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Abstract. Lifting theorems are theorems that relate the query complexity of a function f :
\{ 0, 1\} n \rightarrow \{ 0, 1\} to the communication complexity of the composed function f \circ gn for some ``gad-
get"" g : \{ 0, 1\} b \times \{ 0, 1\} b \rightarrow \{ 0, 1\} . Such theorems allow transferring lower bounds from query
complexity to the communication complexity, and have seen numerous applications in recent years.
In addition, such theorems can be viewed as a strong generalization of a direct-sum theorem for
the gadget g. We prove a new lifting theorem that works for all gadgets g that have logarithmic
length and exponentially-small discrepancy, for both deterministic and randomized communication
complexity. Thus, we significantly increase the range of gadgets for which such lifting theorems
hold. Our result has two main motivations: first, allowing a larger variety of gadgets may support
more applications. In particular, our work is the first to prove a randomized lifting theorem for
logarithmic-size gadgets, thus improving some applications of the theorem. Second, our result can
be seen as a strong generalization of a direct-sum theorem for functions with low discrepancy.
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1. Introduction.

1.1. Background. In this work, we prove new lifting theorems for a large family
of gadgets. Let f : \{ 0, 1\} n \rightarrow \{ 0, 1\} and g : \{ 0, 1\} b \times \{ 0, 1\} b \rightarrow \{ 0, 1\} be functions
(where g is referred to as a gadget). The block-composed function f \circ gn is the
function that takes n inputs (x1, y1), . . . , (xn, yn) for g and computes f \circ gn as

f \circ gn ((x1, y1), . . . , (xn, yn)) = f(g(x1, y1), g(x2, y2), . . . , g(xn, yn)) .

Lifting theorems are theorems that relate the communication complexity of f \circ gn to
the query complexity of f and the communication complexity of g.

More specifically, consider the following communication problem: Alice gets
x1, . . . , xn, Bob gets y1, . . . , yn, and they wish to compute the output of f \circ gn on
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their inputs. The natural protocol for doing so is the following: Alice and Bob jointly
simulate a decision tree of optimal height for solving f . Any time the tree queries
the ith bit, they compute g on (xi, yi) by invoking the best possible communication
protocol for g. A lifting theorem is a theorem that says that this natural protocol is
optimal.

We note that it is often desirable to consider the case where f is a search problem
with an arbitrary range rather than a boolean function (see section 2 for the definition
of search problems). Most of the known results, as well as the results of this work,
apply to this general case. However, for the simplicity of presentation, we focus for
now on the case where f is a boolean function.

Applications of lifting theorems. One important reason for why lifting theorems
are interesting is that they create a connection between query complexity and com-
munication complexity. This connection, besides being interesting in its own right,
allows us to transfer lower bounds and separations from query complexity (which is a
relatively simple model) to communication complexity (which is a significantly richer
model).

In particular, the first result of this form, due to Raz and McKenzie [35], proved
a lifting theorem from deterministic query complexity to deterministic communica-
tion complexity when g is the index function. They then used it to prove new lower
bounds on communication complexity by lifting query-complexity lower bounds. More
recently, G\"o\"os, Pitassi, and Watson [22] applied that theorem to separate the loga-
rithm of the partition number and the deterministic communication complexity of a
function, resolving a long-standing open problem. This too was done by proving such
a separation in the setting of query complexity and then lifting it to the setting of com-
munication complexity. This result stimulated a flurry of work on lifting theorems of
various kinds, such as lifting for zero-communication protocols [20], round-preserving
lifting theorems with applications to time-space trade-offs for proof complexity [10],
deterministic lifting theorems with other gadgets [8, 42], lifting theorems from random-
ized query complexity to randomized communication complexity [23], lifting theorems
for directed acyclic graph (DAG)-like protocols [17] with applications to monotone cir-
cuit lower bounds, lifting theorems for asymmetric communication problems [9] with
applications to data structures, a lifting theorem for the EQUALITY gadget [32],
lifting theorems for XOR functions with applications to the log-rank conjecture [24],
and lifting theorems for applications to monotone formula complexity, monotone span
programs, and proof complexity [21, 37, 33, 34]. There are also lifting theorems which
lift more analytic properties of the function like approximate degree due to Sherstov
[39] and independently due to Shi and Zhu [40].

In almost all known lifting theorems, the function f can be arbitrary while g is
usually a specific function (e.g., the index function). This raises the following natural
question: for which choices of g can we prove lifting theorems? This question is
interesting because usually the applications of lifting theorems work by reducing the
composed function f \circ gn to some other problem of interest, and the choice of the
gadget g affects the efficiency of such reductions.

In particular, applications of lifting theorems often depend on the size of the
gadget, which is the length b of the input to g. Both the deterministic lifting theorem
of Raz and McKenzie [35] and the randomized lifting theorem of G\"o\"os, Pitassi, and
Watson [23] use a gadget of very large size (polynomial in n). Reducing the gadget
size to a constant would have many interesting applications.

In the deterministic setting, the gadget size was recently improved to logarithmic
by the independent works of [8] and [42]. Moreover, [8, 29] showed the lifting to
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LIFTING USING LOW-DISCREPANCY GADGETS 173

work for a class of gadgets with a certain pseudorandom property rather than just
a single specific gadget. A gadget of logarithmic size was also obtained earlier in
lifting theorems for more specialized models, such as the work of [20]. However, the
randomized lifting theorem of G\"o\"os, Pitassi, and Watson [23] seemed to work only
with a specific gadget of polynomial size.

In this work, we prove a lifting theorem for a large family of gadgets, namely, all
functions g with logarithmic length and exponentially small discrepancy (see section
1.2 for details). Our theorem holds both in the deterministic and the randomized
setting. This allows for a considerably larger variety of gadgets; in particular, our
theorem is the first lifting theorem in the randomized setting that uses logarithmic-
size gadgets; it allows lifting with the inner-product gadget (previously known only
in the deterministic setting [8, 42]), and it is also the first lifting theorem that shows
that a random function can be used as a gadget.

We would like to point out that, although we reduce the gadget size to logarithmic
in this work, it is not enough to obtain the interesting applications a constant sized
gadget would have yielded. Nevertheless, our randomized lifting theorem still has
some applications. For example, our theorem can be used to simplify the lower bounds
of G\"o\"os and Jayram [18] on AND-OR trees and MAJORITY trees, since we can now
obtain them directly from the randomized query complexity lower bounds rather
than going through conical juntas. In addition, our theorem can be used to derive the
separation of randomized separation from partition number (due to [19]) for functions
with larger complexity (compared to their input length).

