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Abstract 
We prove tight lower bounds, of up to n', for the mono- 
tone depth of functions an monotone-P. A s  a result we 
achieve the separation of the following classes. 

1. monotone-NC # monotone-P. 

2. V i  2 1, monotone-NCi # monotone-NC"' 

3. More generally: For any integer function D(n), up 
to n' (for some E > O), we give an explicit example 
of a monotone Boolean function, that can be com- 
puted b y  polynomial size monotone Boolean circuits 
of depth D(n), but that cannot be computed b y  any 
(fan-in 2) monotone Boolean circuits of depth less 
than Const . D(n)  (for some constant Const). 

Only a separation of monotone-NC' from monotone- 
NC2 was previously known. 

Our argument is more general: we define a new class 
of communication complexity search problems, referred 
to below as DART games, and we prove a tight lower 
bound for the communication complexity of every mem- 
ber of this class. As  a result we get lower bounds for the 
monotone depth of many functions. In  particular, we 
get the following bounds: 

1. For st-connectivity, we get Q tight lower bound 
of Q(log2n). That is, we get a new proof for  
Karchmer- Wigderson's theorem, as an immediate 
corollary of our general result. 

2. For the k-clique function, with k 5 n', we get a 
tight lower bound ofSZ(k1ogn). Only a bound of 
SZ(k) was previously known. 

1 Introduction 
A Boolean function f : (0, l}n t {0,1} is monotone if 
flipping a bit from 0 to 1 in any argument to f cannot 
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cause the value off  to change from 1 to 0. A monotone 
Boolean circuit is an indegree-two single-output circuit 
over the monotone base {A, V}. The size of a circuit is 
the number of gates in the circuit, and the depth of a 
circuit is the length of the longest path between a circuit 
input and the circuit output. The monotone size of a 
function is defined to be the smallest size of a monotone 
circuit for that function, and the monotone depth of 
the function is defined to be the smallest depth of a 
monotone circuit for that function. 

In his breakthrough paper in 1985, Razborov 
[Ra85a] proved a super-polynomial lower bound for the 
monotone-size of the Clique function, and as a con- 
clusion obtained the separation of monotone-P from 
monotone-NP. Using Razborov's technique, exponential 
lower bounds for the monotone size of other functions 
were proved by Andreev [An85], and an exponential 
lower bound for the monotone size of the Clique func- 
tion was finally proved by Alon and Boppana [AlBo87]. 
A simpler proof for that lower bound was recently pre- 
sented by Haken [Ha95]. 

Those lower bounds, and other lower bounds for the 
monotone size of functions, immediately translate into 
corresponding lower bounds (of up to n') for the mono- 
tone depth of the same functions. Lower bounds for the 
size, however, cannot give the separation of classes of 
monotone depth (e.g., the monotone-NC hierarchy), as 
those classes are sub-classes of monotone-P. Thus, in or- 
der to  achieve a separation of those classes, one needs to 
prove lower bounds for the monotone depth of functions 
in monotone-P. Hence, in order to achieve a separation 
of classes of monotone depth, one needs to prove depth 
lower bounds directly, and not as a consequence of size 
lower bounds. 

In 1988, Karchmer and Wigderson [KaWi88] obtained 
the important result that the monotone depth of the st- 
connectivity function is R(log2 n).  Since st-connectivity 
is in monotone-NC2, the separation of monotone- 
NC1 from monotone-NC2 was obtained. Since then, 
however, no better lower bounds for the monotone 
depth of functions in monotone-P were proved, and 
no larger gaps between the monotone depth of a func- 
tion and the logarithm of its monotone size were ob- 
tained. Other proofs for monotone-NC1 # monotone- 
N C 2  were later presented in [GrSi92] (where a sep- 
aration of monotone-L from monotone-NC' was also 
proved), and in [KaRaWiSl]. 

Some other direct lower bounds for the monotone 
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depth of functions are known. In particular, a tight 
lower bound of Q(n) was proved for the monotone depth 
of the Matching function [RaWigO]. The Matching 
function, however, is not in monotone-P, as a super- 
polynomial lower bound for its monotone size was 
proved in [Ra85bj. If sub-exponential upper bounds 
for the monotone size of the Matching function were 
shown then the result of [RaWiSO] would have given a 
separation of classes of monotone depth (by a padding 
argument). It is still open, however, whether such an 
upper bound exists. 

For more information about the early results in mono- 
tone complexity see the excellent survey of [BoSiSO]. 

In this paper, we prove tight lower bounds of up to n', 
for the monotone depth of functions in monotone-P. In 
particular, for D ( n )  = nc (for some constant E ) ,  we give 
an explicit example of a function in monotone-P that 
can be (uniformly) computed by a family of monotone 
Boolean circuits of polynomial size and of depth D(n) ,  
but that cannot be computed by any family of monotone 
Boolean circuits of depth less than Const . D(n)  (for 
some constant Const). By a padding argument, the 
same result follows for any function D(n)  5 n' as well. 
Hence, the following corollaries follow immediately: 

1. monotone-NC # monotone-P. 

2. V i  2 1, monotone-NC" # monotone-NC'+'. 

1.1 Relevance of Monotone Complexity 
Monotone complexity has always attracted many re- 
searchers. Since the result of [Ra85a], many papers on 
monotone complexity have appeared, and this includes 
many interesting papers in the last 3 years (e.g., pa94, 
GoH595, Ha95, AmMa96, BeU197, SiTs97, Ju971). Is 
monotone complexity research useful ? 

Although the separation results of [Ra85a], and 
[KaWi88], are among the most famous and most impres- 
sive results in complexity theory, it is still under debate 
whether monotone complexity is worth pursuing. 

Indeed, by the results of [Ra85b, Ta881, the mono- 
tone size of a function may be exponentially larger than 
its non-monotone size. By the result of [RaWiSO], the 
monotone depth of a function may be exponentially 
larger than its non-monotone depth. By the results of 
[Ra89, RaRu93, Ra941, some of the techniques used so 
far to obtain loweir bounds for monotone circuits are 
not strong enough to obtain non-monotone separations 
such as P # NP. It is therefore widely accepted that the 
known lower bounds for monotone complexity are only 
a very small step towards a separation of non-monotone 
cl asses. 

