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Abstract 

We present and analyze two simple algorithms for find- 
ing satisfying assignments of k-CNFs (Boolean formu- 
lae in conjunctive normal form with at most k liter- 
als per clause). The first is a randomized algorithm 
which, with probability approaching 1, finds a satisfy- 
ing assignment of a satisfiable k-CNF formula F in time 
O(n2 IF12"-"lk). The second algorithm is determinis- 
tic, and its running time approaches 2n-n/2k for large n 
and k. The randomized algorithm is the best known al- 
gorithm for k > 3; the deterministic algorithm is the best 
known deterministic algorithm for k > 4. We also show 
an R(n1/42J?;) lower bound on the size of depth 3 circuits 
of AND and OR gates computing the parity function. This 
bound is tight up to a constant factor. The key idea used 
in these upper and lower bounds is what we call the Satis- 
$ability Coding Lemma. This basic lemma shows how to 
encode satisfying solutions of a k-CW succinctly. 

1 Introduction 
The problem of finding a satisfying assignment of a 
Boolean formula in k-CNF (conjunctive normal form 
with at most k literals per clause) has been long studied, 
and the corresponding decision problem for k 2 3 was 
one of the first problems shown to be NP-complete [2,5]. 
The problem of proving lower bounds on the size of con- 
stant depth (in particular, depth 3) circuits of unbounded 
fan-in AND and OR gates has also received considerable 
attention [ l ,  4, 71. In this paper, we present a structural 
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property, the Satisfiability Coding Lemma, of the set of 
satisfying assignments of k-CNF and apply this property 
to provide some solutions to both these problems. 

There has been considerable progress in the study 
of the computational limitations of polynomial size and 
bounded depth circuits of unbounded fan-in AND and OR 
gates (ACO). The techniques [3, 8, 123 used for show- 
ing lower bounds on the size of bounded depth circuits 
establish that functions computed by such small size cir- 
cuits have some useful (for lower bounds) property. For 
example, it has been shown that such functions are con- 
stant on a sufficiently large dimensional subcube and also 
can be well approximated by low degree polynomials ei- 
ther over the reals or an appropriately chosen finite field. 
Thus, any function which does not have these properties 
cannot be computed by an ACo circuit. Frequently, the 
function considered is parity (that is, the output is one if 
the number of true input variables is, say, even) because 
it is extremal with respect to the properties mentioned 
above; the parity function is not constant even on any one- 
dimensional subcube and a good approximation of parity 
in the field of reals or in any field except GF(2) requires al- 
most linear degree. However, such useful techniques still 
have not resulted in the determination of the exact com- 
plexity of computing the parity function. More specifi- 
cally, in the case of depth-3 circuits, the best known gen- 
eral technique (the Switching Lemma [3]) yields a lower 
bound of R(2"fi) for c < 1/8. Hktad, Jukna and PudlAk 
[4] improved this lower bound to $2(2°-618fi) by using a 
top-down argument. On the other hand, the best known 
upper bound for computing parity is O(n1/42fi) which 
is obtained by partitioning the variables into groups of 
size f i  - log n, computing the parity of each group of 
variables, and then computing the parity of those results. 
In this paper, using the Satisfiability Coding Lemma, we 
show that computing parity using depth 3 circuits requires 
O(n1/42fi) gates matching the upper bound. 
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As for the problem of finding a satisfying assignment 
of a k-CNF, there have been a variety of algorithms and 
analyses. We focus our attention on those algorithms 
which have a provable worst-case running time better 
than the 2n steps required for exhaustive search, where n 
is the number of variables. A straightforward improve- 
ment is obtained by selecting a smallest length clause 
and branching on all but one of the assignments to the 
variables in that clause, omitting the one assignment that 
makes the clause false. Monien and Speckenmeyer [6] 
analyzed this algorithm carefully by arguing that such as- 
signments either produce a clause of shorter length or are 
autark. An assignment to a set of variables is autark if all 
the clauses that contain the variables are satisfied by the 
assignment. Their analysis gives a worst-case running 
time O(IF12n'0g(ak)) where F is a k-CNF and ak is the 
largest real root of the equation a: - 2ai-l + 1 = 0. 
For example, this gives a bound of O(2°.6943") for 3- 
CNF and an O(2°.879n) bound for WNF. For the case 
k = 3, better algorithms have been established: Schier- 
meyer [lo] employs more involved heuristics to obtain 
an algorithm with O(2°.659n) worst-case running time 
for finding a satisfying assignment for 3-CNF. This was 
improved to O(2°-652n) by Zhang [14]. More recently, 
Schiermeyer [ l l ]  claimed an improved algorithm with 
worst-case running time O(2°.582n) for 3 4 ~ ~ .  In this 
paper, we present some obvious and simple algorithms 
for finding a satisfying solution of a k-CNF and analyze 
their worst-case running time using Satisfiability Cod- 
ing Lemma. The first of these algorithms is probabilistic 
and, with high probability, finds a satisfying assignment 
of a satisfiable k-CNF in time O(lF12n(1-1/k)). We also 
present a deterministic algorithm whose worst-case run- 
ning time approaches O( IF)2n(1-1/2k)) for large values 
of n and k. Our randomized algorithm is the best known 
algorithm for k 2 4. Our deterministic algorithm is better 
than the known deterministic algorithms for k 2 5. 