Lifting theorems as a generalization of direct-sum theorems. Lifting theorems can
also be motivated from another angle, which is particularly appealing in our case:
lifting theorems can be viewed as a generalization of direct-sum theorems. The direct-
sum question is a classical question in complexity theory, which asks whether perform-
ing a task on n independent inputs is n times harder than performing it on a single
input. When specialized to the setting of communication complexity, a direct-sum
theorem is a theorem that says that the communication complexity of a computing g
on n independent inputs is about n times larger than the communication complexity
of g. A related type of result, which is sometimes referred to as an ``XOR lemma,""
says that computing the XOR of the outputs of g on n independent inputs is about
m times larger than the communication complexity of g.

The direct-sum question for communication complexity has been raised in [26],
and has since attracted much attention. While we do not have a general direct-sum
theorem for all functions, many works have proved direct-sum theorems and XOR
lemmas for large families of functions [13, 38, 3, 31, 28, 2, 6, 4] as well as provided
counterexamples [13, 14, 16, 15].

Now, observe that lifting theorems are natural generalizations of direct-sum the-
orems and XOR lemmas; in particular, if we set f to be the identity function or the
parity function, we get a direct sum theorem or an XOR lemma for g, respectively.
More generally, a lifting theorem says that the communication complexity of com-
puting any function f of the outputs of g on independent inputs is larger than the
complexity of g by a factor that depends on the query complexity of f . This is per-
haps the strongest and most natural ``direct-sum-like theorem"" for g that one could
hope for.

From this perspective, it is natural to ask which functions g admit such a strong
theorem. The previous works of [35, 23] can be viewed as establishing this theorem
only for the index function. The works of [8, 29] have made further progress, estab-
lishing this theorem for a class of functions with satisfy certain hitting properties.
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174 CHATTOPADHYAY, FILMUS, KOROTH, MEIR, AND PITASSI

However, the latter property is somewhat nonstandard and ad hoc, and their theorem
holds only in the deterministic setting. In this work, we establish such theorems for
all functions g with low discrepancy, which is a standard and well-studied complexity
measure, and we do so in both the deterministic and the randomized setting.

1.2. Our results. In this work, we prove lifting theorems for gadgets of low
discrepancy. In what follows, we denote by Ddt and Dcc the deterministic query
complexity and communication complexity of a task, respectively, and by Rdt

\varepsilon and
Rcc

\varepsilon the randomized query complexity and (public-coin) communication complexity
with error probability \varepsilon , respectively. Given a search problem \scrS and a gadget g :
\{ 0, 1\} b \times \{ 0, 1\} b \rightarrow \{ 0, 1\} , it is easy to see that

Dcc(\scrS \circ gn) = O
\bigl( 
Ddt(\scrS ) \cdot b

\bigr) 
,

Rcc
\varepsilon (\scrS \circ gn) = O

\bigl( 
Rdt(\scrS ) \cdot b

\bigr) 
.

This upper bound is proved using the simple protocol discussed earlier: the party
simulates the optimal decision tree for \scrS , and whenever a query is made, the parties
compute g on the corresponding input in order to answer the query (which can be
done by communicating at most b + 1 bits). Our main result says that when g has
low discrepancy and b is at least logarithmic, that this upper bound is roughly tight.
In order to state this result, we first recall the definition of discrepancy.

Definition 1.1. Let \Lambda be a finite set, let g : \Lambda \times \Lambda \rightarrow \{ 0, 1\} be a function, and let
U, V be independent random variables that are uniformly distributed over \Lambda . Given a
combinatorial rectangle R \subseteq \Lambda \times \Lambda , the discrepancy of g with respect to R, denoted
discR(g), is defined as follows:

discR(g) = | Pr [g(U, V ) = 0 and (U, V ) \in R] - Pr [g(U, V ) = 1 and (U, V ) \in R]| .

The discrepancy of g, denoted disc(g), is defined as the maximum of discR(g) over all
combinatorial rectangles R \subseteq \Lambda \times \Lambda .

Discrepancy is a useful measure for the complexity of g and, in particular, it is
well known that for \varepsilon > 0,

Dcc(g) \geq Rcc
\varepsilon (g) \geq log

1 - 2 \cdot \varepsilon 
disc(g)

(see, e.g., [30]). We now state our main result.

Theorem 1.2 (main theorem). For every \eta > 0 there exists c = O( 1
\eta 2 \cdot log 1

\eta )

such that the following holds: let \scrS be a search problem that takes inputs from \{ 0, 1\} n,
and let g : \{ 0, 1\} b\times \{ 0, 1\} b \rightarrow \{ 0, 1\} be an arbitrary function such that disc(g) \leq 2 - \eta \cdot b

and such that b \geq c \cdot log n. Then

Dcc(\scrS \circ gn) = \Omega 
\bigl( 
Ddt(\scrS ) \cdot b

\bigr) 
,

and for every \varepsilon > 0 it holds that

Rcc
\varepsilon (\scrS \circ gn) = \Omega 

\bigl( \bigl( 
Rdt

\varepsilon \prime (\scrS ) - O(1)
\bigr) 
\cdot b
\bigr) 
,

where \varepsilon \prime = \varepsilon + 2 - \eta \cdot b/8.
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We note that our results are in fact more general, and preserve the round com-
plexity of \scrS among other things. See sections 4 and 5 for more details.

Remark 1.3. Note that our main theorem can be applied to a random function g :
\{ 0, 1\} b \times \{ 0, 1\} b \rightarrow \{ 0, 1\} , since such a function has a very low discrepancy. As noted
above, we believe that our theorem is the first theorem to allow the gadget to be a
random function.

Unifying deterministic and randomized lifting theorems. The existing proofs of
deterministic lifting theorems and randomized lifting theorems are quite different.
While both proofs rely on information-theoretic arguments, they measure informa-
tion in different ways. In particular, while the randomized lifting theorem of [23]
(following [20]) measures information using min-entropy, the deterministic lifting the-
orems of [35, 22, 8, 42] (following [12]) measure information using a notion known
as thickness (with [17] being a notable exception). A natural direction of further re-
search is to investigate if these disparate techniques can be unified. Indeed, a related
question was raised by [20], who asked if min-entropy based techniques could be used
to prove (or simplify the existing proof of) Raz--McKenzie style deterministic lifting
theorems.

Our work answers this question affirmatively: we prove both the deterministic
and randomized lifting theorems using the same strategy. In particular, both proofs
measure information using min-entropy. In doing so, we unify both lifting theorems
under the same framework.