On the other hand, monotone complexity is rele- 
vant for non-monotone complexity, at the very least be- 
cause a separation ,theorem for non-monotone complex- 
ity classes (e.g., N C  # P) automatically gives the sep- 

aration of the corresponding monotone classes as well. 
Therefore, if one is not able to separate monotone-NC 
from monotone-P then one is not able to separate NC 
from P either. Furthermore, although the known tech- 
niques for proving lower bounds for monotone complex- 
ity are not very likely to give significant lower bounds for 
non-monotone complexity, it is not unlikely that these 
techniques will be combined with some new techniques 
to obtain non-monotone lower bounds, or that mono- 
tone complexity will affect non-monotone complexity in 
some other way. 

In addition, monotone complexity is also interesting 
in its own right. Indeed, determining the monotone 
size (or depth) of a function is a very natural com- 
binatorial problem, and monotone complexity may be 
relevant for several other complexity issues. One im- 
portant example is propositional proof theory, where 
following [Rag41 and Bonet et. a1 [13oPiRa95], reduc- 
tions to monotone complexity were extensively used. In 
particular, using techniques developed in the sequence 
of papers [ImPiUr94, BoPiRa95, KrQ51, Pudlak [Pug51 
used monotone complexity to obtain an impressive ex- 
ponential lower bound for the length of cutting planes 
proofs (see also, ICoHa95, Fu961). Other applications of 
monotone complexity are also known. 

1.2 Methods and Other Results 
We use Karchmer and Wigderson's communication 
complexity approach [KaWi88] (see also [Ka88]). In this 
approach, a lower bound for the monotone depth of a 
function f is obtained by proving a lower bound for 
the complexity of the following communication game: 
Player I is given an input z, such that f(x) = 1. 
Player I1 is given an input y, such that f(y) = 0. The 
goal of the two players is to find a coordinate i such that 
xi = 1, and yi = 0. 

Our proof begins by defining a new class of communi- 
cation games, which we call dad games. Briefly stated, 
a dart game is a game of the following type: Player I 
is given zl, . . . , zn, where for every i, zi E (1,. . . , m}. 
Player I1 is given y1,. . . , yn, where for every i, yj is a 
coloring of { 1 , .  . , , m}. The goal of the two players is 
to solve a DNF search problem R, depending only on 
el, . . . , e,, , where e; is the color of ii in the coloring y; 

A structured communication protocol for a dart game 
is (briefly stated) one where the players reveal the vari- 
ables ei one by one, that is, in each round Player I 
sends zi (for some i )  and Player I1 answers with yi. 
Our main theorem shows that if m is much larger than 
n (say m 2 do) then any communication protocol for a 
dart game can be simulated by a structured protocol of 
the same complexity (up to a m~ltipl~icative constant). 
Since structured protocols are usually very easy to ana- 
lyze, this gives a general tight lower bound for the com- 
munication complexity of every dart game. It turns out 
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that this lower bound implies lower bounds for the com- 
munication complexity of many monotone Karchmer- 
Wigderson's games, and hence gives lower bounds for 
the monotone depth of many functions. 

The separation of the monotone NC hierarchy is then 
obtained by proving a lower bound for a variant, called 
GEN (see [JoLa77]), of the monotone P-complete prob- 
lem Path Systems (see [Co74]). As mentioned above, 
our argument is general enough to prove lower bounds 
for many other functions. In particular, we get a new 
proof for Karchmer-Wigderson's Q(log* n)  lower bound 
for st-connectivity, on a graph with n vertices, and a 
new (tight) lower bound of Q ( k  . logn) for the mono- 
tone depth of the k-Clique function for small cliques 
( k  5 ne) .  

In this version of the paper, many of the proofs of 
claims and lemmas, as well as many other details, are 
omitted. 

2 Communication Games 
We consider the standard 2-party Communication Com- 
plexity model of Yao [Ya79]. For an excellent survey of 
communication complexity see [KuNi96]. 

Let X,  Y, 2 be finite sets, and let R C X x Y x 
2. For two subsets A c X, B Y ,  a communication 
protocol P for R over the domain A x B specifies, for 
each (I, y) E A x  B ,  the exchange of information bits by 
two players, Player I and Player 11, that initially receive 
as inputs x and y respectively, and finally agree on a 
value P ( z ,  y )  E 2 such that (I, y ,  P ( z ,  y ) )  E R. 

The communication complexity of such a protocol P 
is the maximum, over all (z, y )  E A x B ,  of the number 
of bits exchanged by the two players on the input pair 
(x, y )  when using P.  The communication complexity 
CR(A, B )  of R over the domain A x B is the minimum, 
over all protocols P for R over A x B,  of the complexity 
of P. Finally, the communication complexity of the rela- 
tion R is C R ( X , Y ) ,  which will also be denoted CC(R).  

We think of R also as a function from the domain 
X x Y x 2 to the range (TRUE,FALSE}, where 
R(z ,  y ,  z )  = TRUE iff (2, y ,  z )  E R. 

2.1 DART Games 
Denote by [m] the set (1,. . . , m}. For every n, m E IN, 
we define a class of communication games DART(m, n). 
A communication game, given by the relation R C X x 
Y x 2, is in DART(m, n)  if the following holds: 

1. X = [m]". I.e., the input for Player I is a sequence 
2 = ( X I ,  22,. . . , tn) ,  with xj E [m] for every j. 

2. Y = ( { O , l } m ) n .  I.e., the input for Player I1 is a 
sequence y = (y1, yz, . . . , U") of binary colorings of 
[m], that is, each yj is an m-bit string. We think 
of yj also as a function yj : [m] -+ (0, I}. 