Our main technique, the Satisfiability Coding Lemma, 
is motivated by a simple question: How many isolated so- 
lutions can a k-CNF have? An isolated solution is a sat- 
isfying assignment whose distance one neighbors in the 
Boolean cube (assignments which differ in exactly one 
variable) are not satisfying assignments. In other words, 
if any bit of an isolated solution is flipped, the formula is 
no longer satisfied. We also say that an input accepted by 
a circuit is isolated if any input at distance one from it is 

not accepted by the circuit. It is straightforward to see that 
a good upper bound on the number of isolated solutions 
would be helpful in proving tight lower bounds for com- 
puting parity using depth-3 circuits. If parity is computed 
by a small size depth-3 circuit with an OR gate at the top, 
then one of its depth-2 subcircuits (a CNF) must have a 
large number of isolated solutions. Hktads Switching 
Lemma implies an O(2(1-"/k)n) bound (with c < 1) on 
the number of isolated solutions of a k 4 N F .  In fact, our 
Satisfiability Coding Lemma is inspired by Razborov' s 
proof [9] of a variant alf Hbtad's Switching Lemba. Us- 
ing the Satisfiability Coding Lemma, we prove that a k- 
CNF can have at most 2(1-1/k)n isolated solutions, which 
is in fact the best possible bound. In addition, by care- 
fully counting the contributions of bottom level gates with 
larger fan-ins, we prove that computing parity by depth- 
3 circuits requires R ( ~ 1 ~ / ~ 2 f i )  gates, obtaining a lower 
bound that matches the: upper bound extremely closely. 

The Satisfiability Coding Lemma essentially says that 
isolated solutions of IC-CNFs have short descriptions. 
More precisely, we prove that the set of isolated satis- 
fying assignments of si IC-CNF can be encoded with an 
average message length of (n - n / k )  bits. This lemma 
is useful not only in obtaining upper bounds on the num- 
ber of isolated satisfying assignments of a k-CNF but in 
efficiently finding an isiolated satisfying assignment if one 
exists. If an isolated satisfying assignment exists, then it is 
sufficient to search the smaller space of short descriptions 
for one which encodes a satisfying assignment. To han- 
dle the general case, we: generalize the concept of isolated 
satisfying assignment to include nearly isolated satisfying 
assignments, and show that such solutions have short de- 
scriptions as well. From this, we can show that any satisfi- 
able k-CNF has either a nearly isolated solution or many 
satisfying assignments, and thus in each case we can find 
a satisfying solution quickly either by searching through 
the space of short descriptions or by randomly guessing a 
solution. 

The remainder of the paper is organized as follows: 
In section 2, we prove the Satisfiability Coding Lemma 
and its corollaries. In section 3, we prove the tight lower 
bound for computing parity using depth-3 circuits of 
AND and OR gates. In  section 4, we present our algo- 
rithms for finding a satisfying assignment of a k-CNF and 
analyze their running time. 
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2 Satisfiability Coding Lemma 

We introduce some notation. A boolean formula F = 
AEl Cd is a k-CNF if each clause Ci is a disjunction of 
at most k literals. For x in S 5 (0, l}", we say that z 
is an isolated point of S in the direction i if flipping the 
i th  bit of z produces a point not in S. We say that x is a 
j-isolated point of S if it has exactly (n - j) neighbors 
in S. We will sometimes use the alternative notation I(x) 
to denote the number of neighbors of z E S which are 
not in S. If x is n-isolated, we will simply call it an iso- 
lated point of S. We say that E is an isolated solution of 
a formula F in the direction i if x satisfies the formula 
and is an isolated point of the set of all satisfying assign- 
ments of F in the direction i. Other notions of isolation 
are extended similarly to general formulas and circuits. 