1.3. Our techniques. We turn to describe the high-level ideas that underlie
the proof of our main theorem. Following the previous works, we use a ``simulation
argument"": we show that given a protocol \Pi that solves \scrS \circ gn with communication
complexity C, we can construct a decision tree T that solves \scrS with query complex-
ity O(Cb ). The decision tree T works by simulating the action of the protocol \Pi 
(hence the name simulation argument). We now describe this simulation in more
detail, following the presentation of [23].

The simulation argument. For simplicity of notation, let us denote \Lambda = \{ 0, 1\} b, so
g is a function from a ``block"" in \Lambda \times \Lambda to \{ 0, 1\} . Let G = gn : \Lambda n \times \Lambda n \rightarrow \{ 0, 1\} n be
the function that takes n disjoint blocks and computes the outputs of g on all of them.
We assume that we have a protocol \Pi that solves \scrS \circ G with complexity C, and would
like to construct a decision tree T that solves \scrS with complexity O(Cb ). The basic
idea is that given an input z \in \{ 0, 1\} n, the tree T simulates the action of \Pi on the
random inputs (X,Y ) that are uniformly distributed over G - 1(z). Clearly, it holds
that \scrS \circ G(X,Y ) = \scrS (z), so this simulation, if done right, outputs the correct answer.

The core issue in implementing such a simulation is the following question: how
can T simulate the action of \Pi on (X,Y ) \in G - 1(z) without knowing z? The answer is
that as long as the protocol \Pi has transmitted less than \varepsilon \cdot b bits of information about
every block (Xi, Yi) (for some specific \varepsilon > 0), the distribution of (X,Y ) is similar
to the uniform distribution in a certain sense (that will be formalized soon). Thus,
the tree T can pretend that (X,Y ) are distributed uniformly, and simulate the action
of \Pi on such inputs, which can be done without knowing z.

This idea can be implemented as long as the protocol has transmitted less than
\varepsilon \cdot b bits of information about every block (Xi, Yi). However, at some point, the
protocol may transmit more than \varepsilon \cdot b bits of information about some blocks. Let
I \subseteq [n] denote the set of these blocks. At this point, it is no longer true that the
distribution of (X,Y ) is similar to the uniform distribution. However, it can be shown
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that the distribution of (X,Y ) is similar to the uniform distribution conditioned on
gI(XI , YI) = zI . Thus, the tree T queries the bits in zI , and can now continue
the simulation of \Pi on (X,Y ) \in G - 1(z) by pretending that (X,Y ) are distributed
uniformly conditioned on gI(XI , YI) = zI . The tree proceeds in this way, adding
blocks to I as necessary, until the protocol \Pi ends, at which point T halts and outputs
the same output as \Pi .

It remains to show that the query complexity of T is at most O(Cb ). To this
end, observe that the query complexity of T is exactly the size of the set I at the
end of the simulation. Moreover, recall that the set I is the set of blocks on which
the protocol transmitted at least \varepsilon \cdot b bits of information. Hence, at any given point,
the protocol must have transmitted at least \varepsilon \cdot b \cdot | I| bits. On the other hand, we
know by assumption that the protocol never transmitted more than C bits. This
implies that \varepsilon \cdot b \cdot | I| \leq C and therefore the query complexity of the tree T is at most
| I| \leq C

\varepsilon \cdot b = O(Cb ). This concludes the argument.
Our contribution. In order to implement the foregoing simulation argument, there

are two technical issues that need to be addressed and are relevant at this point:
\bullet The uniform marginals issue: In the above description, we argued that as long
as the protocol has not transmitted too much information, the distribution
of (X,Y ) is ``similar to the uniform distribution."" The question is how do we
formalize this idea. This issue was dealt with implicitly in several works in
the lifting literature since [35], and was made explicit in [23] as the ``uniform
marginals lemma"": if every set of blocks in (X,Y ) has sufficient min-entropy,
then each of the marginalsX,Y on its own is close to the uniform distribution.
In [23], they proved this lemma for the case where g is the index function,
and in [20] a very similar lemma was proved for the case where g is the inner
product function.

\bullet The conditioning issue: As we described above, when the protocol transmits
too much information about a set of blocks I \subseteq [n], the tree T queries zI and
conditions the distribution of (X,Y ) on the event that gI(XI , YI) = zI . In
principle, this conditioning may reveal information on (X[n] - I , Y[n] - I), which
might reduce their min-entropy and ruin their uniform-marginals property.
In order for the simulation argument to work, one needs to show that this
cannot happen, and the conditioning will never reveal too much information
about (X[n] - I , Y[n] - I).
In the works of [35, 42, 23] this issue was handled by arguments that are
tailored to the index and inner product functions. The work of [8] gave this
issue a more general treatment, by identifying an abstract property of g that
prevents the conditioning from revealing too much information. However, as
discussed above, this abstract property is somewhat ad hoc, and only works
for deterministic simulation.

Our contribution is dealing with both issues in the general setting where g is an
arbitrary low-discrepancy gadget. In order to deal with the first issue, we prove a
uniform marginals lemma for such gadgets g: this is relatively easy, since the proof
of [20] for the inner product gadget turns out to generalize in a straightforward way
to arbitrary low-discrepancy gadgets.

The core of this work is in dealing with the conditioning issue. Our main technical
lemma says that as long as every set of blocks in (X,Y ) has sufficient min-entropy,
there are only a few possible values of X,Y that are ``dangerous"" (in the sense that
they may lead the conditioning to leak too much information). We now modify
the simulation such that it discards these dangerous values before performing the

D
ow

nl
oa

de
d 

05
/1

9/
24

 to
 1

28
.9

5.
10

4.
10

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LIFTING USING LOW-DISCREPANCY GADGETS 177

conditioning. Since there are only a few of those dangerous values, discarding them
does not reveal too much information on X and Y , and the simulation can proceed
as before.

1.4. Open problems. The main question that arises from this work is how
much more general can the gadget g be? As was discussed in section 1.1, lifting
theorems can be viewed as a generalization of direct-sum theorems. In the setting of
randomized communication complexity, it is known that the ``ability of g to admit
a direct-sum theorem"" is characterized exactly by a complexity measure called the
information cost of g (denoted \bfitI \bfitC (g)). In particular, the complexity of computing a
function g on n independent copies is \approx n \cdot \bfitI \bfitC (g) [2, 5, 4]. This leads to the natural
conjecture that a lifting theorem should hold for every gadget g that has sufficiently
high information cost.

