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QUERY-TO-COMMUNICATION LIFTING FOR BPP\ast 

MIKA G\"O\"OS\dagger , TONIANN PITASSI\ddagger , AND THOMAS WATSON\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . For any n-bit boolean function f , we show that the randomized communication
complexity of the composed function f \circ gn, where g is an index gadget, is characterized by the
randomized decision tree complexity of f . In particular, this means that many query complexity
separations involving randomized models (e.g., classical vs. quantum) automatically imply analogous
separations in communication complexity.
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1. Introduction. A query-to-communication lifting theorem (a.k.a. communi-
cation-to-query simulation theorem) translates lower bounds on some type of query
complexity (a.k.a. decision tree complexity) [42, 10, 24] of a boolean function f into
lower bounds on a corresponding type of communication complexity [47, 28, 24, 31]
of a two-party version of f . See Table 1 for a list of several known results in this
vein. In this work, we show a lifting theorem for bounded-error randomized (i.e.,
BPP-type) query/communication complexity. Such a theorem had been conjectured
by [5, 8, 14, 45] and (ad nauseam) by the current authors.

1.1. Our result. For a function f : \{ 0, 1\} n \rightarrow \{ 0, 1\} (called the outer function)
and a two-party function g : \scrX \times \scrY \rightarrow \{ 0, 1\} (called the gadget), their composition
f \circ gn : \scrX n \times \scrY n \rightarrow \{ 0, 1\} is defined by

(f \circ gn)(x, y) := f(g(x1, y1), . . . , g(xn, yn)).

Here, Alice holds x \in \scrX n and Bob holds y \in \scrY n. Our result is proved for the popular
index gadget Indm : [m] \times \{ 0, 1\} m \rightarrow \{ 0, 1\} mapping (x, y) \mapsto \rightarrow yx. We use BPPdt

and BPPcc to denote the usual bounded-error randomized query and communication
complexities. That is, BPPdt(f) is the minimum cost of a randomized decision tree
(distribution over deterministic decision trees) which, on each input z, outputs f(z)
with probability at least 2/3, where the cost is the maximum number of queries over
all inputs and outcomes of the randomness; BPPcc(F ) is defined similarly but with
communication protocols instead of decision trees.

Theorem 1.1 (lifting for BPP). Let m = m(n) := n256. For every f : \{ 0, 1\} n \rightarrow 
\{ 0, 1\} ,

BPPcc(f \circ Indn
m) = BPPdt(f) \cdot \Theta (log n).
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Table 1
Query-to-communication lifting theorems. The first five are formulated in the language of

boolean functions (as in this paper); the last two are formulated in the language of combinatorial
optimization.

Class Query model Communication model References

P deterministic deterministic [33, 22, 15, 23, 45, 14]

NP nondeterministic nondeterministic [21, 18]

many polynomial degree rank [40, 38, 35, 36]

many conical junta degree nonnegative rank [21, 27]

PNP decision list rectangle overlay [20]

Sherali--Adams LP extension complexity [12, 27]

sum-of-squares SDP extension complexity [29]

1.2. What does it mean? The upshot of our lifting theorem is that it automates
the task of proving randomized communication lower bounds: we only need to show a
problem-specific query lower bound for f (which is often relatively simple), and then
invoke the general-purpose lifting theorem to completely characterize the randomized
communication complexity of f \circ Indn

m.

Separation results. The lifting theorem is especially useful for constructing exam-
ples of two-party functions that have large randomized communication complexity, but
low complexity in some other communication model. For example, one of the main
results of Anshu et al. [5] is a nearly 2.5th power separation between randomized and
quantum (BQPcc) communication complexities for a total function F :

(1.1) BPPcc(F ) \geq BQPcc(F )2.5 - o(1).

Previously, a quadratic separation was known (witnessed by set-disjointness). The
construction of F (and its ad hoc analysis) in [5] was closely modeled after an analogous
query complexity separation, BPPdt(f) \geq BQPdt(f)2.5 - o(1), shown earlier by [2]. Our
lifting theorem can reproduce the separation (1.1) by simply taking F := f \circ Indn

m and
using the query result of [2] as a black box. Here we only note that BQPcc(F ) is at
most a logarithmic factor larger than BQPdt(f), since a protocol can always efficiently
simulate a decision tree.

In a similar fashion, we can unify (and in some cases simplify) several other
existing results in communication complexity [32, 19, 5, 6], including separations
between BPPcc and the log of the partition number; see section 5 for details.

Gadget size. A drawback of our lifting theorem is that it assumes gadget size m =
poly(n), which limits its applicability. For example, we are not able to reproduce tight
randomized lower bounds for important functions such as set-disjointness [25, 34, 7]
or gap-Hamming [11, 39, 43]. It remains an open problem to prove a lifting theorem
for m = O(1) even for the models studied in [21, 27].

Our result has been strengthened to hold for any gadget on O(log n) bits with
small enough discrepancy, such as the inner-product mod 2 gadget [13].

2. Reformulation. Our lifting theorem holds for all f , even if f is a partial
function or a general relation (search problem). Thus the theorem is not really about
the outer function at all; it is about the obfuscating ability of the index gadget Indm

to hide information about the input bits of f . To focus on what is essential, let us
reformulate the lifting theorem in a more abstract way that makes no reference to f .
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QUERY-TO-COMMUNICATION LIFTING FOR BPP FOCS17-443

2.1. Slices. Write G := gn for g := Indm. We view G's input domain [m]n \times 
(\{ 0, 1\} m)n as being partitioned into slices G - 1(z) = \{ (x, y) : G(x, y) = z\} , one for
each z \in \{ 0, 1\} n; see (a) below. We will eventually consider randomized protocols, but
suppose for simplicity that we are given a deterministic protocol \Pi of communication
cost | \Pi | . The most basic fact about \Pi is that it induces a partition of the input domain
into at most 2| \Pi | rectangles (sets of the form X\times Y , where X \subseteq [m]n, Y \subseteq (\{ 0, 1\} m)n);
see (b) below. The rectangles are in 1-to-1 correspondence with the leaves of the
protocol tree, which are in 1-to-1 correspondence with the protocol's transcripts (root-
to-leaf paths; each path is a concatenation of messages). Fixing some z \in \{ 0, 1\} n, we
are interested in the distribution over transcripts that is generated when \Pi is run on a
uniform random input from the slice G - 1(z); see (c) below.

[m]n

(\{ 0, 1\} m)n

(a) (b) (c)

2.2. The reformulation. We devise a randomized decision tree that on input
z outputs a random transcript distributed close (in total variation distance) to that
generated by \Pi on uniformly random input (\bfitx ,\bfity ) \sim G - 1(z). (We always use boldface
letters for random variables.)

Theorem 2.1. Let \Pi be a deterministic protocol with inputs from the domain
of G = gn. There is a randomized decision tree of cost O(| \Pi | / log n) that on input
z \in \{ 0, 1\} n samples a random transcript (or outputs \bot for failure) such that the
following two distributions are o(1)-close:

\bfitt z := output distribution of the randomized decision tree on input z;

\bfitt \prime z := transcript generated by \Pi when run on a random input (\bfitx ,\bfity ) \sim G - 1(z).

Moreover, the simulation has ``one-sided error"": supp(\bfitt z) \subseteq supp(\bfitt \prime z)\cup \{ \bot \} for every z.

The lifting theorem (Theorem 1.1) follows as a simple consequence of the above
reformulation. For the easy direction (``\leq ""), any randomized decision tree for f making
c queries can be converted into a randomized protocol for f \circ gn communicating c \cdot 
O(log n) bits, where the O(log n) factor is the deterministic communication complexity
of the gadget. For the nontrivial direction (``\geq ""), suppose we have a randomized
protocol \Pi (viewed as a probability distribution over deterministic protocols) that
computes f \circ gn (with error \leq 1/3, say) and each \Pi \sim \Pi communicates at most | \Pi | \leq c
bits. We convert this into a randomized decision tree for f of query cost O(c/ log n)
as follows.

On input z:

(1) Pick a deterministic \Pi \sim \Pi (using random coins of the decision tree).
(2) Run the randomized decision tree for \Pi from Theorem 2.1 that samples a

transcript t \sim \bfitt z(\Pi ).
(3) Output the value of the leaf reached in t.
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The resulting decision tree has bounded error on input z:

Pr[ output of decision tree \not = f(z)]

= E\Pi \sim \bfPi 

\bigl[ 
Prt\sim \bfitt z(\Pi )[ value of leaf in t \not = f(z)]

\bigr] 
= E\Pi \sim \bfPi 

\bigl[ 
Prt\sim \bfitt \prime z(\Pi )[ value of leaf in t \not = f(z)]\pm o(1)

\bigr] 
= E\Pi \sim \bfPi 

\bigl[ 
Pr(\bfitx ,\bfity )\sim G - 1(z)[\Pi (\bfitx ,\bfity ) \not = f(z)]

\bigr] 
\pm o(1)

= E(x,y)\sim G - 1(z)

\bigl[ 
Pr\bfPi [\Pi (x, y) \not = f(z)]

\bigr] 
\pm o(1)

\leq E(x,y)\sim G - 1(z)[1/3]\pm o(1)

\leq 1/3 + o(1).