Let F be a k-CNF. The key observation is that if x is an 
isolated solution of F in the direction i, then there exists 
a clause C(z,i) such that exactly one of its literals is true 
under the assignment z and that true literal corresponds to 
the variable i. Otherwise, flipping the ith bit of z would 
produce an assignment which still satisfies all the clauses 
of F .  Such a clause is called critical for the variable i at 
the solution z. Since a critical clause has only one true 
literal, a clause cannot be critical for two different vari- 
ables at the same solution. If z is an isolated solution of 
F, then there exist n distinct critical clauses at x, one for 
each direction. 

We make use of the existence of critical clauses for j- 
isolated solutions in obtaining short descriptions. Let U 

be a permutation of the set { 1,2, . . . , n} of variables. We 
define an encoding function a,, to encode the satisfying 
assignments of the Ic-CNF F. Let x E (0, 1)" be a satis- 
fying solution of F. Permute the bits of x according to U .  

For each i, delete the ith bit of the permuted string if there 
is a critical clause C(z,n(q) for the variable a(i)  at x such 
that the variable a(i)  occurs after all the other variables 
in the critical clause C(z,,,(il) according to the ordering a. 
@,,(x) is the resulting string. Observe that the sequence 
cP,,(z) of bits corresponds to the sequence of values of a 
subset of variables under the satisfying assignment z pre- 
sented according to the ordering a. 

Given y = (P,,(z), we uncover the bits of z one at a 
time in the order given by U using the following decoding 
algorithm: 

F1 := F 
f o r i = l ,  ..., n 

if Fi has a clause of length one consisting of 
the variable a(i) ,  
then we set the variable a(i) to make the clause true. 
else we. set the variable a(i) to be the 

next unused bit of y. 
Let Fi+l be the formula obtained by substituting 

the value of the variable ~ ( i )  in Fi. 

We first show the correctness of the algorithm. 

Lemma 1 i f x  is a satisfying assignment of the formula 
F and y = CP, (3) is given as input to the decoding algo- 
rithm, then, Vi, 1 5 i 5 n, the i th bit uncovered by the 
algorithm is the value of variable u(i) in the satisjying 
assignment x. 

Proof: For j 2 1, assume that for 1 5 i 5 j, the ith bit 
uncovered by the decoding algorithm is the value of the 
variable a(i) in the assignment z. Also assume that at the 
beginning of the ith iteration of the algorithm, the unused 
bits of y correspond to variables whose ranks according to 
U are greater than or equal to i. We prove that the (j + l)st 
bit uncovered by the algorithm is indeed the value of the 
variable o(j + 1) in the assignment x. We also prove that 
at the end of the (j + l)st iteration the unused bits of y 
corresponds to variables whose ranks according to U are 
higher than (j + 1). 

Assume that the condition in the if clause is true. Then 
the value of the variable a(j + 1) is forced, since Fj+l has 
a length one clause in the variable o( j  + 1). By induction 
hypothesis, the partial assignment to the variables o(i) for 
1 I i 5 j can be extended to the satisfying assignment 
x. Thus the bit assigned by the algorithm must coincide 
with the value of the variable o(j+ 1) in the assignment x. 
Furthermore, it must be the case that the bit corresponding 
to the variable a(j + 1) is deleted from the assignment 5 
by the encoding algorithm in producing y. This is due 
to the fact that the clause in the original formula F that 
gave rise to the length one clause in the variable a ( j  + 1) 
in the formula Fj+l is a critical clause for the variable 
a( j  + 1) and that all other variables in that clause occur 
before the variable a(j + 1) in the ordering U.  Therefore, 
from induction hypothesis, we can conclude that all the 
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unused bits of y must correspond to variables whose ranks 
are higher than ( j  + 1) in the ordering Q. 