Conjecture 1.4. There exists a constant c > 0 such that the following holds. Let
\scrS be any search problem that takes inputs from \{ 0, 1\} n, and let g : \{ 0, 1\} b \times \{ 0, 1\} b \rightarrow 
\{ 0, 1\} be an arbitrary function such that \bfitI \bfitC (g) \geq c \cdot log n. Then

Rcc
\varepsilon (\scrS \circ gn) = \Omega 

\bigl( 
Rdt

\varepsilon \prime (\scrS ) \cdot \bfitI \bfitC (g)
\bigr) 
.

Proving this conjecture would give us a nearly complete understanding of the
lifting phenomenon which, in addition to being interesting in its own right, would
likely lead to many applications. In particular, this conjecture implies our result,
since it is known that log 1

disc(g) (roughly) lower bounds the information cost of g [27].

Conjecture 1.4 is quite ambitious. As intermediate goals, one could attempt to
prove such a lifting theorem for other complexity measures that are stronger than
discrepancy and weaker than information cost (see [25, 27] for several measures of
this kind). To begin with, one could consider the well-known corruption bound
of [43, 1, 36]: could we prove a lifting theorem for an arbitrary gadget g that has
a low corruption bound? A particularly interesting example for such a gadget is the
disjointness function---indeed, proving a lifting theorem for the disjointness gadget
would be interesting in its own right and would likely have applications, in addition
to being a step toward Conjecture 1.4.

An even more modest intermediate goal is to gain a better understanding of
lifting theorems with respect to discrepancy. For starters, our result only holds1 for
gadgets whose discrepancy is exponentially vanishing in the gadget size. Can we
prove a lifting theorem for gadgets g with larger discrepancy? In particular, since the
randomized communication complexity of g is lower bounded by \Omega (log 1

disc(g) ), the

following conjecture comes to mind.

Conjecture 1.5. There exists a constant c > 0 such that the following holds. Let
\scrS be any search problem that takes inputs from \{ 0, 1\} n, and let g : \{ 0, 1\} b \times \{ 0, 1\} b \rightarrow 
\{ 0, 1\} be an arbitrary function such that log 1

disc(g) \geq c \cdot log n. Then

Rcc
\varepsilon (\scrS \circ gn) = \Omega 

\biggl( 
Rdt

\varepsilon \prime (\scrS ) \cdot log
1

disc(g)

\biggr) 
.

Another interesting direction is to consider discrepancy with respect to other
distributions. The definition of discrepancy we gave above (Definition 1.1) is a special
case of a more general definition, in which the random variables (U, V ) are distributed

1More accurately, our result can be applied to gadgets with larger discrepancy, but then the
gadget size has to be larger than logarithmic.
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according to some fixed distribution \mu over \Lambda \times \Lambda . Thus, our result works only when \mu 
is the uniform distribution. Can we prove a lifting theorem that holds for an arbitrary
choice of \mu ? While we have not verified it, we believe that our proof can yield a
lifting theorem that works whenever \mu is a product distribution (after some natural
adaptations). However, proving such a lifting theorem for nonproduct distributions
seems to require new ideas. We note that direct-sum theorems for discrepancy have
been proved by [38, 31], and proving Conjecture 1.4 (and extending it to an arbitrary
distribution \mu ) seems like a natural extension of their results.

Yet another interesting direction is to consider the lifting analogue of strong direct
product theorems. Such theorems say that when we compute g on n independent
inputs, then not only does the communication complexity increase by a factor of n,
but the success probability also drops exponentially in n (see, e.g., [38, 28, 11, 6]).
A plausible analogue for lifting theorems is to conjecture that the success probability
of computing \scrS \circ gn drops exponentially in the query complexity of \scrS . It would be
interesting to see a result along these lines.

Finally, there remains the major open problem of the lifting literature to prove a
lifting theorem that uses gadgets of constant size.

Organization of the paper. In section 2, we provide the required preliminaries. In
section 3, we set up the lifting machinery that is used in both the deterministic and
the randomized lifting results, including our uniform marginals lemma and our main
technical lemma. We prove the deterministic part of our main theorem in section 4,
and the randomized part of our main theorem in section 5.

2. Preliminaries. We assume familiarity with the basic definitions of communi-

cation complexity (see, e.g., [30]). For any n \in \BbbN , we denote [n]
def
= \{ 1, . . . , n\} . Given

a boolean random variable V , we denote the bias of V by

bias(V )
def
= | Pr [V = 0] - Pr [V = 1]| .

Given an alphabet \Lambda and a set I \subseteq [n], we denote by \Lambda I the set of strings of length | I| 
which are indexed by I. Given a string x \in \Lambda n and a set I \subseteq [n], we denote by xI the
projection of x onto the coordinates in I (in particular, x\emptyset is defined to be the empty
string). Given a boolean function g : \scrX \times \scrY \rightarrow \{ 0, 1\} and a set I \subseteq [n], we denote by

gI : \scrX I \times \scrY I \rightarrow \{ 0, 1\} I the function that takes as inputs | I| pairs from \scrX \times \scrY that are

indexed by I, and outputs the string in \{ 0, 1\} I whose ith bit is the output of g on the

ith pair. In particular, we denote gn
def
= g[n], so gn takes as inputs x \in \scrX n, y \in \scrY n

and outputs the binary string

gn(x, y)
def
= (g(x1, y1), . . . , g(xn, yn)) .

For every I \subseteq [n], we denote by g\oplus I : \scrX I \times \scrY I \rightarrow \{ 0, 1\} the function that given
x \in \scrX I and y \in \scrY I , outputs the parity of the string gI(x, y).

Search problems. Given a finite set of inputs \scrI and a finite set of outputs \scrO , a
search problem \scrS is a relation between \scrI and \scrO . Given z \in \scrI , we denote by \scrS (z) the
set of outputs o \in \scrO such that (z, o) \in \scrS . Without loss of generality, we may assume
that \scrS (z) is always nonempty, since otherwise we can set \scrS (z) = \{ \bot \} , where \bot is
some special failure symbol that does not belong to \scrO .

Intuitively, a search problem \scrS represents the following task: given an input z \in \scrI ,
find a solution o \in \scrS (z). In particular, if \scrI = \scrX \times \scrY for some finite sets \scrX ,\scrY , we say
that a deterministic protocol \Pi solves \scrS if for every input (x, y) \in \scrI , the output of \Pi 
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is in \scrS (x, y). We say that a randomized protocol \Pi solves \scrS with error \varepsilon if for every
input (x, y) \in \scrI , the output of \Pi is in \scrS (x, y) with probability at least 1 - \varepsilon .