This simple reformulation is one key conceptual insight that enabled progress on
obtaining a BPP lifting theorem.

2.3. Extensions. The correctness of our simulation hinged on the property of
BPP-type algorithms that the mixture of correct output distributions is correct. In fact,
the ``moreover"" part in Theorem 2.1 allows us to get a lifting theorem for one-sided error
(RP-type) and zero-sided error (ZPP-type) query/communication complexity: if the
randomized protocol \Pi on every input (x, y) \in G - 1(z) outputs values in \{ f(z),\bot \} , so
does our decision tree simulation on input z. Funnily enough, it was previously known
that the existence of a query-to-communication lifting theorem for ZPP (for index
gadget) implies the existence of a lifting theorem for BPP in a black-box fashion [8]. We
also mention that Theorem 2.1 in fact holds with 1/poly(n)-closeness (instead of o(1))
for an arbitrarily high degree polynomial, provided m is chosen to be a correspondingly
high enough degree polynomial in n.

3. Simulation. We now prove Theorem 2.1. Fix a deterministic protocol \Pi 
henceforth. We start with a high-level sketch of the simulation and then fill in the
details.

X

Y

G  - 
1
(z) \cap 

X\times 
Y

3.1. Executive summary. The random-
ized decision tree will generate a random tran-
script of \Pi by taking a random walk down the
protocol tree of \Pi , guided by occasional queries
to the bits of z. The design of our random walk
is dictated by one (and only one) property of
the slice sets G - 1(z), as follows.

Uniform marginals lemma (informal): For
every z \in \{ 0, 1\} n and every rectangle X\times Y
where X is ``dense"" and Y is ``large,"" the
uniform distribution on G - 1(z)\cap X\times Y has
both of its marginal distributions close to
uniform on X and Y , respectively.

(The definitions of ``dense"" and ``large"" are not needed for this outline of the argument
and are given in section 3.2.) This immediately suggests a way to begin the randomized
simulation. Each node of \Pi 's protocol tree is associated with a rectangle X \times Y
of all inputs that reach that node. We start at the root where, initially, X \times Y =
[m]n\times (\{ 0, 1\} m)n. Suppose Alice communicates the first bit b \in \{ 0, 1\} . This induces a
partition X = X0 \cup X1 where Xb consists of those inputs where Alice sends b. When
\Pi is run on a random input (\bfitx ,\bfity ) \sim G - 1(z), the above lemma states that \bfitx is close
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to uniform on X, and hence the branch Xb is taken with probability roughly | Xb| /| X| .
Our idea for a simulation is this: we pretend that \bfitx \sim X is perfectly uniform so that
our simulation takes the branch Xb with probability exactly | Xb| /| X| . It follows that
the first bit sent in the two scenarios (\bfitt z and \bfitt \prime z) is distributed close to each other. We
can continue the simulation in the same manner, updating X \leftarrow Xb (and similarly
Y \leftarrow Y b when Bob speaks), as long as X \times Y remains ``dense\times large.""

Largeness. A convenient property of the index gadget is that Bob's nm-bit input is
much longer than Alice's n logm-bit input. Consequently, the simulation will not need
to go out of its way to maintain the ``largeness"" of Bob's set Y---we will argue that it
naturally remains ``large"" enough with high probability throughout the simulation.

Density. The interesting case is when Alice's set X ceases to be ``dense."" Our idea
is to promptly restore ``density"" by computing a density-restoring partition X =

\bigcup 
i X

i

with the property that each Xi is fixed on some subset of blocks Ii \subseteq [n] (which
``caused"" a density violation), and such that Xi is again ``dense"" on the remaining
blocks [n]\smallsetminus Ii. Moreover, | Ii| will typically be bounded in terms of the number of bits
communicated so far.

After Alice has partitioned X =
\bigcup 

i X
i we will follow the branch Xi (updating

X \leftarrow Xi) with probability | Xi| /| X| ; this random choice is justified by the uniform
marginals lemma, since it imitates what would happen on a uniform random input
from G - 1(z). Since we made Alice's pointers Xi

Ii
fixed, say, to value \alpha \in [m]Ii , we

need to fix the corresponding pointed-to bits on Bob's side so as to make the output
of the gadgets gn(Xi, Y ) consistent with z on the fixed coordinates. At this point,
our decision tree queries all the bits zIi \in \{ 0, 1\} Ii and we argue that we can indeed
typically restrict Bob's set to some still-``large"" Y i \subseteq Y to ensure gIi(Xi

Ii
\times Y i

Ii
) = \{ zIi\} .

Now that we have recovered ``density"" on the unfixed blocks, we may continue the
simulation as before (relativized to unfixed blocks).

3.2. Tools. Let us make the notions of ``dense"" and ``large"" precise. Let H\infty (\bfitx )
:= minx log(1/Pr[\bfitx = x]) denote the usual min-entropy of a random variable \bfitx .
Supposing \bfitx is distributed over a setX, we define the deficiency of \bfitx as the nonnegative
quantity D\infty (\bfitx ) := log | X|  - H\infty (\bfitx ). A basic property, which we use freely and
repeatedly throughout the proof, is that marginalizing \bfitx to some coordinates (assuming
X is a product set) cannot increase the deficiency. For a set X we use the boldface \bfitX 
to denote a random variable uniformly distributed on X.

Definition 3.1 (blockwise-density [21]). A random variable \bfitx \in [m]J (where J
is some index set) is called \delta -dense if for every nonempty I \subseteq J the blocks \bfitx I have
min-entropy rate at least \delta , that is, H\infty (\bfitx I) \geq \delta \cdot | I| logm. (Note that \bfitx I is marginally
distributed over [m]I .)

Lemma 3.2 (uniform marginals; simple version). Suppose \bfitX is 0.9-dense and
D\infty (\bfitY ) \leq n3. Then for any z \in \{ 0, 1\} n the uniform distribution on G - 1(z) \cap X \times Y
(which is nonempty) has both of its marginal distributions 1/n2-close to uniform on X
and Y , respectively.

We postpone the proof of the lemma to section 4, and instead concentrate here on
the simulation itself---its correctness will mostly rely on this lemma. Actually, we need
a slightly more general-looking statement that we can easily apply when some blocks
in X have become fixed during the simulation. To this end, we introduce terminology
for such rectangles X \times Y . Note that Lemma 3.4 below specializes to Lemma 3.2 by
taking \rho = \ast n.
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Definition 3.3 (structured rectangles). For a partial assignment \rho \in \{ 0, 1, \ast \} n,
define its free positions as free \rho := \rho  - 1(\ast ) \subseteq [n], and its fixed positions as fix \rho :=
[n]\smallsetminus free \rho . A rectangle X \times Y is called \rho -structured if \bfitX free \rho is 0.9-dense, \bfitX fix \rho is
fixed, and each output in G(X \times Y ) is consistent with \rho .

An illustration of a \rho -structured rectangle appears in Figure 1.

x1

x2

\bfitx 3

\bfitx 4

fi
xe
d

d
en

se

= \bfity 1

= \bfity 2

= \bfity 3

= \bfity 4

1

0

\ast \ast \ast \ast \ast \ast \ast \ast \ast 

\ast \ast \ast \ast \ast \ast \ast \ast \ast 

\ast \ast \ast \ast \ast \ast \ast \ast \ast \ast 

\ast \ast \ast \ast \ast \ast \ast \ast \ast \ast 

Fig. 1. Illustration of \bfitx \sim X and \bfity \sim Y , where X \times Y is \rho -structured for \rho := 10\ast \ast 

Lemma 3.4 (uniform marginals; general version). Suppose X \times Y is \rho -structured
and D\infty (\bfitY ) \leq n3. Then for any z \in \{ 0, 1\} n consistent with \rho , the uniform distribution
on G - 1(z)\cap X\times Y (which is nonempty) has both of its marginal distributions 1/n2-close
to uniform on X and Y , respectively.

The uniform marginals lemma is a key technical ingredient that enables us to go
beyond the limitations of techniques from previous work on query-to-communication
lifting.

3.3. Density-restoring partition. Fix some set X \subseteq [m]J . (In our application,
J \subseteq [n] will correspond to the set of free blocks during the simulation.) We describe
a procedure that takes X and outputs a density-restoring partition X =

\bigcup 
i X

i such
that each \bfitX i is fixed on some subset of blocks Ii \subseteq J and 0.9-dense on J \smallsetminus Ii. The
procedure associates a label of the form ``xIi = \alpha i"" with each part Xi, recording which
blocks we fixed and to what value. If \bfitX is already 0.9-dense, the procedure outputs
just one part: X itself.

While X is nonempty:

(1) Let I \subseteq J be a maximal subset (possibly I = \emptyset ) such that \bfitX I has min-entropy
rate < 0.9, and let \alpha \in [m]I be an outcome witnessing this: Pr[\bfitX I = \alpha ] >
m - 0.9| I| .

(2) Output part X(xI=\alpha ) := \{ x \in X : xI = \alpha \} with label ``xI = \alpha .""
(3) Update X \leftarrow X \smallsetminus X(xI=\alpha ).