If, on the other hand, Fj+l has no length one clause in 
the variable a( j  + l ) ,  then there is no critical clause for 
the variable a( j  + 1)  at z such that the variable a( j  + 1) 
has the highest rank with respect to a among the variables 
that appear in the critical clause. This implies that the bit 
corresponding to the variable u(j  + 1 )  is not deleted from 
the assignment z to produce the string y by a,. Since all 
the unused bits of y at the beginning of the ( j  + l)6t it- 
eration of the decoding algorithm correspond to variables 
whose ranks are greater than or equal to ( j  + l), and since 
the bits of y correspond to the values of the variables or- 
dered by Q, the next unused bit in y must correspond to 
the variable a( j  + 1) .  Since this bit is assigned to the vari- 
able ~ ( j  + l), all the remaining unused bits correspond to 
variables whose rank according to a is higher than ( j  + 1). 

We next prove the Satisfiability Coding Lemma and its 
corollaries. 

Satisfiability Coding Lemma: If z is a j-isolated sat- 
isfying assignment of a k 4 N F  F, then then its average 
(over all permutations a) description length under the en- 
coding @, is at most n - j / k .  
Proof: Since z is j-isolated, it has j variables with 
critical clauses. Let a be a random permutation of the 
variables. For each variable with a critical clause at z, the 
probability that the variable appears as the last variable 
among all the variables in its critical clause is at least l / k  
since no clause of F has more than k literals. Hence the 
corresponding bit in z will be deleted in the encoding @U 
with probability at least l/k. Hence, the expected number 
of bits deleted in the encoding of z is at least j / k  which 
yields a description for z of length at most n - j / k .  

We now prove an upper bound on the number of iso- 
lated solutions of a k-CNF. We need the following fact 
regarding the average length of an encoding. 

Fact 1 If@ : S + (0,l)' is aprefifree encoding (one- 
to-onefunction) with average code length I ,  then IS1 < 
2'. 

This completes the proof of the lemma. 

Proof: Let I, denote the length of @(z) for z E S. 
Then I = CzES I,/ISJ. Since @ is one-to-oneand prefix 
free, we have that xzES 2-l. < 1. Thus, 

1 
= - (log 2 4  + log IS[) 

Z E S  

2 - log( 2 - 9  
zES 

1 0. 

The penultimate inequality follows from the concavity of 
the logarithm function. Hence, IS( 5 2'. 

Lemma 2 Any k-QVF F can accept at most 2n-nlk iso- 
lated solutions. 

Proof: By the Satisfiability Coding Lemma, the aver- 
age description length (under the encoding @) of an iso- 
lated solution (that is, an n-isolated solution) of F is at 
most n - n / k .  This is also true when the average is taken 
over all isolated solutions and all permutations. Hence, 
there exists a permutation a such that the average descrip- 
tion length under the coding @U is at most n - n / k .  Ob- 
serve that the proof alf Lemma 1 shows that the set encod- 
ings produced by is prefix free. Hence, from Fact 1, 
the number of isolated solutions cannot exceed 2n-n/k. 

This bound is indeed the best possible. Let n be a mul- 
tiple of k. Group the variables into n / k  disjoint groups 
of k variables each. Let Fi be the IC-CNF accepting the 
parity function of the: k variables in group i. Consider the 
k-CNF obtained by )taking the conjunction of the Fi. All 
the satisfying assignments of this k-CNF have the same 
parity and thus are isolated. Moreover, the k-CNF has 
exactly 2n-nlk satisfying assignments. 

3 Lower Bound for Depth-3 Cir- 
CUitS 

In this section, we prove a tight lower bound on the num- 
ber of gates required by a depth-3 circuit to compute par- 
ity. We introduce some additional notation: 
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Let z be an isolated solution of a CNF F. For each i, fix 
a shortest critical clause C(z,i) for the variable i at z. Note 
that all these clauses are distinct. We define the length of 
a clause as the number of literals it contains. Let Nl(z )  
be the number of critical clauses at z of length 1. Observe 
that Erz1 Nl(z )  = n.  To account for the contribution 
of clauses of various lengths, we define the weight, w(z), 
of 2 as w(z) = l/lC(z,i)l = Cyzl Nl(z)/Z. We 
show that as a consequence of the Satisfiability Coding 
Lemma that the number of isolated solutions of F with 
weight greater than or equal to p is at most 2'+!-'. 

Lemma 3 I f  F is a CNE then the number of its isolated 
solutions with weight greater or equal to p is at most 
2n-p. 