We denote the deterministic communication complexity of a search problem \scrS 
with Dcc(\scrS ). Given \varepsilon > 0, we denote by Rcc

\varepsilon (\scrS ) the randomized (public-coin) com-
munication complexity of \scrS with error \varepsilon (i.e., the minimum worst-case complexity of
a randomized protocol that solves \scrS with error \varepsilon ).

Given a search problem \scrS \subseteq \{ 0, 1\} n \times \scrO , we denote by \scrS \circ gn \subseteq (\scrX n \times \scrY n)\times \scrO 
the search problem that satisfies for every x \in \scrX n and y \in \scrY n that \scrS \circ gn(x, y) =
\scrS (gn(x, y)).

2.1. Decision trees. Informally, a decision tree is an algorithm that solves a
search problem \scrS \subseteq \{ 0, 1\} n \times \scrO by querying the individual bits of its input. The tree
is computationally unbounded, and its complexity is measured by the number of bits
it queried.

Formally, a deterministic decision tree T from \{ 0, 1\} n to \scrO is a binary tree in
which every internal node is labeled with a coordinate in [n] (which represents a
query), every edge is labeled by a bit (which represents the answer to the query), and
every leaf is labeled by an output in \scrO . Such a tree computes a function from \{ 0, 1\} n
to \scrO in the natural way, and with a slight abuse of notation, we denote this function
also as T . The query complexity of T is the depth of the tree. We say that a
tree T solves a search problem \scrS \subseteq \{ 0, 1\} n \times \scrO if for every z \in \{ 0, 1\} n it holds
that T (z) \in \scrS (z). The deterministic query complexity of \scrS , denoted Ddt(\scrS ), is the
minimal query complexity of a decision tree that solves \scrS .

A randomized decision tree T is a random variable that takes deterministic deci-
sion trees as values. The query complexity of T is the maximal depth of a tree in the
support of T . We say that T solves a search problem \scrS \subseteq \{ 0, 1\} n \times \scrO with error \varepsilon if
for every z \in \{ 0, 1\} n it holds that

Pr [T (z) \in \scrS (z)] \geq 1 - \varepsilon .

The randomized query complexity of \scrS with error \varepsilon , denoted Rdt
\varepsilon , is the minimal query

complexity of a randomized decision tree that solves \scrS with error \varepsilon . Again, when we
omit \varepsilon , it is assumed to be 1

3 .

2.1.1. Parallel decision trees. Our lifting theorems have the property that
they preserve the round complexity of protocols, which is useful for some applica-
tions [10]. In order to define this property, we need a notion of a decision tree that
has an analogue of ``round complexity."" Such a notion, due to [41], is called a paral-
lel decision tree. Informally, a parallel decision tree is a decision tree that works in
``rounds,"" where in each round multiple queries are issued simultaneously. The round
complexity of the tree is the number of rounds, whereas the query complexity is the
total number of queries issued.

Formally, a deterministic parallel decision tree T from \{ 0, 1\} n to \scrO is a rooted
tree in which every internal node is labeled with a set I \subseteq [n] (representing the queries
issued simultaneously at this round) and has degree 2| I| . The edges going out of such

a node are labeled with all the possible assignments in \{ 0, 1\} I , and every leaf is labeled
by some output o \in \scrO . As before, such a tree naturally computes a function that is
denoted by T , and it solves a search problem \scrS \subseteq \{ 0, 1\} n \times \scrO if T (z) \in \scrS (z) for all
z \in \{ 0, 1\} n. The depth of such a tree is now the analogue of the number of rounds in
a protocol. The query complexity of T is defined as the maximum, over all leaves \ell ,
of the sum of the sizes of the sets I that are labeling the vertices on the path from the
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root to \ell . A randomized parallel decision tree is defined analogously to the definition
of randomized decision trees above.

2.2. Fourier analysis. Given a set S \subseteq [m], the character \chi S is the function
from \{ 0, 1\} m to \BbbR that is defined by

\chi S(z)
def
= ( - 1)

\bigoplus 
i\in S zi .

Here, if S = \emptyset then we define
\bigoplus 

i\in S zi = 0. Given a function f : \{ 0, 1\} m \rightarrow \BbbR , its
Fourier coefficient \^f(S) is defined as

\^f(S)
def
=

1

2m

\sum 
z\in \{ 0,1\} m

f(z) \cdot \chi S(z).

It is a standard fact of Fourier analysis that f can be written as

(1) f(z) =
\sum 

S\subseteq [m]

\^f(S) \cdot \chi S(z).

We have the following useful observation.

Fact 2.1. Let Z be a random variable taking values in \{ 0, 1\} m, and let \mu :
\{ 0, 1\} m \rightarrow \BbbR be its density function. Then, for every set S \subseteq [m] it holds that

| \^\mu (S)| = 2 - m \cdot bias

\Biggl( \bigoplus 
i\in S

Zi

\Biggr) 
.

In particular, \^\mu (\emptyset ) = 2 - m.

Proof. Let S \subseteq [m]. It holds that

| \^\mu (S)| = 2 - m \cdot 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

z\in \{ 0,1\} m
\mu (z) \cdot \chi S(z)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
= 2 - m \cdot 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

z\in \{ 0,1\} m
\mu (z) \cdot ( - 1)

\bigoplus 
i\in S zi

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
= 2 - m \cdot 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

z\in \{ 0,1\} m:
\bigoplus 

i\in S zi=0

\mu (z) - 
\sum 

z\in \{ 0,1\} m:
\bigoplus 

i\in S zi=1

\mu (z)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
= 2 - m \cdot 

\bigm| \bigm| \bigm| \bigm| \bigm| Pr
\Biggl[ \bigoplus 
i\in S

Zi = 0

\Biggr] 
 - Pr

\Biggl[ \bigoplus 
i\in S

Zi = 1

\Biggr] \bigm| \bigm| \bigm| \bigm| \bigm| 
= 2 - m \cdot bias

\Biggl( \bigoplus 
i\in S

Zi

\Biggr) 
,
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as required. The ``in particular"" part follows by noting that in the case of S = \emptyset , the
character \chi S is the constant function 1, and recalling that the sum of \mu (z) over all
z's is 1.

2.3. Probability. Given two distributions \mu 1, \mu 2 over a finite sample space \Omega ,
the statistical distance (or total variation distance) between \mu 1 and \mu 2 is

| \mu 1  - \mu 2| = max
\scrE \subseteq \Omega 

\{ | \mu 1(\scrE ) - \mu 2(\scrE )| \} .