X \emptyset xI1? xI2? xI3? xI4?

X1 X2 X3 X4

``xI1 = \alpha 1"" ``xI2 = \alpha 2"" ``xI3 = \alpha 3"" ``xI4 = \alpha 4""

\not = \alpha 1 \not = \alpha 2 \not = \alpha 3 \not = \alpha 4

= \alpha 1 = \alpha 2 = \alpha 3 = \alpha 4

We collect below the key properties of the partition X =
\bigcup 

i X
i output by the
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procedure. First, the partition indeed restores blockwise-density for the unfixed blocks.
Second, the deficiency (relative to unfixed blocks) typically decreases proportional to
the number of blocks we fixed.

Lemma 3.5. Each Xi (labeled ``xIi = \alpha i"") in the density-restoring partition satis-
fies the following.

(Density) \bfitX i
J\smallsetminus Ii

is 0.9-dense.

(Deficiency) D\infty (\bfitX i
J\smallsetminus Ii

) \leq D\infty (\bfitX ) - 0.1| Ii| logm+ \delta i,

where \delta i := log(| X| /| \cup j\geq i X
j | ).

Proof. Write X\geqslant i :=
\bigcup 

j\geq i X
j so that \bfitX i = (\bfitX \geqslant i | \bfitX \geqslant i

Ii
= \alpha i). Suppose for

contradiction that some part \bfitX i was not 0.9-dense on J \smallsetminus Ii. Then there is some
nonempty K \subseteq J \smallsetminus Ii and an outcome \beta \in [m]K violating the min-entropy condition:
Pr[\bfitX i

K = \beta ] > m - 0.9| K| . But this contradicts the maximality of Ii since the larger
set Ii \cup K now violates the min-entropy condition for \bfitX \geqslant i:

Pr[\bfitX \geqslant i
Ii\cup K = \alpha i\beta ] = Pr[\bfitX \geqslant i

Ii
= \alpha i] \cdot Pr[\bfitX i

K = \beta ]

> m - 0.9| Ii| \cdot m - 0.9| K| = m - 0.9| Ii\cup K| .

This proves the first part. The second part is a straightforward calculation (intuitively,
going from X to X\geqslant i causes a \delta i increase in deficiency, going from X\geqslant i to Xi causes a
\leq 0.9| Ii| logm increase, and restricting from J to J \smallsetminus Ii causes a | Ii| logm decrease):

D\infty (\bfitX i
J\smallsetminus Ii) = | J \smallsetminus Ii| logm - log | Xi| 

\leq 
\bigl( 
| J | logm - | Ii| logm

\bigr) 
 - log

\bigl( 
| X\geqslant i| \cdot 2 - 0.9| Ii| logm

\bigr) 
=

\bigl( 
| J | logm - log | X| 

\bigr) 
 - 0.1| Ii| logm+ log

\bigl( 
| X| /| X\geqslant i| 

\bigr) 
= D\infty (\bfitX ) - 0.1| Ii| logm+ \delta i.

3.4. The simulation. To describe our simulation in a convenient language,
we modify the deterministic protocol \Pi into a refined deterministic protocol \Pi ; see
Figure 2. Namely, we insert two new rounds of communication whose sole purpose
is to restore density for Alice's free blocks by fixing some other blocks and Bob's
corresponding bits. In short, we maintain the rectangle X \times Y as \rho -structured for
some \rho . Each communication round of \Pi is thus replaced with a whole iteration in
\Pi . The new communication rounds do not affect the input/output behavior of the
original protocol: any transcript of \Pi can be projected back to a transcript of \Pi (by
ignoring messages sent on lines 14 and 16). One way to think about \Pi is that it
induces a partition of the communication matrix that is a refinement of the one \Pi 
induces. Therefore, for the purpose of proving Theorem 2.1, we can concentrate on
simulating \Pi in place of \Pi . The randomized decision tree becomes simple to describe
relative to \Pi ; see Figure 3.

Next, we proceed to show that our randomized decision tree is (1) correct---on input
z it samples a transcript distributed close to that of \Pi when run on (\bfitx ,\bfity ) \sim G - 1(z)---
and (2) efficient---the number of queries it makes is bounded in terms of | \Pi | (the
number of iterations in \Pi ).

3.5. Correctness: Transcript distribution. We show that for every z \in 
\{ 0, 1\} n the following distributions are o(1)-close:

\bfitt := transcript generated by our simulation of \Pi with query access to z;

\bfitt \prime := transcript generated by \Pi when run on a random input from G - 1(z).

D
ow

nl
oa

de
d 

05
/1

9/
24

 to
 1

28
.9

5.
10

4.
10

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FOCS17-448 M. G\"O\"OS, T. PITASSI, AND T. WATSON

Refined protocol \Pi on input (\bfitx , \bfity ):

1: initialize: v = root of \Pi , X \times Y = [m]n \times (\{ 0, 1\} m)n, \rho = \ast n
2: while v is not a leaf [ invariant: X \times Y is \rho -structured ]
3: let v0, v1 be the children of v
4: if Bob sends a bit at v then
5: let Y = Y 0 \cup Y 1 be the partition according to Bob's function at v
6: let b be such that y \in Y b

7: \vartriangleright Bob sends b and we update Y \leftarrow Y b, v \leftarrow vb
8: else Alice sends a bit at v
9: let X = X0 \cup X1 be the partition according to Alice's function at v

10: let b be such that x \in Xb

11: \vartriangleright Alice sends b and we update X \leftarrow Xb, v \leftarrow vb

12: let X =
\bigcup 

i X
i be such that Xfree \rho =

\bigcup 
i X

i
free \rho is a density-restoring

partition
13: let i be such that x \in Xi and suppose Xi

free \rho is labeled ``xI = \alpha ,""
I \subseteq free \rho 

14: \vartriangleright Alice sends i and we update X \leftarrow Xi

15: let s = gI(\alpha , yI) \in \{ 0, 1\} I
16: \blacktriangleright Bob sends s and we update Y \leftarrow \{ y\prime \in Y : gI(\alpha , y\prime I) = s\} , \rho I \leftarrow s

17: end if
18: end while
19: output the value of the leaf v

Fig. 2. The refined (deterministic) protocol \Pi . The protocol explicitly keeps track of a rectangle
X \times Y consisting of all inputs that reach the current node (i.e., produce the same transcript so far).
The original protocol \Pi can be recovered by simply ignoring lines 12--16 and text in red. The purpose
of lines 12--16 is to maintain the invariant; they do not affect the input/output behavior. (Color
available online.)

Randomized decision tree on input \bfitz :

To generate a transcript of \Pi we take a random walk down \Pi 's protocol tree,
guided by queries to the bits of z. The following defines the distribution of
messages to send at each underlined line.
Lines marked ``\vartriangleright "": We simulate an iteration of the protocol \Pi pretending that

\bfitx \sim X and \bfity \sim Y are uniformly distributed over their domains. Namely,
in line 7, we send b with probability | Y b| /| Y | ; in line 11, we send b with
probability | Xb| /| X| ; in line 14 (after having updated X \leftarrow Xb), we send i
with probability | Xi| /| X| .

Line marked ``\blacktriangleright "": Here we query zI and send deterministically the message s =
zI ; except if this message is impossible to send (because zI /\in gI(\alpha , YI)), we
output \bot and halt the simulation with failure.

Fig. 3. The randomized decision tree with query access to z. Its goal is to generate a random
transcript of \Pi that is o(1)-close to the transcript generated by \Pi on a random input (\bfitx ,\bfity ) \sim G - 1(z).
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The following is the heart of the argument.

Lemma 3.6. Let z \in \{ 0, 1\} n, and let \bfitt , \bfitt \prime be defined as above. Consider a node
v at the beginning of an iteration in \Pi 's protocol tree, such that z is consistent with
the associated \rho . Suppose X \times Y is the \rho -structured rectangle at v, and assume that
D\infty (\bfitY ) \leq n3. Let \bfitmu and \bfitmu \prime denote the messages sent in this iteration under \bfitt and \bfitt \prime ,
respectively (conditioned on reaching v). Then

(i) \bfitmu and \bfitmu \prime are 1/n2-close;
(ii) with probability at least 1 - 4/n2 over \bfitmu , at least a 2 - (n logm+2) fraction of Y

is retained.

Before proving the lemma, let us use it to show that \bfitt and \bfitt \prime are o(1)-close. For
this, it suffices to exhibit a coupling such that Pr[\bfitt = \bfitt \prime ] \geq 1 - o(1). (A coupling of
any two random variables \bfita and \bfitb is a joint distribution whose marginals are \bfita and
\bfitb ; a basic fact is that \bfita and \bfitb are \varepsilon -close in total variation distance iff there exists a
coupling with respect to which Pr[\bfita = \bfitb ] \geq 1 - \varepsilon .) Our coupling works as follows:

Begin at the root, and for each iteration of \Pi :

(1) Sample this iteration's messages \bfitmu and \bfitmu \prime according to an optimal coupling.
(2) If \bfitmu \not = \bfitmu \prime , or if \bfitmu results in < 2 - (n logm+2) fraction of Y being retained (this

includes the simulation's failure case), then proceed to sample the rest of \bfitt 
and \bfitt \prime independently.