Proof: We show that the average description length of 
an isolated solution of weight p or greater is at most n - p 
under the encoding a. Let z be an isolated solution of 
weight w(z) 2 p. Since the bit in z corresponding to 
variable i is deleted with probability at least l/lC(,,i) I in 
computing the encoding a,, for a random cr, the expected 
number of bits deleted is at least Cy=, l / ~ C ~ , , ~ ) ~  1 p. 
Hence, there exists a permutation cr such that the average 
(over all isolated solutions of weight greater or equal to 
p)  of the description lengths under the encoding a,, is at 
most n - p. Therefore, the number of isolated solutions 
is at most 2'+@, 

We are now ready to prove our lower bound. 

Theorem1 iqn1142fi) gates are required for any 
depth-3 circuit computing parity. 

Proof: We will only consider C3 circuits, circuits 
which can be expressed as an OR of CNFs. Since the 
complement of a parity function is also a parity function, 
the proof applies to n3 circuits as well. Let S be the set of 
inputs accepted by the circuit. By definition, S is the set of 
inputs with an even number of 1's and IS1 = 2'+l. Since 
the top gate is an OR, for each z E S ,  there exists a CNF 
(a depth-2 subcircuit), say F,, which accepts x. More- 
over x is an isolated solution of F,. We define the weight 
of 2 with respect to the CNF F,. We will classify the in- 
puts in S based on their weight. Let p = 6 + (log n)/4. 
Let S1 be the set of inputs in S whose weight is greater 
than or equal to p. Let Sa be the set of inputs in S whose 

weight is less than p. Observe that (SI I + IS2 I = 2n-'. 
Since no CNF can accept more than 2n-!-' isolated solu- 
tions whose weight is at least p, we get that the number 
of CNFs in the circuit is at least IS1 12p-n .  

We will now argue that many clauses are needed to 
accept low weight isolated solutions. Since a clause of 
length Z can only be critical for at most Z2"-' pairs (5, i) 
of solution z and direction i, there must be at least 

n n 

clauses (that is, level one OR gates) to account for all 
the IS2( isolated solutions of weight less than p. Let 
T, = E;"=, $ denote the inner summation, and de- 
fine 6, = E:='=, %. Now, T, 2 26=/6, by the con- 
vexity of the function 2'/Z and the fact ELl Nl(z)  = 
n. From the constraint ~ ~ = l N ~ ( z ) / Z  = w(z) < p, 
we obtain n6, = Cj"=lZNl(x) 2 n 2 / p  by applying 
the Cauchy-Schwartz-Buniakowski inequality. Since the 
function 2'/Z is monotone for 1 2 2, we get that the in- 
ner sum T, > for sufficiently large n. Thus, 
the the number of level one OR gates must be at least 

Thus the total number of gates is at least IS112p'-n + 
IS2 1p2-n+nll^. Minimizing this expression subject to the 
constraint ISl I + IS2 I = we get the desired lower 
bound. 

IS, Ip2-nf4'". 

4 k-SAT Algorit 
The Satisfiability Coding Lemma can also be used to find 
satisfying assignments of L-CNF formulae in less than 
2n steps. Suppose the L-CNF formula F has some so- 
lution which is isolated or nearly-isolated. By the Satis- 
fiability Coding Lemma, with respect to many permuta- 
tions cr, such a solution has an encoding of short length. 
By searching this space of encodings for one which en- 
codes a satisfying assignment, we would be assured of 
finding a satisfying assignment if one exists. If no solu- 
tion is isolated or nearly-isolated, we may not be able to 
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guarantee the existence of such short encodings. How- 
ever, in such a case, if there is any satisfying solution, 
there must be many of them thus the chance of the ran- 
domly guessing one of them is higher. In this section, 
we present a randomized algorithm which (with proba- 
bility approaching 1) finds a satisfying assignment of a 
k-CNF in O(n21F12"-"/k) steps, as well as a somewhat 
less efficient deterministic algorithm which uses similar 
techniques. These results are summarized in the follow- 
ing table: 

k = 3 
k = 4 
k = 5 
k = 6 

Previous New New 
(det.) (random.) (det.) 

2°-585n [113 2°.667n 2°.896n 
20.879n [6] 20.750" 20.917" 
20.947" [6] 20.800" 20.931" 
20.975" f61 20.833" 20.941" 

4.1 Randomized Algorithm 
The randomized algorithm we analyze here is extremely 
simple: 

Algorithm A 
repeat n22"-"lk times 

while there exists an unassigned variable 
select an unassigned variable y at random 
if there is a clause of length one 

involving y or a 
then set y to make that clause true 
else set y to true or false at random 

if the formula is satisfied, then output 
the assignment 

Before we analyze the probability that this algorithm 
succeeds in finding a satisfying assignment, we first es- 
tablish a lemma which we will need in the analysis. This 
lemma relates the density of a set and the isolation of the 
members of the set. 