It is not hard to see that the maximum is attained when \scrE consists of all the values \omega \in 
\Omega such that \mu 1(\omega ) > \mu 2(\omega ). We say that \mu and \mu 2 are \varepsilon -close if | \mu  - \mu 2| \leq \varepsilon . The
min-entropy of a random variable X, denoted H\infty (X), is the largest number k \in \BbbR 
such that for every value x it holds that

Pr [X = x] \leq 2 - k.

Min-entropy has the following easy-to-prove properties.

Fact 2.2. Let X be a random variable and let \scrE be an event. Then, H\infty (X| \scrE ) \geq 
H\infty (X) - log 1

Pr[\scrE ] .

Fact 2.3. Let X1, X2 be random variables taking values from sets \scrX 1,\scrX 2, respec-
tively. Then, H\infty (X1) \geq H\infty (X1, X2) - log | \scrX 2| .

We say that a distribution is k-flat if it is uniformly distributed over a subset of
the sample space of size at least 2k. The following standard fact is useful.

Fact 2.4. If a random variable X has min-entropy k, then its distribution is a
convex combination of k-flat distributions.

2.3.1. Vazirani's lemma. Vazirani's lemma is a useful result which says that
a random string is close to being uniformly distributed if the XOR of every set of bits
in the string has a small bias. We use the following variant of the lemma due to [20].

Lemma 2.5 ([20]). Let \varepsilon > 0, and let Z be a random variable taking values
in \{ 0, 1\} m. If for every nonempty set S \subseteq [m] it holds that

(2) bias

\Biggl( \bigoplus 
i\in S

Zi

\Biggr) 
\leq \varepsilon \cdot (2 \cdot m)

 - | S| 
,

then for every z \in \{ 0, 1\} m it holds that

(1 - \varepsilon ) \cdot 1

2m
\leq Pr [Z = z] \leq (1 + \varepsilon ) \cdot 1

2m
.
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Proof. Let \mu : \{ 0, 1\} m \rightarrow \BbbR be the density function of Z, and let z \in \{ 0, 1\} m. By
(1) it holds that

\bigm| \bigm| \mu (z) - 2 - m
\bigm| \bigm| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

S\subseteq [m]

\^\mu (S) \cdot \chi S(z) - 2 - m

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
(\^\mu (\emptyset ) = 2 - m by Fact 2.1) =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

S\subseteq [m]:S \not =\emptyset 

\^\mu (S) \cdot \chi S(z)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
(since | \chi S(z)| is always 1) \leq 

\sum 
S\subseteq [m]:S \not =\emptyset 

| \^\mu (S)| 

(Fact 2.1) = 2 - m \cdot 
\sum 

S\subseteq [m]:S \not =\emptyset 

bias

\Biggl( \bigoplus 
i\in S

Zi

\Biggr) 

(inequality (2)) \leq 2 - m \cdot 
\sum 

S\subseteq [m]:S \not =\emptyset 

\varepsilon \cdot (2 \cdot m)
 - | S| 

= \varepsilon \cdot 2 - m \cdot 
m\sum 
i=1

\biggl( 
m

i

\biggr) 
\cdot (2 \cdot m)

 - i

\leq \varepsilon \cdot 2 - m \cdot 
m\sum 
i=1

mi \cdot (2 \cdot m)
 - i

\leq \varepsilon \cdot 2 - m \cdot 
m\sum 
i=1

2 - i

\leq \varepsilon \cdot 2 - m,

as required.

Lemma 2.5 says that if the bias of
\bigoplus 

i\in S Zi is small for every S, then Z is close
to being uniformly distributed. It turns out that if the latter assumption holds only
for large sets S, we can still deduce something useful, namely, that the min-entropy
of Z is high.

Lemma 2.6. Let t \in \BbbN be such that t \geq 1, and let Z be a random variable taking
values in \{ 0, 1\} m. If for every set S \subseteq [m] such that | S| \geq t it holds that

bias

\Biggl( \bigoplus 
i\in S

Zi

\Biggr) 
\leq (2 \cdot m)

 - | S| 
,

then H\infty (Z) \geq m - t logm - 1.

Proof. Observe that if m = 1 then the bound holds vacuously, so we may assume
that m \geq 2. Let \mu : \{ 0, 1\} m \rightarrow \BbbR be the density function of Z, and let z \in \{ 0, 1\} m.
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By equality (1) it holds that

\mu (z) =
\sum 

S\subseteq [m]

\^\mu (S) \cdot \chi S(z)

(since | \chi S(z)| is always 1) \leq 
\sum 

S\subseteq [m]

| \^\mu (S)| 

(Fact 2.1) \leq 2 - m \cdot 
\sum 

S\subseteq [m]

bias(\oplus i\in SZi)

\leq 2 - m

\cdot 

\left(  \sum 
S\subseteq [m]:| S| <t

bias(\oplus i\in SZi) +
\sum 

S\subseteq [m]:| S| \geq t

bias(\oplus i\in SZi)

\right)  .

We now bound each of the two terms separately. The term for sets S whose size is at
least t can be upper bounded by 1 using exactly the same calculation as in the proof
of Lemma 2.5. In order to upper bound the term for sets whose size is less than t,
observe that bias(\oplus i\in SZi) \leq 1 for every S \subseteq [m] and therefore

\sum 
S\subseteq [m]:| S| <t

bias(\oplus i\in SZi) \leq 
t - 1\sum 
i=0

\biggl( 
m

i

\biggr) 

\leq 
t - 1\sum 
i=0

mi

=
mt  - 1

m - 1

(since m \geq 2) \leq mt  - 1.

It follows that

\mu (z) \leq 2 - m \cdot 
\bigl[ \bigl( 
mt  - 1

\bigr) 
+ 1
\bigr] 

= 2 - (m - t\cdot logm).

Thus, H\infty (Z) \geq m - t \cdot logm as required. Note that this bound is a bit stronger than
claimed in the lemma: indeed, we only need the `` - 1"" term in the lemma in order to
deal with the case where m = 1.

2.3.2. Coupling. Let \mu 1, \mu 2 be two distributions over sample spaces \Omega 1,\Omega 2. A
coupling of \mu 1 and \mu 2 is a distribution \nu over the sample space \Omega 1\times \Omega 2 whose marginal
over the first coordinate is \mu 1 and whose marginal over the second coordinate is \mu 2.
In the case where \Omega 1 = \Omega 2 = \Omega , the following standard fact allows us to use couplings
to study the statistical distance between \mu 1 and \mu 2.