It follows by induction on k that after the kth iteration, with probability at least
(1 - 5/n2)k,

(I) \bfitt and \bfitt \prime match so far;
(II) D\infty (\bfitY ) \leq k \cdot (n logm+ 2) \leq n3, where Y is Bob's set under \bfitt so far.

This trivially holds for k = 0. For k > 0, conditioned on (I) and (II) for iteration k - 1,
the assumptions of Lemma 3.6 are met and hence Pr[\bfitmu = \bfitmu \prime ] \geq 1 - 1/n2 and

Pr
\bigl[ 
D\infty (\bfitY ) \leq (k  - 1) \cdot (n logm+ 2) + (n logm+ 2) = k \cdot (n logm+ 2)

\bigr] 
\geq 1 - 4/n2.

By a union bound, with probability \geq 1 - 5/n2, (I) and (II) continue to hold. Thus,

Pr[(I) and (II) hold after the kth iteration] \geq (1 - 5/n2)k - 1 \cdot (1 - 5/n2) = (1 - 5/n2)k.

Since there are at most n logm iterations, we indeed always have k \cdot (n logm+2) \leq n3

(in (II)), and in the end we have Pr[\bfitt = \bfitt \prime ] \geq (1 - 5/n2)n logm \geq 1 - (n logm) \cdot 5/n2 \geq 
1 - o(1), and thus \bfitt and \bfitt \prime are o(1)-close.

Proof of Lemma 3.6. Let \bfitx := \bfitX be uniform over X, let \bfity := \bfitY be uniform over
Y , and let (\bfitx \prime ,\bfity \prime ) be uniform over G - 1(z) \cap X \times Y . By Lemma 3.4, \bfitx and \bfitx \prime are
1/n2-close, and \bfity and \bfity \prime are 1/n2-close.

First assume Bob sends a bit at v. Then \bfitmu is some deterministic function of \bfity ,
and \bfitmu \prime is the same deterministic function of \bfity \prime (the bit sent on line 7); thus \bfitmu and \bfitmu \prime 

are 1/n2-close since \bfity and \bfity \prime are. Also, the second property in the lemma statement
trivially holds.

Henceforth assume Alice sends a bit at v. Write \bfitmu = \bfitb \bfiti \bfits (jointly distributed with
\bfitx ) and \bfitmu \prime = \bfitb \prime \bfiti \prime \bfits \prime (jointly distributed with (\bfitx \prime ,\bfity \prime )) as the concatenation of the three
messages sent (on lines 11, 14, and 16). Then \bfitb \bfiti \bfits is some deterministic function of
\bfitx , and \bfitb \prime \bfiti \prime \bfits \prime is the same deterministic function of \bfitx \prime (\bfits and \bfits \prime depend on z, which is
fixed); thus \bfitmu and \bfitmu \prime are 1/n2-close since \bfitx and \bfitx \prime are. A subtlety here is that there
may be outcomes of \bfitb \bfiti for which \bfits is not defined (there is no corresponding child in
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\Pi 's protocol tree, since Bob's set would become empty), in which case our randomized
decision tree fails and outputs \bot . But such outcomes have 0 probability under \bfitb \prime \bfiti \prime , so
it is still safe to say \bfitmu and \bfitmu \prime are 1/n2-close, treating \bfits as \bot if it is undefined.

We turn to verifying the second property. Define Xbi \times Y bi \subseteq X \times Y as the
rectangle at the end of the iteration if Alice sends b and i, and note that \bfitx \in X\bfitb \bfiti and
\bfitx \prime \in X\bfitb \prime \bfiti \prime . We have
(3.1)

Prbi\sim \bfitb \bfiti 

\bigl[ 
Pr[\bfity \in Y bi] < 2 - (n logm+2)

\bigr] 
\leq Prbi\sim \bfitb \prime \bfiti \prime 

\bigl[ 
Pr[\bfity \in Y bi] < 2 - (n logm+2)

\bigr] 
+ 1/n2

\leq Prbi\sim \bfitb \prime \bfiti \prime 
\bigl[ 
Pr[\bfity \in Y bi] < Pr[\bfitx \in Xbi]/4

\bigr] 
+ 1/n2

\leq Prbi\sim \bfitb \prime \bfiti \prime 

\Bigl[ 
Pr[\bfity \in Y bi] < Pr[\bfitx \prime \in Xbi]/2 or Pr[\bfitx \prime \in Xbi] < Pr[\bfitx \in Xbi]/2

\Bigr] 
+ 1/n2,

where the second line follows since \bfitb \bfiti and \bfitb \prime \bfiti \prime are 1/n2-close, and the third line follows
since Pr[\bfitx \in Xbi] \geq 1/| X| \geq 2 - n logm. It is straightforward to check that

(3.2) Prbi\sim \bfitb \prime \bfiti \prime 
\bigl[ 
Pr[\bfitx \prime \in Xbi] < Pr[\bfitx \in Xbi]/2

\bigr] 
\leq 1/n2

since \bfitb \bfiti and \bfitb \prime \bfiti \prime are 1/n2-close. (Note that the inner probabilities ``resample"" the
random variables; e.g., although Pr[\bfitx \prime \in X\bfitb \prime \bfiti \prime ] = 1, we cannot say Pr[\bfitx \prime \in Xbi] = 1
in (3.2) since the outcome bi is fixed inside the outer probability.) To analyze the other
event in (3.1), first note there is a coupling of \bfity and \bfity \prime such that Pr[\bfity \not = \bfity \prime ] \leq 1/n2,
and we may imagine that \bfity is jointly distributed with (\bfitx \prime ,\bfity \prime ): sample (\bfitx \prime ,\bfity \prime ) and
then, conditioned on the outcome of \bfity \prime , sample \bfity according to the coupling. For each
bi,

Pr[\bfity \in Y bi] \geq Pr[\bfity \in Y bi | \bfitx \prime \in Xbi] \cdot Pr[\bfitx \prime \in Xbi]

\geq Pr[\bfity = \bfity \prime | \bfitx \prime \in Xbi] \cdot Pr[\bfitx \prime \in Xbi]

(since \bfitx \prime \in Xbi implies \bfity \prime \in Y bi), and so

Prbi\sim \bfitb \prime \bfiti \prime 
\bigl[ 
Pr[\bfity \in Y bi] < Pr[\bfitx \prime \in Xbi]/2

\bigr] 
\leq Prbi\sim \bfitb \prime \bfiti \prime 

\bigl[ 
Pr[\bfity \not = \bfity \prime | \bfitx \prime \in Xbi] \geq 1/2

\bigr] 
\leq 2/n2.(3.3)

Combining (3.1), (3.2), and (3.3) using a union bound yields Prbi\sim \bfitb \bfiti 

\bigl[ 
Pr[\bfity \in Y bi] <

2 - (n logm+2)
\bigr] 
\leq 2/n2 + 1/n2 + 1/n2 = 4/n2.

One-sided error. One more detail to iron out is the ``moreover"" part in the
statement of Theorem 2.1. The simulation we described does not quite satisfy this
condition, but this is simple to fix: instead of halting with failure only when Y
becomes empty, we also halt with failure when D\infty (\bfitY ) > n3. This does not affect the
correctness or efficiency analysis at all, but it ensures that we only output a transcript
if X\times Y is \rho -structured and D\infty (\bfitY ) \leq n3 at the end, which by Lemma 3.4 guarantees
that the transcript's rectangle intersects the slice G - 1(z) and thus \bfitt \in supp(\bfitt \prime ).

3.6. Efficiency: Number of queries. We show that our randomized decision
tree makes O(| \Pi | / log n) queries with high probability. If we insist on a decision tree
that always makes this many queries (to match the statement of Theorem 2.1), we may
terminate the execution early (with output \bot ) whenever we exceed the threshold. This
would incur only a small additional loss in the closeness of transcript distributions.
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Lemma 3.7. The simulation makes O(| \Pi | / log n) queries with probability \geq 1  - 
min(2 - | \Pi | , 1/n\Omega (1)).

Proof. During the simulation, we view the quantity D\infty (\bfitX free \rho ) \geq 0 as a nonneg-
ative potential function. Consider a single iteration where lines 11, 14, and 16 modify
the sets X and free \rho .

 - In line 11, we shrink X = X0 \cup X1 down to X\bfitb , where Pr[\bfitb = b] = | Xb| /| X| .
Hence the increase in the potential function is \gamma \bfitb := log(| X| /| X\bfitb | ).

 - In line 14 (after X \leftarrow Xb), we shrink X =
\bigcup 

i X
i down to X\bfiti , where Pr[\bfiti =

i] = | Xi| /| X| . Moreover, in line 16, | free \rho | decreases by the number of bits
we query. Lemma 3.5 says that the potential changes by \delta \bfiti  - \Omega (log n) \cdot 
\#(queries in this iteration), where \delta \bfiti := log(| X| /| \cup j\geq \bfiti X

j | ).
We will see later that for any iteration, E[\gamma \bfitb ],E[\delta \bfiti ] \leq O(1).

