from j to 0 where
the first encounter of 0 happens in the last step is

(2i+ j
i

)
( j/(2i + j )). Hence,

Pr(Nj <∞) =
∞∑

i=0

(
2i + j

i

)
j

2i + j
(1− q)i qi+ j

= q j
∞∑

i=0

(
2i + j

i

)
j

2i + j
(q(1− q))i

= q j (B2(q(1− q))) j ,

for B2(z) being the generalized Binomial series defined by

B2(z) =
∑

i

(
2i + 1

i

)
zi

2i + 1
= 1−√1− 4z

2z

for which

(B2(z))
r =

∑
i

(
2i + r

i

)
r

2i + r
zi

for all r ∈ N0, see [7]. So

Pr(Nj <∞) = q j

(
1−

√
1− 4q + 4q2

2(1− q)q

) j

= q j

(
1

1− q

) j

.

LEMMA 2. For q < 1
2 and j ∈ N0 it holds that

E(Nj | Nj <∞) = j

1− 2q
.
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PROOF.

E(Nj | Nj <∞) = 1

Pr(Nj <∞)
∞∑

i=0

(2i + j ) ·
(

2i + j

i

)
· j

2i + j
· (1− q)i qi+ j

= j (1− q) j ·
∞∑

i=0

(
2i + j

i

)
(q(1− q))i (by Lemma 1)

= j (1− q) j · (B2(q(1− q))) j

√
1− 4q(1− q)

= j

1− 2q
.

Notice that it is not really necessary to resort to power series to prove Lemmas 1 and
2. The standard approach of putting up a difference equation works as well (for similar
examples see [8]).

Let N be the random variable that counts the number of steps until state 0 is encoun-
tered for the first time. Here the initial distributionY0 of the Markov chain is taken into
account.

LEMMA 3. For q < 1
2 it holds that

Pr(N <∞) =
(

1

2(1− q)

)n

.

PROOF.

Pr(N <∞) =
n∑

j=0

(
n

j

)
2−n · Pr(Nj <∞)

=
n∑

j=0

(
n

j

)
2−n ·

(
q

1− q

) j

(by Lemma 1)

=
(

1

2(1− q)

)n

(by the binomial theorem).

LEMMA 4. For q < 1
2 it holds that

E(N | N <∞) = qn

1− 2q
.

PROOF.

E(N | N <∞) =
∑

i

i · Pr(N = i | N <∞)

=
∑

i

i ·
n∑

j=0

(
n

j

)
2−n · Pr(Nj = i | N <∞)
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= 2−n

Pr(N <∞) ·
n∑

j=0

(
n

j

)
·
∑

i

i · Pr(Nj = i )

= 2−n

Pr(N <∞) ·
n∑

j=0

(
n

j

)
· E(Nj | Nj <∞) · Pr(Nj <∞)

= (1− q)n ·
n∑

j=0

(
n

j

)
· j

1− 2q
·
(

q

1− q

) j

(by Lemmas 1–3)

= n(1− q)n

1− 2q
·

n∑
j=0

(
n− 1

j − 1

)
·
(

q

1− q

) j

= n(1− q)n

1− 2q
· q

1− q
·
(

1+ q

1− q

)n−1

= nq

1− 2q
.

LEMMA 5. For q < 1
2 andλ ≥ 1 it holds that

Pr
(

N ≤ λqn

1− 2q

)
>

(
1− 1

λ

)(
1

2(1− q)

)n

.

PROOF. Writeµ for E(N | N <∞). Observe that

Pr(N > λµ | N <∞) < 1

λ

by Markov’s inequality, and

Pr(N ≤ λµ) = Pr(N ≤ λµ | N <∞) · Pr(N <∞)
since(N ≤ λµ ∧ N <∞)⇔ (N ≤ λµ).

Now usingq = 1/k, k ≥ 3, andλ = 3, we obtain

Pr(∃t ≤ 3n : Yt = 0) = Pr(N ≤ 3n) >
2

3
·
(

k

2(k− 1)

)n

.

Thus the number of repetitions necessary to obtain an error probability which is less than
e−20 is

20 · 3
2
·
(

2(k− 1)

k

)n

,

whereas, for a satisfiable formula, theexpectednumber of repetitions of proceduretry
until a satisfying assignment is found is at most

3

2
·
(

2(k− 1)

k

)n

.

It is interesting to note here that we did not work with a reflecting barrier at staten.
In this case the expected number of steps until zero is reached for the first time is on the



A Probabilistic Algorithm fork-SAT Based on Limited Local Search and Restart 623

order of 2n, which forbids a direct application of Markov’s inequality. The (apparent)
detour via omitting this barrier works here, because then, conditional on the event that
zero is reached at all, the expected number of steps until this happens is on the order of
n, which makes the tail estimate an easy consequence of Markov’s inequality.

Finally, we remark that it is possible to use Lemma 2 directly to prove the estimate

E(N | N <∞) ≤ n

1− 2q

which is somewhat weaker than Lemma 4. This estimate implies

Pr(N ≤ 4n) >
1

4
·
(

k

2(k− 1)

)n

.

This would be good enough if the search intry was be for 4n steps instead of 3n.
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