Lemma 4 Let S C (0, l}", S nonempty, and for  x E S, 
defne I ( x )  as the number of distance one neighbors of 
x that are not in S. Defne value(x) = 2'(2)-n. Then 
CzESvalue(x)  2 1. 

Proof: 
The proof is by induction on n. If n = 0, it is trivially 

true. If n > 0, consider the two subcubes By-1 (i = 0, l )  
generated by fixing the value of the last coordinate. Let 
Si = S n By-'. If the Si are nonempty, the induction hy- 
pothesis guarantees th,at the sum of the values of elements 
in each Si is at least 1 when Si are considered as subsets 
of the (n - l)-dimensional cube. If one of the Si is empty, 
then the other one is nonempty and moreover when it is 
viewed as a subset of the n-dimensional cube the value of 
I ( x )  increases by one for each of its elements. Thus the 
sum of the values remains greater than or equal to one. If 
both Si are nonempty, then the sum of the values of the 
elements in each Si is at least 1/2 when Si are consid- 
ered as subsets of the n-dimensional cube. Thus the total 
value is at least one as desired. 

With this lemma, we now show that the algorithm de- 
scribed above finds satisfying assignments of k-CNFs 
quickly. 

and f n d s  a satisfying assignment of a satisjiable k-CNF 
F with probability approaching 1. 

Proof: 
Suppose that F is siitisfiable, and that x is a j-isolated 

solution of F for some j E { 1, . . . , n}. For each of the j 
directions in which z 11s isolated, fix a critical clause. We 
obtain a lower bound for the probability that x is output 
by Algorithm A during an iteration of the repeat loop. 

Consider one iteration of the repeat loop. Let Q be 
the random permutatioln determined by the order in which 
variables are assigned in the while loop. Let E1 be the 
event that for at least j / k  critical clauses, the critical vari- 
ables occur last among the variables in the critical clause 
with respect to the random permutation U. Let & be the 
event that the values assigned to the variables in while 
loop agree with the assignment x .  We use the probability 
of the event E1 A E2 is a lower bound on the probability 
that the algorithm outputs x .  

Since x is a j-isolated solution, the average number 
(over all permutations) of critical variables which appear 
last among the variables in their critical clauses is at least 
j /k .  Since the maximum number of critical variables is n, 
it follows that for at leiM a l/n-fraction of permutations, 
the number of such critical variables is at least j / k .  Thus 
the probability of E1 i s  at least l /n .  

Theorem 2 Algorithm A runs in time O(n21F12"-n/k 1 
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Assuming El,  we lower bound the probability for Ez.  
It is clear that if the random assignments made in the else 
branch agree with the satisfying assignment 2, then the 
assignments made in the then branch must agree as well. 
Since El holds, the else branch is taken at most n - j / k  
times. Thus the probability that E2 holds given E1 is at 
least 2?+jlk, and the probability that the j-isolated sat- 
isfying assignment z is output by the algorithm is at least 
2- n+jlk / n .  

The probability that the algorithm generates some sat- 
isfying solution can then be obtained by summing over 
all satisfying assignments. Let S be the set of satisfying 
assignments of F. 

Pr[z is output by the algorithm] 
X € S  

I2-n+n/k 2 -  n 
where the last inequality follows from lemma 4. By re- 
peating the while loop n22"-"lk times, we find a satisfy- 
ing assignment with probability approaching 1. 

There is a simple k-CW on which the expected num- 
ber of times the algorithm executes this loop is 2n-n /k .  
Experiments suggest, however, that on random k-CNF 
the algorithm runs much faster. 

In order to obtain a deterministic algorithm, we first ob- 
serve that the problem of finding a good ordering of vari- 
ables requires only limited independence. Specifically, to 
conclude that the average number of bits saved in the en- 
coding of a j-isolated solution of a k-CNF is at least j / k ,  
it is sufficient that each of the IC variables in a clause is 
equally likely to occur last with respect to a random or- 
dering. However, it is not clear how to come up with an 
efficient algorithm for selecting a satisfying assignment 
deterministically when there are a large number of satis- 
fying assignments none of which are sufficiently isolated. 

We now present a somewhat less efficient deterministic 
algorithm for finding a satisfying assignment. 