For j = 1, . . . , | \Pi | , letting \bfitgamma j , \bfitdelta j be the random variables \gamma \bfitb , \delta \bfiti , respectively, in
the jth iteration (and letting \bfitgamma j = \bfitdelta j = 0 for outcomes in which Alice does not
communicate in the jth iteration), the potential function at the end of the simulation
is

\sum 
j(\bfitgamma j + \bfitdelta j) - \Omega (log n) \cdot \#(queries in total) \geq 0, and hence

E
\bigl[ 
\#(queries in total)

\bigr] 
\leq O(1/ log n) \cdot 

\sum 
j

\bigl( 
E[\bfitgamma j ] +E[\bfitdelta j ]

\bigr) 
\leq O(| \Pi | / log n).

By Markov's inequality, this already suffices to show that with probability \geq 0.9 (say),
the simulation uses O(| \Pi | / log n) queries. To get a better concentration bound, we
would like for the \bfitgamma j , \bfitdelta j variables (over all j) to be mutually independent, which they
unfortunately generally are not (e.g., \bfitgamma 1, \bfitdelta 1 may reveal Alice's message in the first
iteration, which in turn affects the set of possible values \bfitgamma 2, \bfitdelta 2 may take). However,
there is a trick to overcome this: we will define mutually independent random variables
\bfitc j ,\bfitd j (for all j) and couple them with the \bfitgamma j , \bfitdelta j variables in such a way that each
\bfitgamma j \leq \bfitc j and \bfitdelta j \leq \bfitd j with probability 1, and show that

\sum 
j(\bfitc j + \bfitd j) is bounded with

very high probability, which implies the same for
\sum 

j(\bfitgamma j + \bfitdelta j). For each j, do the
following:

 - Sample a uniform real \bfitp j \in [0, 1) and define \bfitc j := log(1/\bfitp j) + log(1/(1 - \bfitp j)),
and let \bfitgamma j = \gamma \bfitb , where \bfitb = 0 if \bfitp j \in [0, | X0| /| X| ) and \bfitb = 1 if \bfitp j \in 
[| X0| /| X| , 1) (where X,X0, X1 are the sets that arise in the first half of the
jth iteration, conditioned on the outcomes of previous iterations). Note that
\bfitgamma j is correctly distributed, and that \bfitgamma j \leq \bfitc j with probability 1 (specifically,
if \bfitb = 0, then \bfitgamma j = log(| X| /| X0| ) \leq log(1/\bfitp j) \leq \bfitc j , and if \bfitb = 1, then
\bfitgamma j = log(| X| /| X1| ) \leq log(1/(1 - \bfitp j)) \leq \bfitc j). Also note that, as claimed earlier,

E[\bfitgamma j ] \leq E[\bfitc j ] =
\int 1

0

\bigl( 
log(1/p) + log(1/(1 - p))

\bigr) 
dp = 2/ ln 2 \leq O(1). For future

use, note that E
\bigl[ 
2\bfitc j/2

\bigr] 
=

\int 1

0
(p(1 - p)) - 1/2 dp = \pi \leq O(1).

 - Sample a uniform real \bfitq j \in [0, 1) and define \bfitd j := log(1/(1 - \bfitq j)), and let \bfitdelta j =
\delta \bfiti , where \bfiti is such that \bfitq j falls in the \bfiti th interval, assuming we have partitioned
[0, 1) into half-open intervals with lengths | Xi| /| X| in the natural left-to-right
order (where X,X1, X2, . . . are the sets that arise in the second half of the jth
iteration, conditioned on the outcomes of the first half and previous iterations).
Note that \bfitdelta j is correctly distributed, and that \bfitdelta j \leq \bfitd j with probability 1
(specifically, if \bfiti = i, then \bfitdelta j = log(| X| /| \cup j\geq i X

j | ) \leq log(1/(1  - \bfitq j)) = \bfitd j).
Also note that, as claimed earlier, E[\bfitdelta j ] \leq E[\bfitd j ] \leq E[\bfitc j ] \leq O(1). For future
use, note that E

\bigl[ 
2\bfitd j/2

\bigr] 
\leq E

\bigl[ 
2\bfitc j/2

\bigr] 
\leq O(1).
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Now for some sufficiently large constants C,C \prime we have

Pr
\bigl[ 
\#(queries in total) > C \prime \cdot | \Pi | / log n

\bigr] 
\leq Pr

\biggl[ \sum 
j

(\bfitgamma j + \bfitdelta j) > C \cdot | \Pi | 
\biggr] 

\leq Pr

\biggl[ \sum 
j

(\bfitc j + \bfitd j) > C \cdot | \Pi | 
\biggr] 

= Pr
\Bigl[ 
2
\sum 

j(\bfitc j+\bfitd j)/2 > 2C\cdot | \Pi | /2
\Bigr] 

\leq E
\bigl[ 
2
\sum 

j(\bfitc j+\bfitd j)/2
\bigr] 
/2C\cdot | \Pi | /2

=

\biggl( \prod 
j

E
\bigl[ 
2\bfitc j/2

\bigr] 
\cdot E

\bigl[ 
2\bfitd j/2

\bigr] \biggr) 
/2C\cdot | \Pi | /2

\leq 
\bigl( 
O(1)/2C/2

\bigr) | \Pi | 

\leq 2 - | \Pi | .

If | \Pi | \leq o(log n), then a similar calculation shows that Pr
\bigl[ 
\#(queries in total) \geq 1

\bigr] 
\leq 

1/n\Omega (1).

4. Uniform marginals lemma.

Lemma 4.1 (uniform marginals; general version). Suppose X \times Y is \rho -structured
and D\infty (\bfitY ) \leq n3. Then for any z \in \{ 0, 1\} n consistent with \rho , the uniform distribution
on G - 1(z)\cap X\times Y (which is nonempty) has both of its marginal distributions 1/n2-close
to uniform on X and Y , respectively.

We prove a slightly stronger statement formulated in Lemma 4.2 below. For
terminology, we say a distribution \scrD 1 is \varepsilon -pointwise-close to a distribution \scrD 2 if for
every outcome, the probability under \scrD 1 is within a factor 1 \pm \varepsilon of the probability
under \scrD 2. As a minor technicality (for the purpose of deriving Lemma 3.4 from
Lemma 4.2), we say that a random variable \bfitx \in [m]J is \delta -essentially-dense if for every
nonempty I \subseteq J , H\infty (\bfitx I) \geq \delta \cdot | I| logm  - 1 (the difference from Definition 3.1 is
the `` - 1""); we also define \rho -essentially-structured in the same way as \rho -structured but
requiring \bfitX free \rho to be only 0.9-essentially-dense instead of 0.9-dense. The following
strengthens a lemma from [20], which implied that G(\bfitX ,\bfitY ) has full support over the
set of all z consistent with \rho .

Lemma 4.2 (pointwise uniformity). Suppose X\times Y is \rho -essentially-structured and
D\infty (\bfitY ) \leq n3 + 1. Then G(\bfitX ,\bfitY ) is 1/n3-pointwise-close to the uniform distribution
over the set of all z consistent with \rho .

Proof of Lemma 3.4. Let (\bfitx ,\bfity ) be uniformly distributed over G - 1(z) \cap X \times Y .
We show that \bfitx is 1/n2-close to \bfitX ; a completely analogous argument works to show
that \bfity is 1/n2-close to \bfitY . Let E \subseteq X be any test event. Replacing E by X \smallsetminus E
if necessary, we may assume | E| \geq | X| /2. Since X \times Y is \rho -structured, E \times Y is
\rho -essentially-structured. Hence we can apply Lemma 4.2 in both the rectangles E \times Y
and X \times Y :

Pr[\bfitx \in E] =
| G - 1(z) \cap E \times Y | 
| G - 1(z) \cap X \times Y | 

=
(1\pm 1/n3) \cdot 2 - | free \rho | \cdot | E \times Y | 
(1\pm 1/n3) \cdot 2 - | free \rho | \cdot | X \times Y | 

= (1\pm 3/n3) \cdot | E| /| X| = | E| /| X| \pm 1/n2.

We prove Lemma 4.2 in the rest of this section. An alternative, shorter proof
relying on deeper Fourier analysis tools appears in [44].
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4.1. Overview for Lemma 4.2. A version of Lemma 4.2 (for the inner-product
gadget) was proved in [21, sect. 2.2] under the assumption that \bfitX and \bfitY had low
deficiencies: D\infty (\bfitX I),D\infty (\bfitY I) \leq O(| I| log n) for free blocks I. The key difference is
that we only assume D\infty (\bfitY I) \leq n3 + 1. We still follow the general plan from [21] but
with a new step that allows us to reduce the deficiency of \bfitY .

Fourier perspective. We refer the reader to [30] for background on discrete Fourier
analysis. The idea in [21] to prove that \bfitz := G(\bfitX ,\bfitY ) is pointwise-close to uniform is
to study \bfitz in the Fourier domain, and show that \bfitz 's Fourier coefficients (corresponding
to free blocks) decay exponentially fast. That is, for every nonempty I \subseteq free \rho we
want to show that the bias of \oplus (\bfitz I) (parity of the output bits \bfitz I) is exponentially
small in | I| . Tools tailor-made for this situation exist: various ``Xor lemmas"" are
known to hold for communication complexity (e.g., [37]) that apply as long as \bfitX I and
\bfitY I have low deficiencies. All this is recalled in section 4.2. This suggests that all that
remains is to reduce our case of high deficiency (of \bfitY I) to the case of low deficiency.