Fact 2.7. Let \mu 1, \mu 2 be two distributions over a sample space \Omega . The statistical
distance between \mu 1 and \mu 2 is equal to the minimum, over all couplings \nu of \mu 1 and \mu 2,
of

Pr
(X,Y )\leftarrow \nu 

[X \not = Y ] .

In particular, we can upper bound the statistical distance between \mu 1 and \mu 2 by
constructing a coupling \nu in which the probability that X \not = Y is small.
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2.4. Prefix-free codes. A set of strings C \subseteq \{ 0, 1\} \ast is called a prefix-free code
if no string in C is a prefix of another string in C. Given a string w \in \{ 0, 1\} \ast , we
denote its length by | w| . We use the following simple corollary of Kraft's inequality.

Fact 2.8. Let C \subseteq \{ 0, 1\} \ast be a finite prefix-free code, and let W be a random
string taking values from C. Then, there exists a string w \in C such that Pr [W = w] \geq 
1

2| w| .

For completeness, we provide the following simple proof of 2.8 that does not rely
on Kraft's inequality.

Proof. Let n be the maximal length of a string in C, and let W \prime be a random
string in \{ 0, 1\} n that is sampled according to the following process: sample a string

w from W , choose a uniformly distributed string z \in \{ 0, 1\} n - | w| , and set W \prime = w \circ z
(where here \circ denotes string concatenation).

By a simple averaging argument, there exists a string w\prime \in \{ 0, 1\} n such that
Pr [W \prime = w\prime ] \geq 1

2n . Since C is a prefix-free code, there exists a unique prefix w of w\prime 

that is in C. The definition of W \prime implies that

Pr [W \prime = w\prime ] = Pr [W = w] \cdot 1

2n - | w| 
,

because the only way the string w\prime could be sampled is by first sampling w and then
sampling z to be the rest of w\prime (again, since C is a prefix-free code). Hence, it follows
that

Pr [W = w] \cdot 1

2n - | w| 
\geq 1

2n
,

Pr [W = w] \geq 1

2| w| 
,

as required.

2.5. Discrepancy. We start by recalling the definition of discrepancy.

Definition 1.1. Let \Lambda be a finite set, let g : \Lambda \times \Lambda \rightarrow \{ 0, 1\} be a function, and let
U, V be independent random variables that are uniformly distributed over \Lambda . Given a
combinatorial rectangle R \subseteq \Lambda \times \Lambda , the discrepancy of g with respect to R, denoted
discR(g), is defined as follows:

discR(g) = | Pr [g(U, V ) = 0 and (U, V ) \in R] - Pr [g(U, V ) = 1 and (U, V ) \in R]| .

The discrepancy of g, denoted disc(g), is defined as the maximum of discR(g) over all
combinatorial rectangles R \subseteq \Lambda \times \Lambda .

Let g : \Lambda \times \Lambda \rightarrow \{ 0, 1\} be a function with discrepancy at most | \Lambda |  - \eta . Such func-
tions g satisfy the following ``extractor-like"" property. In what follows, the parameter
\lambda controls bias (g(X,Y )).

Lemma 2.9. Let X,Y be independent random variables taking values in \Lambda such
that H\infty (X) +H\infty (Y ) \geq (2 - \eta + \lambda ) \cdot log | \Lambda | . Then,

bias (g(X,Y )) \leq | \Lambda |  - \lambda .

Proof. By Fact 2.4, it suffices to consider the case where X and Y have flat
distributions. Let A,B \subseteq \Lambda be the sets over which X,Y are uniformly distributed,
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and denote R
def
= A \times B. By the assumption on the min-entropies of X and Y , it

holds that | R| \geq | \Lambda | 2 - \eta +\lambda 
.

Let U, V be random variables that are uniformly distributed over \Lambda . Then, X
and Y are distributed like U | U \in A and V | V \in B, respectively. It follows that

bias (g(X,Y )) = | Pr [g(X,Y ) = 0] - Pr [g(X,Y ) = 1]| 
= | Pr [g(U, V ) = 0| (U, V ) \in R] - Pr [g(U, V ) = 1| (U, V ) \in R]| 

=
discR(g)

Pr [(U, V ) \in R]

\leq | \Lambda |  - \eta 

Pr [(U, V ) \in R]

=
| \Lambda |  - \eta 

| R| / | \Lambda | 2

\leq | \Lambda |  - \eta 

| \Lambda |  - \eta +\lambda 

= | \Lambda |  - \lambda ,

as required.

Using Lemma 2.9, we can obtain the following sampling property, which says
that with high probability X takes a value x for which bias (g(x, Y )) is small. In
what follows, the parameter \lambda controls bias (g(x, Y )), the parameter \gamma controls the
error probability, and recall that \eta is the parameter that controls the discrepancy of g
(i.e., disc(g) \leq 2 - \eta \cdot b).

Lemma 2.10. Let \gamma , \lambda > 0. Let X,Y be independent random variables taking
values in \Lambda such that

H\infty (X) +H\infty (Y ) \geq (2 - \eta + \gamma + \lambda ) \cdot log | \Lambda | + 1.

Then, the probability that X takes a value x \in \Lambda such that

bias (g(x, Y )) > | \Lambda |  - \lambda 

is less than | \Lambda |  - \gamma .
Proof. For every x \in \Lambda , denote

px
def
= Pr [g(x, Y ) = 1] .

Using this notation, our goal is to prove that

Pr
X

\biggl[ \bigm| \bigm| \bigm| \bigm| pX  - 1

2

\bigm| \bigm| \bigm| \bigm| \leq 1

2
| \Lambda |  - \lambda 

\biggr] 
< | \Lambda |  - \gamma .

We will prove that the probability that pX > 1
2 +

1
2 | \Lambda | 

 - \lambda 
is less than 1

2 \cdot | \Lambda | 
 - \gamma 

, and a

similar proof can be used to show that the probability that pX < 1
2  - 1

2 | \Lambda | 
 - \lambda 

is less

than 1
2 \cdot | \Lambda |  - \gamma . The required result will then follow by the union bound.