We will construct a small space S of permutations of 
{ 1 , 2 ,  . . . , n}  with the following property: for any set Y of 
up to k variables, any variable y in Y ,  and for a randomly 
chosen permutation from S, the probability that y appears 
last among the variables in Y is at least 1/IYI - l / n .  The 
following construction of such a family was suggested to 
us by Russell Impagliazzo. 

Let G = { 1 , 2 , .  . . , m}, where m is a prime power 
larger than n3. Let S' be a probability space over which 
n k-wise independent random variables each taking val- 
ues in G are defined. Using known techniques, such a 
probability space S' can be constructed such that IS'\ 5 
O(n3'). Let Y be a set of at most k variables. If all the 
values assigned to the variables in Y are distinct, then the 
assignment induces an ordering of the variables in Y .  As- 
suming the variables in Y take distinct values, k-wise in- 
dependence guarantees that all orderings of the variables 
in Y have the same probability. In particular, each vari- 
able in Y occurs last among the variables in Y with prob- 
ability l/lYl. 

Let S 2 S' correspond to the event that all the n vari- 
ables take distinct values. Each element of S can be inter- 
preted as a permutation of { 1 , 2 ,  . -. , n }  which is given by 
the ordering of the variables by their values. Since k 2 2, 
it follows that the probability of S is at least 1 - l / n .  
It also follows that over the space S, for any set Y of at 
most k variables and a variable in Y, the probability that 
the variable occurs last is at least 1/JYI - l/n. Thus S 
has the desired property. 
Our deterministic algorithm will make use of two ideas. 

First, observe that either there is a satisfying assignment 
which has few ones, or any minimal solution has many 
ones, where minimality is defined with respect to the 
number of ones in the assignment. This dichotomy is use- 
ful because a minimal solution must be isolated in all the 
directions where a variable has the value one. The second 
observation is that by using permutations from the fam- 
ily S rather than truly random permutations to order the 
variables, a j-isolated solution can still be encoded using 
at most n - j / k  f 1 bits. The following deterministic al- 
gorithm incorporates these ideas. Let the parameter E be 
such that 0 5 E 5 1/2 and e satisfies (1 - :) = H ( E ) ,  
where H ( z )  is the binary entropy function. 
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Algorithm B 
for all inputs z with at most en ones 

for all permutations D in S, 
if the formula is satisfied by z, then output 5 

and for all strings s of n ( l  - E/k)  + 1 bits 
/* apply the decoding algorithm 
for i=l to n 

to s */ 

let y be the ith variable according to U 
if there is a clause of length one involving y or $ 
then set y to make that clause true 
else set y equal to the next unused bit from s 

if the formula is satisfied, then output the assignment 

Theorem 3 Algorithm Bfinds a satisfying assignment of 
a satisfiable k-CNF F in O(lFIn3k2E”) time. 

Proof: 
The first for loop of the algorithm checks whether any 

input with at most E n  ones is a satisfying assignment of F. 
If there is such a satisfying assignment, then the algorithm 
succeeds. Otherwise, any minimal satisfying assignment 
of F must be at least En-isolated, since a minimal solu- 
tion must be isolated in any direction where the value of a 
variable is one. 

Fix such a nearly-isolated solution z, and fix En critical 
clauses for z. If U is chosen randomly from S, then for 
each of the E n  critical clauses at z, the probability that 
the critical variable occurs last among the variables of the 
clause is at least l / k  - l / n .  Thus the expected number of 
times this event occurs is at least En/k - E/n, and there is 
some U in S which achieves at least the expectation. With 
respect to that U ,  there is an encoding of z using at most 
n ( l  - € / I C )  + 1 bits. As s runs over all strings of that 
length, this encoding will be encountered and decoded to 
produce z. 

The time taken to check all solutions with at most E n  
ones is IF12H(E)n. If no solution is found, then at most 
0 ( n 3 k )  different permutations are examined, and each 
permutation requires at most 0(I~12n(’-~/~))+’) steps for 
a total of O(IFln3k2n(’-Elk)+1). To optimize the algo- 
rithm, choose E to minimize the sum of these terms. 

The approximate values in the exponent of this run- 
ning time for small k were given earlier in the table. For 
large values of both n and I C ,  the running time approaches 
2n-n/2k 

5 Conclusioii 

An obvious open problem is to find a deterministic algo- 
rithm for k-Sat that ;runs in time O(poly(71)2~-~/~)). It 
seems that additional insight into the structure of large 
sets accepted by k - C W s  is necessary. 