Reducing deficiency via buckets. For the moment assume I = [n] for simplicity of
discussion. Our idea for reducing the deficiency of \bfitY I = \bfitY is as follows. We partition
each m-bit string in \bfitY \in (\{ 0, 1\} m)n into m1/2 many buckets each of length m1/2. We
argue that \bfitY can be expressed as a mixture of distributions \bfity with the following
properties: for each index i, the ith string \bfity i in \bfity has few of its buckets fixed (where
a ``fixed bucket"" has all the corresponding bits of \bfity i fixed to constants), and for any
way of choosing an unfixed bucket for each \bfity i, the marginal distribution of \bfity on the
union T of these buckets has deficiency as low as D\infty (\bfity T ) \leq 1. Correspondingly, we
argue that \bfitX may be expressed as a mixture of distributions \bfitx that have a nice form:

x1

\bfitx 2

\bfitx 3

= \bfity 1

= \bfity 2

= \bfity 3

I \prime 

T2

T3

fixed

fixed

fixed

1st bucket 2nd bucket 3rd bucket 4th bucket

Here each pointer \bfitx i ranges over a single bucket Ti. Moreover, for a large subset
I \prime \subseteq [n] of coordinates, Ti is unfixed in \bfity i for i \in I \prime , and hence \bfity has deficiency \leq 1 on
the union of these unfixed buckets. The remaining few i \in [n]\smallsetminus I \prime are associated with
fixed pointers \bfitx i = xi pointing into fixed buckets in \bfity . Consequently, we may interpret
(\bfitx ,\bfity ) as a random input to Indn

m1/2 by identifying each bucket Ti with [m1/2]. In
this restricted domain, we can show that (\oplus \circ gn)(\bfitx ,\bfity ) is indeed very unbiased: the
fixed coordinates do not contribute to the bias of the parity, and (\bfitx I\prime ,\bfity I\prime ) is a pair of
low-deficiency variables for which an Xor lemma--type calculation applies. The heart
of the proof will be to find a decomposition of \bfitX \times \bfitY into such distributions \bfitx \times \bfity .

In the remaining subsections, we carry out the formal proof of Lemma 4.2.

4.2. Fourier perspective. Henceforth we abbreviate J := free \rho . We employ
the following calculation from [21], whose proof is reproduced in section 4.6 for
completeness. Here \chi (z) := ( - 1)\oplus (z).

Lemma 4.3 (pointwise uniformity from parities). If a random variable \bfitz J over
\{ 0, 1\} J satisfies

\bigm| \bigm| E\bigl[ 
\chi (\bfitz I)

\bigr] \bigm| \bigm| \leq 2 - 5| I| logn for every nonempty I \subseteq J , then \bfitz J is 1/n3-
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pointwise-close to uniform.

To prove Lemma 4.2, it suffices to take \bfitz J = gJ (\bfitX J ,\bfitY J ) above and show that for
every \emptyset \not = I \subseteq J ,

(4.1)
\bigm| \bigm| E\bigl[ 

\chi (gI(\bfitX I ,\bfitY I))
\bigr] \bigm| \bigm| \leq 2 - 5| I| logn.

In our high-deficiency case, we have
(i) D\infty (\bfitX I) \leq 0.1| I| logm+ 1,
(ii) D\infty (\bfitY I) \leq n3 + 1.
Low-deficiency case. As a warm-up, let us see how to obtain (4.1) by imagining

that we are in the low-deficiency case, i.e., replacing assumption (ii) by
(ii\prime ) D\infty (\bfitY I) \leq 1.

We present a calculation that is a very simple special case of, e.g., Shaltiel's [37] Xor
lemma for discrepancy (relative to uniform distribution).

We first review a few mathematical concepts. For any real matrix M , its operator
2-norm \| M\| equals its largest singular value and satisfies \| Mv\| \leq \| M\| \cdot \| v\| for any
vector v. The k-fold tensor product of M with itself is the matrix M\otimes k defined by
M\otimes k

x1\cdot \cdot \cdot xk, y1\cdot \cdot \cdot yk
:=

\prod k
i=1 Mxi,yi

. A standard fact is that the 2-norm behaves multiplica-

tively under the tensor product:
\bigm\| \bigm\| M\otimes k

\bigm\| \bigm\| = \| M\| k. We denote the R\'enyi 2-entropy
of a random variable \bfita by H2(\bfita ) :=  - log

\sum 
a Pr[\bfita = a]2. A standard fact is that

H2(\bfita ) \geq H\infty (\bfita ).
Now let M be the communication matrix of g := Indm but with \{ +1, - 1\} instead

of \{ 0, 1\} entries. The operator 2-norm of M is \| M\| = 2m/2 since the rows are
orthogonal and each has 2-norm 2m/2. The | I| -fold tensor product of M then satisfies\bigm\| \bigm\| M\otimes | I| 

\bigm\| \bigm\| = 2| I| m/2. Here M\otimes | I| is the communication matrix of the 2-party function

\chi \circ gI . We think of the distribution of \bfitX I as an m| I| -dimensional vector \scrD \bfitX I
, and of

the distribution of \bfitY I as a (2m)| I| -dimensional vector \scrD \bfitY I
. By (i) we have\bigm\| \bigm\| \scrD \bfitX I

\bigm\| \bigm\| = 2 - \bfH 2(\bfitX I)/2 \leq 2 - \bfH \infty (\bfitX I)/2

\leq 2 - (| I| logm - 0.1| I| logm - 1)/2 = 2 - 0.45| I| logm+1/2.

Similarly, by (ii\prime ) we would have\bigm\| \bigm\| \scrD \bfitY I

\bigm\| \bigm\| \leq 2 - (| I| m - 1)/2 = 2 - | I| m/2+1/2.

The left side of (4.1) is now\bigm| \bigm| \bigm| \scrD \top 
\bfitX I

M\otimes | I| \scrD \bfitY I

\bigm| \bigm| \bigm| \leq \bigm\| \bigm\| \scrD \bfitX I

\bigm\| \bigm\| \cdot \bigm\| \bigm\| M\otimes | I| \bigm\| \bigm\| \cdot \bigm\| \bigm\| \scrD \bfitY I

\bigm\| \bigm\| 
\leq 2 - 0.45| I| logm+1/2 \cdot 2| I| m/2 \cdot 2 - | I| m/2+1/2

= 2 - 0.45| I| logm+1 \leq 2 - 5| I| logn.(4.2)

Therefore our goal becomes to reduce (via buckets) from case (ii) to case (ii\prime ).

4.3. Buckets. We introduce some bucket terminology for random (\bfitx ,\bfity ) \in [m]I\times 
(\{ 0, 1\} m)I .

 - Each string \bfity i is partitioned into m1/2 buckets, each of length m1/2.

 - We think of \bfitx i as a pair \ell i\bfitr i, where \ell i specifies which bucket and \bfitr i specifies
which element of the bucket. (Or, viewing \bfitx i \in \{ 0, 1\} logm, \ell i \in \{ 0, 1\} (logm)/2

would be the left half and \bfitr i \in \{ 0, 1\} (logm)/2 would be the right half.) Thus
\bfitx = \ell \bfitr , where the random variable \ell \in [m1/2]I picks a bucket for each
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coordinate, and the random variable \bfitr \in [m1/2]I picks an element from each
of the buckets specified by \ell . Every outcome \ell of \ell has an associated bucket
union (one bucket for each string) given by T\ell :=

\bigcup 
i\in I(\{ i\} \times T\ell i), where

T\ell i \subseteq [m] is the bucket specified by \ell i. Here a bit index (i, j) \in I \times [m] refers
to the jth bit of the string \bfity i.

4.4. Focused decompositions. Our goal is to express the product distribution
\bfitX I \times \bfitY I as a convex combination of product distributions \bfitx \times \bfity that are focused,
which informally means that many pointers in \bfitx point into buckets that collectively
have low deficiency in \bfity , and the remaining pointers produce constant gadget outputs.
A formal definition follows.

Definition 4.4. A product distribution \bfitx \times \bfity over [m]I \times (\{ 0, 1\} m)I is called
focused if there is a partial assignment \sigma \in \{ 0, 1, \ast \} I such that, letting I \prime := free\sigma ,
we have | I \prime | \geq | I| /2, and gI(\bfitx ,\bfity ) is always consistent with \sigma , and for each i \in I \prime ,
\bfitx i = \ell i\bfitr i is always in a specific bucket T\ell i \subseteq [m], and

(i\ast ) D\infty (\bfitx I\prime ) \leq 0.6| I \prime | log(m1/2) with respect to\times i\in I\prime T\ell i ;
(ii\ast ) D\infty (\bfity T ) \leq 1, where T :=

\bigcup 
i\in I\prime (\{ i\} \times T\ell i).