3. The relation R(z , y , z )  depends only on the se- 
quence (y i ( z i ) ,  yz(zz), . . - ,  Yn(zn)), and on 2 ,  
(where yj(irj) denotes the xj-th bit in the string 
yj). I.e., if 2 , ~ '  E X and y,y' E Y satisfy that 
for every j, yj(z j )  =  IS) then for every z ,  
R(z ,  Y ,  z )  = R(z', Y', 2). 
Hence, R(z ,y , z )  can be described as 
R((e1,. . . , e , ) , % ) ,  where e j  def = yj(xj). 

4. R((e1, ..., e,) ,%) is a DNF-Search-Problem, i.e., 
there exists a DNF tautology FR(e1, . . . , e,), with 
set of clauses 2, such that R((e1,. . . , e , , ) , % )  = 
TRUE iff z is a satisfied clause of FR(e1,. . . , e,). 

For a relation R, we will say that R is a dart re- 
DART(m,n) if the lation, and use the notation R 

corresponding game is in DART(m, n) .  

2.2 Structured and General Protocols 
A structured communication protocol for a dart game is 
a protocol of the following type: In each round of the 
protocol, Player I sends the value of xj  for some index 
j, and Player I1 answers with y j ( z j ) .  Thus in one round 
the players exchange Pog,ml + 1 bits of information, 
and find out the value of one yj(xj) .  A structured 
protocol can also be described as a decision tree for the 
corresponding DNF-search-problem, over the variables 
(e l , .  . . , e,) (for the exact definition see [LoNeNaWi95]). 

For a dart relation R, denote by SC(R) (that is, the 
Structured Complexity of R )  the number of rounds in the 
shortest structured protocol that solves R. Note, that 
if the number of rounds in a structured protocol is k 
then the communication complexity is k . (Fog, ml + 1). 
Recall that the communication complexity of the best 
general protocol for the relation R is denoted by CC( R). 

Thus, structured communication protocols for dart 
games are very limited. In each round, each player is 
allowed to give information on only one variable. It is, 
therefore, not very surprising that for many interesting 
relations, it is very easy to determine SC(R) exactly. 
It turns out, however, that in many interesting cases 
general communication protocols for dart games can be 
simulated by structured ones ! In these cases, a lower 
bound for the structured complexity of a relation (i.e., 
SC(R)) gives a lower bound for the general communi- 
cation complexity (i.e., CC(R))  as well. 

Our main theorem shows that if m is larger than some 
polynomial in n ( m  1 nzo) then structured protocols 
for DART(m, n)  games are as powerful (up to a multi- 
plicative constant) as general protocols. The constant 

W.1.o.g. it can be assumed that both players know the index 
j ,  and thereforej does not have to be transmitted. Also, w.1.o.g. 
it can be assumed that the protocol depends only on the values 
of yJ ( z J ) - s ,  transmitted in previous rounds, and not on the entire 
communication. 
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20 here is not optimal. Obtaining the best possible con- 
stant is not the focus of this paper. 

Theorem 2.2 Assume that m 2 n:’O, and m >, rloo0, 
and let R E X x Y x 2 be a relation in DARTr(m,n). 
Then 

Theorem 2.1 Acrsume that m 2 nZo, and let R C X x CC( R)  = SC.( R )  * Q(l0g m). 
Y x Z be a relation in DART(m,n) .  Then 

C C ( R )  = SC(R) *R(logm). 3 Separation of Depth-Classes 
(Recall that SC(II.) denotes the number ofrounds in the 
shortest structured protocol for R, and not the commu- 
nication complexilly of that protocol). 

In this section, we use Theorem 2.1 to prove the sepa- 
ration of the monotone-NC hierarchy. In this version of 
the paper, only a sketch of the proof is given. 

First, let us recall the connection ibetween communi- 

2.3 Multi-Color DART Games 
So far, we have delfined dart games using colorings with 
two colors only. This is done for simplicity, and because 
for most applications two colors are enough. The main 
theorem, however, is true when one allows up to m6 
colors (for some small constant 6). Let us therefore 
generalize the definition of dart games to the case of r 
colors. 

For every n , m , r  E IN, let us define the class 
DARTr(na, n) .  A communication game, given by the 
relation R E X x .Y x 2, is in DART,(m, n )  i f  the fol- 
lowing holds: 

1. x = [m]? 

cation complexity and monotone depth : For a mono- 
tone Boolean function f : (0,1}’ -+ (0, l}, define the 
relation RI by 

~f = { ( ~ , y , i )  E f-l(l)xf-l(O)x[~I I xj = 1,Vj = 01. 
The communication game played on RI is therefore the 
following : Player I gets an 1-bit string, on which f 
evaluates to 1. Player I1 gets an 1-bit string, on which f 
evaluates to 0. Their goal is to agree on a bit position 
i, in which player 1’s string has a 1, and player 11’s 
string has a 0. Below, we will refer to that game as the 
monotone KW-game for the function f .  

The following observation was discovered by Yan- 
nakakis (unpublished), and by Karchmer and Wigder- 
son who realized its full potential. (Here we only need 
the monotone form) : 

Lemma 3.1 [Ka Wi88] CC(Rf)  is equal t o  the mono- 
tone depth off. 

2. Y = ((1,. . . , I * } ~ ) ” .  I.e., the input for Player I1 is 
., Yn) of r-colorings of [m]. w e  a sequence (Y1 I 512, 

think of yj also as a function yj : [m] -c [r]. 

3. The relation R(x,  Y, z )  depends 
only on the slequence (yi(zi) ,  YZ(ZZ), . . . , Yn(zn)), 
and on z .  Hence, R ( x , y , z )  can be described as 
R((e1,.  . .,e,,),%), where ej = yj(zj), 

def 

4 .  R((e1 , . . . , e n ) ,  z )  is a DNF-Search-Problem in 
{ (e{  = j ) ) i ~ [ n ] , j ~ [ r ] .  

That is, there exists a tautology FR, such that FR 
is a disjunction of conjunctions of expressions of the 
form (ei = j ) ,  and such that 2 is the set of clauses 
ofFR,andsuch that R((el,...,en),z) = T R U E i f f  
z is a satisfied clause of FR. 