Our Satisfiability Coding Lemma gives information 
only about the number of length n minterms of a k-CNF, 
while the Switching Lemma gives information about the 
lengths of minterms after a restriction is applied. It seems 
likely that one can prove a stronger version of the Switch- 
ing Lemma if one has good bounds on the number of other 
minterms. 

In an insightful remark, Valiant [ 131 commented that 
the pursuit to understand the reasons for the inherent com- 
putational difficulty of problems has two complementary 
facets, the positive one of finding fast algorithms and 
the negative one of proving lower bounds on the inher- 
ent complexity. In fact, our question regarding the num- 
ber of isolated points of a k-CNF led us to the discovery 
of the Satisfiability Cioding Lemma which not only gives 
precise lower bounds on parity but yields somewhat un- 
expected insight into the satisfiability problem. It seems 
that progress can be made in both directions if one can 
further relate the syntactic properties of the formula to the 
structure of its solution space. 
Acknowledgments: The authors would like to thank Rus- 
sell Impagliazzo, Sam Buss, and Vojtech Rod1 for helpful 
discussions. 

References 
[ 11 Boppana, R.B. and Sipser, M. (1990), The Complex- 

ity of Finite Functions, in “Handbook of Theoretical 
Computer Science, Vol A.” pp. 759-804. 

[2]  Cook, S.A., (1971), The Complexity of Theorem- 
Proving Procedures, in “Proceedings of the 3rd An- 
nual ACM Symlposium on Theory of Computing”, 
pp. 151-158. 

[3] Hbtad, J., (198t5), Almost Optimal Lower Bounds 
for Small Depth Circuits, in “ Proceedings of the 
18th ACM Symlposium on Theory of Computing”, 
pp. 6-20. 

573 



[4] Hbtad, J., Jukna, S., and PudlAk, P., (1993), Top- [14] Zhang, W. (1996), Number of models and satisfia- 
Down Lower Bounds for Depth 3 Circuits, “Pro- bility of sets of clauses, Theoretical Computer Sci- 
ceedings of the 34th Annual IEEE Symposium on ence 155, pp. 277-288. 
Foundations of Computer Science”, pp. 124-1 29. 

[5] Levin, L.A., (1973), Universal Sorting Problems, 
Problemy Peredaci Informacii 9, pp. 1 15- 1 16. En- 
glish translation in Problems of Information Trans- 
mission 9, pp. 265-266. 

[6] Monien, B. and Speckenmeyer, E., (1985), Solving 
Satisfiability In Less Than Zn Steps, Discrete Ap- 
plied Mathematics 10, pp. 287-295. 

[7] Paturi, R., Saks, M.E., and Zane E, (1997), Expo- 
nential Lower Bounds on Depth 3 Boolean Circuits, 
in Proceedings of the 29th Annual ACM Sympo- 
sium on Theory of Computing”, to appear. 

[8] Razborov, A.A. (1986), Lower Bounds on the Size 
of Bounded Depth Networks over a Complete Ba- 
sis with Logical Addition, Mathemutische Zametki 
41 pp. 598-607 (in Russian). English Translation 
inMathemutica1 Notes of the Academy of Sciences 
of the USSR 41, pp. 333-338. 

[9] Razborov, A.A. (1993), Bounded Arithmetic and 
Lower Bounds in Boolean Complexity, submitted to 
Feasible Mathematics, 1993. 

[lo] Schiermeyer, I. (1993), Solving 3-Satisfiability in 
less than 1.57gn Steps, in Selected papers from CSL 
‘92, LNCS Vol. 702, pp. 379-394. 

[ 111 Schiermeyer, I. (1996), Pure Literal Look Ahead: 
An O( 1.4979 3-Satisfiability Algorithm, Preprint. 

[12] Smolensky, R. (1987), Algebraic Methods in the 
Theory of Lower Bounds for Boolean Circuit Com- 
plexity in “Proceedings of the 19th ACM sympo- 
sium on Theory of Computing”, pp. 77-82. 

[ 131 Valiant, L.G., (1977), Graph-theoretic arguments 
in low-level complexity, in Proceedings of the 6th 
Symposium on Mathematical Foundations of Com- 
puter Science, Springer-Verlag, Lecture Notes in 
Computer Science, vol. 53, pp. 162-176. 

574 