We elaborate on this definition. Since gI(\bfitx ,\bfity ) is always consistent with \sigma , the
coordinates fix\sigma = I \smallsetminus I \prime are irrelevant to the bias of the parity of gI(\bfitx ,\bfity ). For each
i \in I \prime , we might as well think of the domain of \bfitx i as T\ell i instead of [m], and of the
domain of \bfity i as \{ 0, 1\} T\ell i instead of \{ 0, 1\} m. Hence, out of the | I \prime | m bits of \bfity I\prime , the
only relevant ones are the | I \prime | m1/2 bits indexed by T . We may thus interpret (\bfitx I\prime ,\bfity T )

as a random input to IndI\prime 

m1/2 . In summary,

(4.3)
\bigm| \bigm| E\bigl[ 

\chi (gI(\bfitx ,\bfity ))
\bigr] \bigm| \bigm| = \bigm| \bigm| E\bigl[ 

\chi (gI
\prime 
(\bfitx I\prime ,\bfity I\prime ))

\bigr] \bigm| \bigm| = \bigm| \bigm| E\bigl[ 
\chi (IndI\prime 

m1/2(\bfitx I\prime ,\bfity T ))
\bigr] \bigm| \bigm| .

If \bfitx \times \bfity is focused, then the calculation leading to (4.2) can be applied to \bfitx I\prime \times \bfity T ,
with m replaced by m1/2, | I| replaced by | I \prime | \geq | I| /2, and min-entropy rate 0.9 replaced
by 0.4, to show that

value of (4.3) \leq 2 - 0.2| I\prime | log(m1/2)+1 \leq 2 - (0.2/4)| I| logm+1 \leq 2 - 5| I| logn - 1

using m = n256.

Lemma 4.5. The product distribution \bfitX I \times \bfitY I can be decomposed into a mixture
of product distributions Ed\sim \bfitd [\bfitx 

d \times \bfity d] over [m]I \times (\{ 0, 1\} m)I (d stands for ``data"")
such that \bfitx d \times \bfity d is focused with probability at least 1 - 2 - 5| I| logn - 1 over d \sim \bfitd .

Using Lemma 4.5, which we prove in the following subsection, we can derive (4.1):\bigm| \bigm| E\bigl[ 
\chi (gI(\bfitX I ,\bfitY I))

\bigr] \bigm| \bigm| \leq Ed\sim \bfitd 

\bigm| \bigm| E\bigl[ 
\chi (gI(\bfitx d,\bfity d))

\bigr] \bigm| \bigm| 
\leq Pr[\bfitd is not focused] + max

focused d

\bigm| \bigm| E\bigl[ 
\chi (gI(\bfitx d,\bfity d))

\bigr] \bigm| \bigm| 
\leq 2 - 5| I| logn - 1 + 2 - 5| I| logn - 1 = 2 - 5| I| logn.

4.5. Finding a focused decomposition. We now prove Lemma 4.5. By as-
sumption, \bfitX I = \ell \bfitr is 0.9-essentially-dense (since \bfitX J is) and D\infty (\bfitY I) \leq D\infty (\bfitY ) \leq 
n3 + 1. We carry out the decomposition in the following three steps. Define
\varepsilon := 2 - 5| I| logn - 1.

Claim 4.6. \bfitY I can be decomposed into a mixture of distributions Ec\sim \bfitc [\bfity 
c] over

(\{ 0, 1\} m)I such that, with probability at least 1 - \varepsilon /3 over c \sim \bfitc ,
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(P1) each string in \bfity c has at most 2n3 fixed buckets;
(P2) each bucket union T\ell not containing fixed buckets has D\infty (\bfity c

T\ell 
) \leq 1.

Claim 4.7. For any c satisfying (P1), with probability at least 1 - \varepsilon /3 over \ell \sim \ell ,
(Q1) the bucket union T\ell contains at most | I| /2 fixed buckets of \bfity c;
(Q2) D\infty (\bfitr | \ell = \ell ) \leq 0.25| I| log(m1/2).

Claim 4.8. For any c and \ell satisfying (Q1), (Q2), letting

I\ast :=
\bigl\{ 
i \in I : the \ell i bucket of \bfity 

c
i is fixed

\bigr\} 
and I \prime := I \smallsetminus I\ast ,

with probability at least 1 - \varepsilon /3 over rI\ast \sim (\bfitr I\ast | \ell = \ell ), we have

D\infty (\bfitr I\prime | \ell = \ell , \bfitr I\ast = rI\ast ) \leq 0.6| I \prime | log(m1/2).

We now finish the proof of Lemma 4.5 assuming these three claims. Take \bfitd :=\bigl( 
\bfitc , \ell , \bfitr \bfitI \ast ); that is, the data d \sim \bfitd is sampled by first sampling c \sim \bfitc , then \ell \sim \ell ,
then rI\ast \sim (\bfitr I\ast | \ell = \ell ), where I\ast implicitly depends on c and \ell . Take \bfity d := \bfity c

and \bfitx d := (\bfitX I | \ell = \ell , \bfitr I\ast = rI\ast ), and note that Ed\sim \bfitd [\bfitx 
d \times \bfity d] indeed forms a

decomposition of \bfitX I \times \bfitY I . By a union bound, with probability at least 1  - \varepsilon over
d \sim \bfitd , the properties of all three claims hold, in which case we just need to check that
\bfitx d \times \bfity d is focused.

Since for each i \in I\ast , \bfitx d
i \in T\ell i and \bfity d

i,T\ell i
are both fixed, we have that gI

\ast 
(\bfitx d

I\ast ,\bfity d
I\ast )

is fixed, and hence gI(\bfitx d,\bfity d) is always consistent with some partial assignment \sigma 
with fix\sigma = I\ast and free\sigma = I \prime . We have | I \prime | \geq | I| /2 by (Q1). For each i \in I \prime , note
that \bfitx d

i is always in T\ell i since we conditioned on \ell = \ell . Note that (i\ast ) for \bfitx d holds by
Claim 4.8. To see that (ii\ast ) for \bfity d holds, pick any \ell \prime that agrees with \ell on I \prime and such
that for every i \in I\ast the \ell \prime i bucket of \bfity 

d
i is not fixed---this is possible since each \bfity d

i

has m1/2 buckets but at most 2n3 < m1/2 fixed buckets by (P1), hence at least one
unfixed bucket. Since the bucket union T\ell \prime contains no fixed buckets of \bfity d, we have
D\infty (\bfity d

T ) \leq D\infty (\bfity d
T\ell \prime 

) \leq 1 by (P2).

Proof of Claim 4.6. We use a process highly reminiscent of the ``density-restoring
partition"" process described in section 3.3. We maintain an event E which is initially
all of (\{ 0, 1\} m)I .

While Pr[\bfitY I \in E] > \varepsilon /3:

(1) Choose a maximal set of pairwise disjoint bucket unions \scrT = \{ T\ell 1 , . . . , T\ell k\} 
with the property that D\infty (\bfitY \cup \scrT | E) > k (possibly \scrT = \emptyset ) and let \beta \in 
\{ 0, 1\} \cup \scrT be an outcome witnessing this: Pr[\bfitY \cup \scrT = \beta | E] > 2 - (k| I| m1/2 - k).

(2) Output the distribution (\bfitY I | \bfitY \cup \scrT = \beta , E) with associated probability
Pr[\bfitY \cup \scrT = \beta , E] > 0.

(3) Update E \leftarrow 
\bigl\{ 
yI \in E : y\cup \scrT \not = \beta 

\bigr\} 
.

Output the distribution (\bfitY I | E) with associated probability Pr[\bfitY I \in E] if the latter
is nonzero.

The distributions output throughout the process are the \bfity c's; note that with the
associated probabilities, they indeed form a decomposition of \bfitY I . Each time (1) is
executed, we have

k < D\infty (\bfitY \cup \scrT | E) \leq D\infty (\bfitY I) + log(1/Pr[\bfitY I \in E]) \leq n3 + 1 + log(3/\varepsilon ) \leq 2n3.
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Also, any \bfity c = (\bfitY I | \bfitY \cup \scrT = \beta , E) output in (2) has the property that for any bucket
union T\ell not containing fixed buckets, D\infty (\bfity c

T\ell 
) \leq 1. To see this, first note that T\ell 

is disjoint from \cup \scrT since the latter buckets are fixed to \beta . If D\infty (\bfity c
T\ell 
) > 1 were

witnessed by some \gamma \in \{ 0, 1\} T\ell , then

Pr[\bfitY (\cup \scrT )\cup T\ell 
= \beta \gamma | E] = Pr[\bfitY \cup \scrT = \beta | E] \cdot Pr[\bfitY T\ell 

= \gamma | \bfitY \cup \scrT = \beta , E]

> 2 - (k| I| m1/2 - k) \cdot 2 - (| I| m1/2 - 1) = 2 - ((k+1)| I| m1/2 - (k+1)),

and so D\infty (\bfitY (\cup \scrT )\cup T\ell 
| E) > k + 1, which would contradict the maximality of k since

\{ T\ell 1 , . . . , T\ell k , T\ell \} is a set of pairwise disjoint bucket unions.