As before, a striictured communication protocol for 
R is a protocol of ithe following type: In each round of 
the protocol, Player I sends the value of xj for some 
index j ,  and Player I1 answers with yj(xj). Thus in one 
round, the players exchange (log, ml + [log2 rl bits of 
information, and find out the value of one yj(xj). As 
before, denote by : W ( R )  the number of rounds in the 
shortest structured protocol that solves R. 

The following theorem is a generalization of Theo- 
rem 2.1 to the case of r colors, where r 5 ms (for 
some small constant 5 > 0). For simplicity, we take 
6 = 1/1000, which is not optimal. 

3.1 The GENF‘unction 
The first insights leading to  our separation results came 
from choosing a convenient function capturing the dif- 
ficulty of the class monotone-P. Let ius describe a vari- 
ant of the very first P-complete function known [Co74], 
which Cook called: Path Systems. In this paper we call 
this function GEN (for “GENeration”’), in analogy with 
Jones and Lamer’s non-monotone version of the func- 
tion [JoLa77] (see also [BaMcSl]): 

The GEN function: The input for GEN is a string 
of l3 bits ( t j j k ) i g , j , k g .  For 1 5 k 12 1, we say that 1 
generates k if k = 1, or for some i and j such that t i j k  = 
1, 1 generates i and 1 generates j (where “1 generates 
i” and “1 generates j” are defined recursively in the 
same way). The function GEN deteirmines whether 1, 
called the source, generates 1, called tlhe target. That is, 
GEN(1.111,. . . , i r i i )  = 1 iff 1 generates 1. In this context, 
we will refer to the set { 1,2,. l., I} as the set of GEN- 
elements. 

It is not hard to verify that GE” is a monotone 
Boolean function, computable by a :monotone polyno- 
mial size circuit family. Our main goal here is to prove 
lower bounds for the monotone deptlh of GEN, as well 
as for some variations of it. 
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3.2 The PYRGENGame 
Let n = ('i'). We will now define the communication 
game PYRGEN(m, d), that will later be related to GEN, 
and to some variations of it. The game PYRGEN(m, d) 
will be in the class DART(m, n).  

Recall that in a DART(m, n)  game, Player I receives 
a sequence of n integers in [m], and Player I1 receives 
n binary colorings of [m]. For the PYRGEN game, it 
is convenient to index each player's sequence by ( i , j ) ,  
where 1 5 j 5 i 5 d, and to imagine that the se- 
quence is laid out in a d-level pyramidal fashion, where 
the index i denotes the level in the pyramid, and the 
index j denotes the exact position in that level. De- 
note by (z i , j ) l<j<i<d the sequence for Player I, and by 
(yi,j)l<j<i<d the sequence for Player 11, and as before 
for every i , j ,  denote e;,j = yi,j(z;,j). The goal of the 
two players is to find ( i ,  j), such that one of the follow- 
ing is satisfied: 
1. i = 1 , j  = 1,  and e ; j  = 0, or 
2. i = d ,  and e;,j = 1, or 
3. i 5 d-1, and (ei,j = l)A(e;+i,j = O)A(e;+l,j+l = 0) .  

In other words, the goal is to find either a position in 
the bottom of the pyramid, with e; j  = 1, or a position 
at the top (note that there is only one such position) 
with e;,j = 0, or a "pyramid-triangle" ( i , j ) ,  ( i + l , j ) ,  (i+ 
1, j + l), such that (e;,j = 1) A (ei+l,j = 0 )  A (e;+i,j+i = 
0 ) .  It is not hard to verify that it is always possible to  
achieve one of these goals. 

3.3 The Complexity of PYRGEN 
A simple protocol shows that SC(PYRGEN(m,d)) 5 
2d-1, and therefore that CC(PYRGEN(m,d)) 5 (2d- 
l)(logz m + 2). On the other hand, we have: 

Lemma 3.2 SC(PYRGEN(m, d ) )  2 d. 

Using Lemma 3.2, and Theorem 2.1, we obtain 
that the general communication complexity of the 
PYRGEN(m, d) game satisfies: 

Corollary 3.3 Assume m 2 d40. Then 
CC(PYRGEN(m, d)) = O(d.  log m). 

3.4 The Monotone Depth of GEN 
We prove a lower bound for the communication com- 
plexity of the monotone KW-game for GEN. This is 
proved by a reduction to the communication complex- 
ity of PYRGEN. Let 1 'kf l(m, d)  gf m . ("') + 2. We 
will consider a set of 1 GEN-elements. The first element, 
1, will be the source, and the last element, 1, will be the 
target. The other m . ('it') elements are indexed by 
( ( i , j ) , k ) ,  where 1 5 j 5 i 5 d, and 1 5 k 5 m, that 
is, ( i , j )  is a vertex of the pyramid, and k E [m]. We 
therefore have m GEN-elements corresponding to each 

vertex of the pyramid. We think of the source as placed 
below the bottom of the pyramid, and we think of the 
target as placed above the top of the pyramid. 

We say that a triple (v1,v2,v3) of GEN-elements is 
consistent with the structure of the pyramid in 
one of the following cases: 
1. VI, v2 are both the source, and 213 corresponds to 
a vertex at the bottom of the pyramid (i.e., 03 = 
( (d , j ) ,  k), for some j ,  k). 
2. 213 is the target, and 0 1 ,  212 both correspond to ver- 
tices at the top of the pyramid (i.e., V I  = ( ( l , l ) , k l ) ,  
and vz = ((l , l) ,kz),  for some k 1 , k ~ ) .  
3. (v l ,v2,v3)  corresponds to a triangle of the pyra- 
mid. That is, for some i 5 d - 1, and some j ,  and 
some k l , k ~ , k 3 ,  we have VI = ((i + l , j ) , k i ) , vz  = 
((i + 1 , i  + I), h), and 213 = ( ( i , j ) ,  k3). 