In the proofs of both Claim 4.7 and Claim 4.8, we use the chain rule for min-
entropy [41, Lem. 6.30], which states that if \bfita and \bfitb are any joint random variables,
then for any \delta > 0, with probability at least 1  - \delta over a \sim \bfita we have D\infty (\bfitb | \bfita =
a) \leq D\infty (\bfita \bfitb ) + log(1/\delta ).

Proof of Claim 4.7. Assume that for each coordinate i \in I, \bfity c
i has at most 2n3

fixed buckets. Since \bfitX I is 0.9-essentially-dense, \ell is 0.8-essentially-dense (for each
nonempty H \subseteq I,

D\infty (\ell H) \leq D\infty (\bfitX H) \leq 0.1| H| logm+ 1 = 0.2| H| log(m1/2) + 1

holds). Thus, the probability that T\ell hits fixed buckets in all coordinates in some set
H \subseteq I is at most the number of ways of choosing a fixed bucket from each of those
coordinates (\leq (2n3)| H| ) times the maximum probability that T\ell hits all the chosen

buckets (\leq 2 - (0.8| H| log(m1/2) - 1) since \ell is 0.8-essentially-dense). We can now calculate

Pr[T\ell hits \geq | I| /2 fixed buckets]

\leq 
\sum 

H\subseteq I,| H| =| I| /2

Pr[T\ell hits fixed buckets in coordinates H]

\leq 
\biggl( 
| I| 
| I| /2

\biggr) 
\cdot (2n3)| I| /2 \cdot 2 - (0.8(| I| /2) log(m1/2) - 1)

\leq 2| I| \cdot 21.5| I| logn+1 \cdot 2 - (51.2| I| logn - 1) (using m = n256)

\leq 2| I|  - 49.7| I| logn+2

\leq \varepsilon /6.

For convenience, we assumed above that | I| is even; if | I| is odd (including the case
| I| = 1), the same calculation works with \lceil | I| /2\rceil instead of | I| /2.

(Q2) follows by a direct application of the chain rule for min-entropy: with
probability at least 1 - \varepsilon /6 over \ell \sim \ell , we have

D\infty (\bfitr | \ell = \ell ) \leq D\infty (\bfitX I) + log(6/\varepsilon )

\leq 
\bigl( 
0.1| I| logm+ 1

\bigr) 
+
\bigl( 
5| I| log n+ 4

\bigr) 
\leq 0.25| I| log(m1/2).

By a union bound, with probability at least 1  - \varepsilon /3 over \ell , (Q1) and (Q2) hold
simultaneously.
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Proof of Claim 4.8. This is again a direct application of the chain rule for min-
entropy: with probability at least 1 - \varepsilon /3 over rI\ast \sim (\bfitr I\ast | \ell = \ell ), we have

D\infty (\bfitr I\prime | \ell = \ell , \bfitr I\ast = rI\ast ) \leq D\infty (\bfitr | \ell = \ell ) + log(3/\varepsilon )

\leq 
\bigl( 
0.25| I| log(m1/2)

\bigr) 
+

\bigl( 
5| I| log n+ 3

\bigr) 
\leq 0.6| I \prime | log(m1/2),

where the middle inequality uses (Q2), and the last inequality uses (Q1) (| I \prime | \geq | I| /2)
and m = n256.

4.6. Pointwise uniformity from parities.

Lemma 4.9 (pointwise uniformity from parities). If a random variable \bfitz J over
\{ 0, 1\} J satisfies

\bigm| \bigm| E\bigl[ 
\chi (\bfitz I)

\bigr] \bigm| \bigm| \leq 2 - 5| I| logn for every nonempty I \subseteq J , then \bfitz J is 1/n3-
pointwise-close to uniform.

Proof (from [21, sect. 2.2]). We let \varepsilon := 1/n3 and write \bfitz J as \bfitz throughout the
proof. We think of the distribution of \bfitz as a function \scrD : \{ 0, 1\} J \rightarrow [0, 1] and write it
in the Fourier basis as

\scrD (z) =
\sum 
I\subseteq J

\widehat \scrD (I)\chi I(z),

where \chi I(z) := ( - 1)\oplus (zI) and \widehat \scrD (I) := 2 - | J| \sum 
z \scrD (z)\chi I(z) = 2 - | J| \cdot E[\chi I(\bfitz )]. Note

that \widehat \scrD (\emptyset ) = 2 - | J| because \scrD is a distribution. Our assumption says that for all

nonempty I \subseteq J , 2| J| \cdot | \widehat \scrD (I)| \leq 2 - 5| I| logn, which is at most \varepsilon 2 - 2| I| log | J| . Hence,

2| J| 
\sum 

I \not =\emptyset | \widehat \scrD (I)| \leq \varepsilon 
\sum 
I \not =\emptyset 

2 - 2| I| log | J| = \varepsilon 

| J| \sum 
k=1

\biggl( 
| J | 
k

\biggr) 
2 - 2k log | J| 

\leq \varepsilon 

| J| \sum 
k=1

2 - k log | J| \leq \varepsilon .

We use this to show that
\bigm| \bigm| \scrD (z) - 2 - | J| 

\bigm| \bigm| \leq \varepsilon 2 - | J| for all z \in \{ 0, 1\} J , which proves the

lemma. To this end, let \scrU denote the uniform distribution (note that \widehat \scrU (I) = 0 for
all nonempty I \subseteq J) and let 1z denote the indicator for z defined by 1z(z) = 1 and
1z(z

\prime ) = 0 for z\prime \not = z (note that | \widehat 1z(I)| = 2 - | J| for all I). We can now calculate\bigm| \bigm| \scrD (z) - 2 - | J| \bigm| \bigm| = \bigm| \bigm| \langle 1z,\scrD \rangle  - \langle 1z,\scrU \rangle 
\bigm| \bigm| = | \langle 1z,\scrD  - \scrU \rangle | = 2| J| \cdot | \langle \widehat 1z, \widehat \scrD  - \widehat \scrU \rangle | 

\leq 2| J| \cdot 
\sum 
I \not =\emptyset 

| \widehat 1z(I)| \cdot | \widehat \scrD (I)| = \sum 
I \not =\emptyset 

| \widehat \scrD (I)| \leq \varepsilon 2 - | J| .

5. Applications. In this section, we collect some recent results in communication
complexity, which we can derive (often with simplifications) from our lifting theorem.

Classical vs. quantum. Anshu et al. [5] gave a nearly 2.5th power total function
separation between quantum and classical randomized protocols. Our lifting theorem
can reproduce this separation by lifting an analogous separation in query complexity
due to Aaronson, Ben-David, and Kothari [2]. Let us also mention that Aaronson
and Ambainis [1] conjectured that a slight generalization of Forrelation witnesses
an O(log n)-vs.-\~\Omega (n) quantum/classical query separation. If true, our lifting theorem
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implies that ``2.5"" can be improved to ``3"" above; see [2] for a discussion. (Such an
improvement is not black-box implied by the techniques of Anshu et al. [5].)

Raz [32] gave an exponential partial function separation between quantum and
classical randomized protocols. Our lifting theorem can reproduce this separation
by lifting, say, the Forrelation partial function [1], which witnesses a 1-vs.-\~\Omega (

\surd 
n)

separation for quantum/classical query complexity. However, qualitatively stronger
separations are known [26, 17] where the quantum protocol can be taken to be one-way
or even simultaneous.

Partition numbers. Anshu et al. [5] gave a nearly quadratic separation between
(the log of) the two-sided partition number (number of monochromatic rectangles
needed to partition the domain of F ) and randomized communication complexity.
This result now follows by lifting an analogous separation in query complexity due to
Ambainis, Kokainis, and Kothari [4].

In [19], a nearly quadratic separation was shown between (the log of) the one-sided
partition number (number of rectangles needed to partition F - 1(1)) and randomized
communication complexity. This separation question can be equivalently phrased as
proving randomized lower bounds for the Clique vs. Independent Set game [46]. This
result now follows by lifting an analogous separation in query complexity, obtained
in several papers [19, 3, 2]; it was previously shown using the lifting theorem of [21],
which requires a query lower bound in a model stronger than BPPdt.

Approximate Nash equilibria. Babichenko and Rubinstein [6] showed a randomized
communication lower bound for finding an approximate Nash equilibrium in a two-
player game. Their approach was to show a lower bound for a certain query version
of the PPAD-complete End-of-Line problem, and then lift this lower bound into
communication complexity using [21]. However, as in the above Clique vs. Independent
Set result, the application of [21] here requires that the query lower bound be established
for a model stronger than BPPdt, which required some additional busywork. Our
lifting theorem can be used to streamline their proof.

Direct sum. In [9], our lifting theorem has been applied to show that there exists
a total two-party function F such that BPPcc(F k) = \Theta (k log k \cdot BPPcc(F )) holds for

all k \leq 2n
O(1)

, answering a question of [16].

Acknowledgments. Thanks to Shalev Ben-David and Robin Kothari for quan-
tum references. Thanks to Anurag Anshu, Rahul Jain, Raghu Meka, Aviad Rubinstein,
and Henry Yuen for discussions.
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