Lemma 3.4 CC(PYRGEN(m,d)) is at most the com- 
munication complexity of the monotone K W-game for 
the GEN function with l(m, d) elements. 

We can now set m = d40 and obtain: 

Corollary 3.5 For some E > 0 ,  the monotone depth of 
GEN (with 1 elements) is fi(1'). 

Corollary 3.6 Monotone-NC # monotone-P. 

3.5 A Tight Monotone Depth Hierarchy 
As before, consider a set of 1 = l(m,d) GEN-elements. 
As before, the first element, 1, will be the source, and 
the last element, I ,  will be the target, and the other 
m. ("') elements are indexed by ( ( i , j ) ,  k), where ( i , j )  
is a vertex of the pyramid, and k E [m]. As before, a 
triple ("1,  212,213) of GEN-elements can be consistent or 
inconsistent with the structure of the pyramid. 

To achieve tight lower bounds for monotone-P, let us 
introduce the following variation of GEN. Note that 
the PYRAMID-GEN function is not to be confused with 
the PYRGEN game defined in Section 3.2. Of course the 
definition of PYRAMID-GEN is specifically targeted for 
the game PYRGEN. 
The PYRAMID-GEN function: The input is a 

string of l3 bits (tijk)l<;,j,ksI. First, for every triple 
( i , j , k )  that is not consistent with the structure of 
the pyramid, change t ; j k  to 0. Now apply the GEN 
function on the new sequence ( t i j k ) .  The output of 
PYRAMID-GEN on this input will be the output of 
GEN. 

In other words: the function PYRAMID-GEN deter- 
mines whether 1 (the source) generates 1 (the target), 
using only triples that are consistent with the structure 
of the pyramid. Note that triples that are not consistent 
with the structure of the pyramid can be removed from 
the input, and therefore the relevant input is of length 
lower than 13.  
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Proposition 3.7 PYRAMID-GEN(m, d )  can be solved 
b y  a monotone polynomial size circuit family of depth 
O(d .  logm). 

Since the proof of Lemma 3.4 will apply to the func- 
tion PYRAMID-GEN as well, we have: 

Lemma 3.8 CC(PYRGEN(m, d ) )  is at most the com- 
munication complexity of the monotone KW-game for 
the function PYRA.MID-GEN(m, d ) .  

Corollary 3.9 Assume m 2 d401 then the monotone 
depth of PYRAMID-GEN(m, d )  is O ( d .  log m). 

Now fix m = d4”, and use a standard padding argu- 
ment (when neededl), to get the following corollary: 

Corollary 3.10 There exist constants E , C  > 0 ,  such 
that for any integer function D(n) 5 nf, there exists 
an explicit monotone function F : ( 0 ,  l}n -+ (0, l}, 
that can be (uniformly) computed b y  a family of mono- 
tone Boolean circuits of polynomial size and of depth 
D(n), and cannot (be computed by  any family of mono- 
tone Boolean circuits of depth less than c . D(n).  

As a result we obtain the following corollary: 

Corollary 3.11 For  every i 2 0 ,  monotone-NCi # 
monotone-NC’+’ 

4 0 t her A.pplicat ions 
In this section, we prove other applications of Theo- 
rem 2.1 and Theorjem 2.2. Although both applications 
are very easy, in this version of the paper only a short 
sketch is given : 

4.1 Lower Bound for st-Connectivity 
As mentioned above, a tight lower bound of R(log2 n) 
was proved for st-connectivity in [KaWi88]. Here we 
show how to obtain that lower bound as an immediate 
consequence of Thleorem 2.1. The proof, moreover, is 
different from the one given in [KaWi88]. 

For m, n, define the game CONN(m, n) to be the 
following DART(m, n) game: The input for Player I is 
( q ) 1 g l n ,  and for Player I1 (yi)15isn. As before, for 
every i, define ei = yi(zi). The goal of the players is to 
find i such that one of the following is satisfied: 
1. i = 1, and ei = 1, or 
2. i = n, and ei = 10, or 
3. i 5 n - 1, and ((Bi = 0) A (ei+l = l), or 
4. i 5 n - 1, and (ei  = 1) A (ei+l = 0) .  

We claim that SC(CONN(m,n)) = Pog2(n + 1)1, 
(the upper bound and the lower bound are both triv- 
ial). Thus, by Theorem 2.1 we have for m 2 nZo ,  
CC(CONN(m,n):) = R(1ogn .logm). 

To see the connection to st-conneclivity, consider n . 
m + 2 vertices: the two special vertices, s and t ,  and 
R . m other vertices, indexed by (i, j ) .  where 1 5 i 5 n, 
and 1 5 j 5 m. It is not hard to see that given any 
protocol for the monotone KW-game for st-connectivity 
on these vertices, the two players can use that protocol 
to solve CONN(m, n). 

Now fix m = nZo,  and use Lemma 3.1 to get that the 
monotone depth of st-connectivity is R(log2 n). 

4.2 Lower Bound for /&Clique 
For the monotone depth of the k-clique function, on a 
graph with n vertices, a lower bound cd R(k)  was proved 
in [RaWiSO]. Obviously, for k = R(n), that lower bound 
is tight. For smaller values of k, however, the lower 
bound is not tight. Here we prove that for k 5 n‘ (for 
some small constant E > 0), the monotone depth of k- 
clique is Q ( k  . logn). Obviously, this lower bound is 
tight. 

For m,k, define the game CL&(m,k) to be the fol- 
lowing DART(h-l)(m, k) game: The input for Player I 
is ( ~ ; ) l < i < k ,  - -  and for Player I1 ( y i ) l ~ i ~ k .  As before, for 
every i, define ei = y i (z i ) .  Note that ei E [k - 11. The 
goal of the players is to find i , j ,  such that ei = e j .  

We claim that SC(CLQ(m,k)) = k, (the upper 
bound and the lower bound are both trivial). Thus, by 
Theorem 2.2 we have for m 2 k1Oo0, CC(CLQ(m, k)) = 
R(k . logm). 

To see the connection to k-clique, consider k . m ver- 
tices, indexed by ( i , j ) ,  where 1 5 i 5 k, and 1 5 j 5 m. 
It is not hard to see that given any protocol for the 
monotone KW-game for k-clique on )these vertices, the 
two players can use that protocol to  solve CL&(m, k). 

Now fix m = klooO, and use Lemma 3.1 to get that 
for k 5 nl/lool, the monotone depth of k-clique is R(k 
log n). 

5 Thickness and Predictability 
In this section, we present some of our main tools, 
and notations, used for the proof of Theorem 2.1. 
The “average-degree”, AVDEGj (A): defined below, is 
analogous to  the predictability notion, introduced by 
[EdImRuSgSl]. Our proof uses tools and intuitions from 
[EdImRuSgS 11. 

Let X = [min. As before, let A be it subset of X. The 
bipartite graph GRAPHl(A) is defined in the following 
way: Consider a bipartite graph with disjoint vertex 
sets VL = [m] (the “left nodes”), and VR = [m]’”-l 
(the “right nodes”). The set of edges E contains all 
the pairs (21, ( 2 2 , .  . . ,z,)) s.t., ( z ~ , z z , .  . . , Zn) E A .  In 
other words, the set of edges is the set A, where each 
(z1,z2,. . . , Zn) E A is viewed as an edge between the 
‘‘left’’ node 2 1  and the “right” node ( 1 2 , .  , ., 2,). 
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For every 1 5 j 5 n,  the bipartite graph 
GRAPHj(A) is now defined in the same way, where 
as before VL = [m] ,  VR = [m]”-I, and each 
( z l , ~ ,  ..., zn) E A is viewed as an edge be- 
tween the “left” node x j  and the “right” node 

For the graph GRAPHj(A),  define the set 6 to 
be the set of all nodes in VR with non-zero degree 
(that is, the set of right nodes with non-zero degree). 
The average-degree AVDEGj(A) is defined to be the 
average degree of a right node in in the graph 
GRAPHj(A),  that is, AVDEGj(A) = lAl/lGl. Using 
different notations, we define AVDEGj ( A )  by 

( z ~ , . .  . , z j - 1 , t j + 1 7 .  . .,zn). 

where A[,,]\{j] denotes the projection of A on 
( X I , .  . . , t j - ~ , z j + i , .  . . , Z n ) ,  that is, lA[n~\{j}l is the 
number of assignments to ( t i , .  . . , zj-1, I j + l ,  . . . , I n )  

such that there exists at least one assignment to zj sat- 

Observe that AVDEGj(A) ranges from m to 1. 
When AVDEGj(A)  = 1, x j  is fixed as a function 
of ( E l ,  ..., I.- 1 , z j + 1 , .  . . , zn) .  In that case, “the j t h  
slot is totally predictable” in the sense that know- 
ing ( 1 1 , .  . . , t j - i , ~ j + i , .  . ., +n) determines the value of 
zj. When AVDEGj(A)  = m,  the degree of every 
right node is precisely m,  (since the average degree 
of the right nodes is m and clearly m is also the 
maximum degree of any right node). In that case, 
( 8 1 , .  . . , x j - 1 ,  t j + 1 , .  . . , z n )  gives no information on z j .  

While AVDEGj(A)  is the average degree of right 
nodes in G ,  we will also be interested in the minimal 
degree of such a right node. Define MINDEGj(A)  to  
be the minimal degree of a right node in c, in the graph 

isfying ( t i , .  . . , zj-1, z j ,  z j + l , .  . . , zn)  € A. 

GRAP H j  ( A ) .  
The thickness of A is now defined by 

Thickness(A) = min MINDEGj(A).  
111 I n  

5.1 Some Useful Observations 
The following observation is analogous to 
[EdImRuSgSl, Lemma 41: 

Claim 5.1 Let A’ E A.  Then for every j, 

IA’I 
IAl 

AVDEGj(A‘)  2 - AVDEGj(A).  

The projection set A[n~\{j)  can be viewed as a sub- 
set of [m]”-l .  For n 2 2 and for every i E (1,. . . , j - 
1,j + 1,. . ., n}, one can define, as before, the bipartite 
graph GRAPHj(A[,l\{j)), and the minimal and average 
degrees, M I N D  EG, (A[,,]\{j 1 ) and AV DEGi (A[n]\{ j 1 ) . 
The following claim shows that the thickness of A[,,]\{j) 

is never smaller than the thickness of A ,  that is, projec- 
tions never decrease the thickness. 

Claim 5.2 For any  j, 

5.2 The Thickness Lemma 
The following lemma is our most important technical 
tool. It shows that if for a set A,  AVDEGj(A) is large 
for every j ,  then there exists a large subset A’ of A ,  
such that Thickness(A’) is large. We will first state the 
lemmain a general form, and then restate it in a simpler 
form that will be used herein. 

Lemma 5.3 If for some 1 > 6 > 0, and for every 
j, AVDEGj(A) 2 6 m then for any  Q 2 0, fhere 
ezisfs A’ c A, such that: IA’I 2 (1 - a)lAl, and 
Thickness(A‘) 2 A, where 

def (1 - a)6m A =  
n . [I + a-1 . In(6-1)] ‘ 

Corollary 5.4 Assume that m 2 n20. If for every j ,  
AVDEGj(A) 2 4 m19120 then there erists A’ c A,  
such that: IA’I 2 lA1/2, and 

Thickness(A‘) 5 ml7I2O. 

6 Proof of the Main Theorem 
In this section we sketch the proof of Theorem 2.1. The 
extension of Theorem 2.1 to the case of multi-color dart 
games (Theorem 2.2) is straight forward, and is not dis- 
cussed in this version of the paper. 

Assume that m 2 n20, and assume (for simplic- 
ity) that m1I2O is larger than some big constant (say 
mlIao > 1000). As before, we denote by X the set 
[mIn, w e  denote by Y the set ((0, l}m)“, and we denote 
by R X x Y x Z a relation in DART(m, n).  As be- 
fore, we denote by A a subset of X ,  and we denote by B 
a subset of Y .  As before, for a relation R,  and for two 
subsets A C X ,  and B C Y ,  we denote by CR(A,  B )  the 
deterministic communication complexity of the relation 
R ,  over the domain A x B. 

We measure the size of A ,  B by a = log2 (IXl/lAl) , 
,d = log2 (IYl/lBl), that is, a,P are the number of bits 
of information known about A,  B respectively. We will 
be interested in sets A with Thickness(A) 2 ml7I2’. 
Such a set A is said to be thick. 

For any a , , d , k  2 0, and m 2 1OOOZo, denote by 
GAMESm[a,/3,k] the set of all triples ( R , A ,  B )  such 
that for some n 5 m1I2’: 
1. R is a relation in DART(m, n ) ,  s.t. SC(R)  2 I C .  
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2. A is a thick subset of X ,  s.t. log2 (IXl/lAl) 5 a, i.e., 

Thickness(A) 2 m17/201 

IAl 2 2 - u .  1x1. 
3 .  B is a subset Qf  Y ,  s.t. log, (IYI/IBI) 5 p, i.e., 

COl\IP,[a,P, k ]  is now defined to be the mini- 
mum of C R ( A , B ) ,  over all triples ( R , A , B )  E 
GAMESm[a,  p, k ] .  We will prove here a general lower 
bound for COMPm[a,P,k] .  

Given a,P, k ,  m, let ( R , A ,  B) E GAMESm[a,P,  k ]  
be a triple with minimal CR(A,  B ) ,  that is, 

CR(A, B )  = COMPm[a, p, k ] .  

To bound C R ( A ,  B )  we will consider two cases: 

1. CASE 1: For every j, AVDEGj(A) 2 8 .  m19/20. 

2 .  CASE 2 :  For some j, AVDEGj(A) < 8 .  m”/’O. 

6.1 A Recursive Bound in CASE 1 
To bound C R ( A ,  B )  in the first case, we use the follow- 
ing lemma: 

Lemma 6.1 For any  a , P ,  k , m  2 0 ,  with p 5 
m2/20,  and m 2 1OOOZo, and for any ( R , A , B )  E 
GAMESm[a ,P ,k ] ,  if for every 1 5 j 5 n, 
AVDEGj(A) 2 8 .  m19/20 then 

CR(A,  B )  2 M I N (  COMPm[a + 2 ,  p, k ]  

COMPm[a,P+ 1 , k ] ) +  1. 

Proof. First, we prove that C R ( A , B )  is not 0 (proof 
omitted in this version). Now, let P be the best proto- 
col for solving R over A x B ,  that is, a protocol with 
communication complexity CR(A,  B) .  Consider the first 
bit transmitted by P.  That bit is transmitted either by 
Player I or by Player 11. 

If Player I1 transmits the first bit then partition the 
set B into B = Bo U B1, according to the bit trans- 
mitted, that is, BO is the set of inputs (for Player 11) 
where 0 is transmitted, and B1 is the set of inputs 
where 1 is transmitted. Obviously, lBol + IS11 = IBI. 
W.l.o.g., assume that lBol 2 1B1/2, and consider the 
triple ( R ,  A ,  Bo). The protocol P solves R on A x Bo, 
using only CR(A,  B )  - 1 communication bits (since one 
bit was already transmitted). Since ( R ,  A,  Bo) is ob- 
viously in GAMESm[a,P+ 1 ,  k ] ,  we have in this case 
COMPm[a,  /3 + 1, k ]  5 CR(A,  B )  - 1. 

If Player I transmits the first bit then partition the 
set A into A = A0 U A I ,  according to the bit transmit- 
ted, and assume w.1.o.g. that lAol 2 IA1/2. A0 is not 

necessarily thick, and therefore ( R ,  Ao, B )  is not neces- 
sarily in GAMESm[a + 1 ,  P,  k ] .  However, since for ev- 
ery j, AVDEGj(A) 2 8.ml9l2O, we know by Claim 5.1 
that for every j, AVDEGj(A0) 2 4. m19/20. There- 
fore, by Corollary 5.4, there exists A’ c A0 such that 
IA‘I 2 IAo1/2, and Thickness(A’) 2 ml7l2O. Therefore, 
( R ,  A’, B )  E GAMESm[a + 2 ,  p, k]. Since P solves R 
on A’ x B ,  using only CR(A, B ) -  1 communication bits, 

W we have COMPm[a + 2 , p ,  k] 5 CR(A,  B )  - 1. 

6.2 A Recursive Bound in CASE 2 
In the second case, we use the following lemma to bound 

Lemma 6.2 For any a , p , k , m  2 0 ,  with p 5 
m2/’0, k 2 1 ,  and m 2 100020, and for a n y  
( R , A ,  B )  E GAMESm[a,P,k] ,  if for some 1 5 j 5 n ,  
AVDEGj(A)  < 8 .  m19/20  then 

C R ( A , B )  3 COMPm[a+3- ( log2m) /20 ,P+  1 , k -  11. 

Proof W.l.o.g., assume that j = n ,  that is, 

CR(A, B):  

AVDEG,(A) < 8 . m 1 9 / 2 0 .  

Since Thickness(A) 2 m17/20 ,  

MINDEGn(A) 2 ml7IZ0. 

Denote by Ro the restriction of the relation R to the 
first n - 1 coordinates, derived by fixing e ,  = yn( tn)  
to be 0, and denote by RI the restriction derived by 
fixing e, = yn(zn) to be 1. Obviously, both Ro,R1 
are relations in DART(m,n - 1 ) .  Since SC(R)  2 k, 
at least one of SC(Ro),SC(R1) is 2 k - 1. W.l.o.g., 
assume that 

def 

def 

SC(R0) 2 k - 1. 
We will prove the lemma by showing the existence of 

A’ C [mIn-l, and B’ c ((0, l } m ) n - l ,  such that 

(Ro, A’, B’) E GAMESm[a+3-(log2 m)/20,/3+1, IC-11, 

and C R ~ ( A ’ ,  B’) 5 CR(A,  E ) .  Therefore, we will have 

CR(A, B )  2 CRo(A’, B‘) 2 
C O M P m [ a + 3 -  (logzm)/2O,P+ 1 , k -  11, 

which proves the lemma. 
For every subset U c [m] ,  let us define sets Au c 

[m]”-’, Bu c ((0, l}m)n-l. The sets A ’ , @  above will 
be the sets Au, Bu for some particular choice of U. 

0 The set Au is defined in the following way: 
(11,. . . , ~ “ - 1 )  E Au iff there exists an element 
v E U, such that (zl, . . . , t,-1, v )  E A. In other 
words, AV is the set of all right nodes in the graph 
GRAPH,(A) that are connected by an edge to (at 
least one) element of the set U (viewed as a subset 
of the set of left nodes). 
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0 The set BU is defined in the following way: 6.3 Explicit Bound for cohfp, [(U, p, k] 
( ~ 1 , .  . . :yn- l )  E BU iff there exists a coloring 
w E {0,1}["], such that all elements of U are col- 
ored 0 by w ,  and such that (yl, . . . , ~ ~ - 1 ,  w) E B. 

Lemma 6.1, and Lemma 6.2 immediately give the fol- 
lowing recursive bound for C O M P m [ a ,  P, I C ] .  

Claim 6.3 VU C [m], C R ~ ( A U ,  Bu) 5 CR(A, B) .  

To complete the proof of the lemma, we still have 
to prove that for some U c [m], (Ro ,Au ,Bu)  E 
GAMES,[a + 3 - (log, m ) / 2 0 ,  p + 1, k - 11. To prove 
this we still have to show that for some U :  

1, 1 ~ ~ 1  > 2 - b + 3 - ( 1 0 g 2 ~ ) / 2 0 1  . mn-1 

2. lBul 2 2-@+'1 . 2m'(n-1), and 

3 .  Thickness(AU) 2 m17/20. 

- 

We will use a probabilistic argument: 
Let U be a random subset of [m], of size m5/'0 (we 

assume for simplicity that m5/'0 is an integer). The 
following claim shows that with high probability AU = 
A[nl\{n}, (that is, AU contains every single element of 
Ab]\ {.I). 

Claim 6.4 For a random set U of size m5/20, 

Probu [Au = A[nl\ini] 2 3/4. 

Corollary 6.6 For any a,P, k , m  2 0 ,  with p 5 
mz/20, k 2 1, and m 2 1OOOZo, COMP,[o,P,k] 2 
M I N (  C1, CZ, C, ), where 

C1 = COMPm[a + 2,P, k] + 1, 
C2 = COMPm[a, P + 1, k] + 1, 
C3=COMPm[a+3-( logzm)/20, ,b '+1,k-  I]. 

Using the recursive bound, it is now easy to prove (by 
induction) explicit bounds for COMPm[a,  p, k] : De- 
note by BOUND,[a,P, k ]  the function: 

BOUND,[a, p, k] sf k .  [(log:, m)/20  - 5] /2  - a / 2  - p. 

Theorem 6.7 For any C Y ,  p, k 2 0 ,  and m 2 100020, 

COMP,[cr,P,k] 2 BOUND,[a,P, k]. 

One can now take in Theorem 6.7; a = 0,p = 0, to 
get for m 2 I O O O ~ ~ ,  

COMPm[O,O,IC] 2 k.[(logzm)/20-5]/2 = k.R(logm), 

which proves Theorem 2.1. 
The following claim shows that with high probability 

7 Conclusions BU is large. 

Claim 6.5 For a random set U of size m5/", 

Probu [IBul 2 1Bl/2m+1] 2 3/4. 

By Claim 6.4, and Claim 6.5 it follows that with prob- 
ability of at  least 1/2 we have both: 
1. AU = and 
2. lBUl> p1/2m+1. 
Take a set U that satisfies both. Since AU = A[n~\{nj, 
we have by Claim 5.2, 

Thickness(AU) 2 Thickness(A) 2 mi7/'O. 

Also, since lAI/lA[n]\{n~ I = AVDEG,(A) 5 8 . m1'l2', 
we have 

Since IBu~ 2 IB1/2,+', we have 

Thus, Au, BU satisfy the required properties, and 
Lemma 6.2 follows. 

We have shown that for m larger than some polynomial 
in n ,  the communication complexity of the best proto- 
col for a DART(m, n )  game is bounded from below by 
the communication complexity of the best structured 
protocol for that game. As a result, we obtained lower 
bounds for the monotone-depth of several functions. 

We claim that our method gives lower bounds for the 
monotone depth of many other functions. Informally, 
we argue the following: 
1. The monotone Karchmer-Wigderson's games cor- 
responding to many functions can be reduced to dart 
games. 
2. Proving lower bounds for the best structured proto- 
col is usually not hard. 

More formally, it is not hard to see that every dart 
game is in fact (a sub-case of) a monotone Karchmer- 
Wigderson's game for some function ! 

As for the lower bounds for the best structured prG 
tocol, we have already seen several examples were the 
argument was very easy (or trivial). In general, as men- 
tioned above, given a relation R (with a DNF tautology 
FR),  the structured complexity of R is the same as the 
depth of the best decision tree for the corresponding 
DNF-search problem, over the variables e l ,  . . . , en .  As 
observed by V. Chvatal and E. Szemeredi, this is also 
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the same as the depth of the best regular Resolution 
proof for FR (for details see [LoNeNaWi95]). 

We can therefore conclude that any lower bound for 
regular Resolution implies a lower bound for the corre- 
sponding dart game. As mentioned in the introduction, 
lower bounds for monotone complexity were used before 
to derive lower bounds for propositional proof systems 
(e.g., for Cutting-Planes and for Resolution). Here, we 
conclude that the other direction is also possible. 
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