Let \scrE \subseteq \Lambda be the set of values x such that px > 1
2 + 1

2 | \Lambda | 
 - \lambda 

. Suppose for the

sake of contradiction that Pr [X \in \scrE ] \geq 1
2 \cdot | \Lambda |  - \gamma . It clearly holds that

(3) Pr [g(X,Y ) = 1| X \in \scrE ] > 1

2
+

1

2
| \Lambda |  - \lambda .
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186 CHATTOPADHYAY, FILMUS, KOROTH, MEIR, AND PITASSI

On the other hand, it holds that

H\infty (X| X \in \scrE ) \geq H\infty (X) - log
1

Pr [X \in \scrE ]
(by assumption on \scrE and Fact 2.2) \geq H\infty (X) - \gamma \cdot log | \Lambda |  - 1.

This implies that

H\infty (X| X \in \scrE ) +H\infty (Y ) \geq H\infty (X) +H\infty (Y ) - \gamma \cdot log | \Lambda |  - 1

\geq (2 - \eta ) \cdot log | \Lambda | + \lambda \cdot log | \Lambda | .

By Lemma 2.9, it follows that

Pr [g(X,Y ) = 1| X \in \scrE ] \leq 1

2
+

1

2
| \Lambda |  - \lambda ,

which contradicts inequality (3). We reached a contradiction, and therefore the prob-

ability that pX > 1
2 + 1

2 | \Lambda | 
 - \lambda 

is less than 1
2 \cdot | \Lambda |  - \gamma , as required.

Recall that g\oplus I(x, y) is the function from \scrX I \times \scrY I to \{ 0, 1\} that outputs the
parity of the string gI(x, y). We would like to prove results like Lemmas 2.9 and 2.10
for functions of the form g\oplus I . To this end, we use the following XOR lemma for
discrepancy due to [31].

Theorem 2.11 (see [31]). Let m \in \BbbN . Then,

(disc(g))
m \leq disc(g\oplus m) \leq (64 \cdot disc(g))m .

By combining Theorem 2.11 with Lemmas 2.9 and 2.10, we obtain the following
results.

Corollary 2.12. Let \lambda > 0, n \in \BbbN , and S \subseteq [n]. Let X,Y be independent
random variables taking values in \Lambda S such that

H\infty (X) +H\infty (Y ) \geq 
\biggl( 
2 +

6

log | \Lambda | 
 - \eta + \lambda 

\biggr) 
\cdot | S| \cdot log | \Lambda | .

Then,

bias
\bigl( 
g\oplus S(X,Y )

\bigr) 
\leq | \Lambda |  - \lambda \cdot | S| .

Corollary 2.13. Let \gamma , \lambda > 0, n \in \BbbN , and S \subseteq [n]. Let X,Y be independent
random variables taking values in \Lambda S such that

H\infty (X) +H\infty (Y ) \geq 
\biggl( 
2 +

7

log | \Lambda | 
 - \eta + \gamma + \lambda 

\biggr) 
\cdot | S| \cdot log | \Lambda | .

Then, the probability that X takes a value x \in \Lambda such that

bias
\bigl( 
g\oplus S(x, Y )

\bigr) 
> | \Lambda |  - \lambda \cdot | S| 

is less than | \Lambda |  - \gamma \cdot | I| .
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3. Lifting machinery. In this section, we set up the machinery we need to
prove our main theorem, restated next.

Theorem 1.2. For every \eta > 0 there exists c = O( 1
\eta 2 \cdot log 1

\eta ) such that the

following holds: let \scrS be a search problem that takes inputs from \{ 0, 1\} n, and let

g : \{ 0, 1\} b \times \{ 0, 1\} b \rightarrow \{ 0, 1\} be an arbitrary function such that disc(g) \leq 2 - \eta \cdot b and
such that b \geq c \cdot log n. Then

Dcc(\scrS \circ gn) = \Omega 
\bigl( 
Ddt(\scrS ) \cdot b

\bigr) 
,

and for every \varepsilon > 0 it holds that

Rcc
\varepsilon (\scrS \circ gn) = \Omega 

\bigl( \bigl( 
Rdt

\varepsilon \prime (\scrS ) - O(1)
\bigr) 
\cdot b
\bigr) 
,

where \varepsilon \prime = \varepsilon + 2 - \eta \cdot b/8.

For the rest of this paper, we fix \eta > 0 and let c \in \BbbN be some sufficiently large
parameter that will be determined later such that c = O( 1

\eta 2 \cdot log 1
\eta ). Let n \in \BbbN , and

let g : \{ 0, 1\} b \times \{ 0, 1\} b \rightarrow \{ 0, 1\} be a function such that disc(g) \leq 2 - \eta \cdot b and such that
b \geq c \cdot log n. Note that when n = 1, the theorem holds trivially, so we may assume

that n \geq 2. For convenience, we denote \Lambda 
def
= \{ 0, 1\} b and G

def
= gn. Throughout the

rest of this section, X and Y will always denote random variables whose domain is \Lambda n.
As explained in section 1.3, our simulation argument is based on the idea that

as long as the protocol did not transmit too much information about the inputs,
their distribution is similar to the uniform distribution. The following definition, due
to [20], formalizes the notion that the protocol did not transmit too much information
about an input X.

Definition 3.1. Let \delta X > 0. We say that a random variable X is \delta X -dense if
for every I \subseteq [n] it holds that H\infty (XI) \geq \delta X \cdot b \cdot | I| .

As explained there, whenever the protocol transmits too much information about
a bunch of blocks (XI , YI) (where I \subseteq [n]), the simulation queries zI and conditions
the distribution on g(XI , YI) = zI . The following definitions provide a useful way for
implementing this argument: restrictions are used to keep track of which bits of z
have been queried so far, and the notion of structured variables expresses the desired
properties of the distribution of the inputs.

Definition 3.2. A restriction \rho is a string in \{ 0, 1, \ast \} n. We say that a coor-
dinate i \in [n] is free in \rho if \rho i = \ast and, otherwise, we say that i is fixed. Given
a restriction \rho \in \{ 0, 1, \ast \} n, we denote by free(\rho ) and fix(\rho ) the set of free and fixed
coordinates of \rho , respectively. We say that a string z \in \{ 0, 1\} n is consistent with \rho if
zfix(\rho ) = \rho fix(\rho ).

Intuitively, fix(\rho ) represents the queries that have been made so far, and free(\rho )
represents the coordinates that have not been queried yet.

Definition 3.3 (following [23]). Let \rho \in \{ 0, 1, \ast \} n be a restriction, let \tau > 0, and
let X,Y be independent random variables. We say that X and Y are (\rho , \tau )-structured
if there exist \delta X , \delta Y > 0 such that Xfree(\rho ) and Yfree(\rho ) are \delta X-dense and \delta Y -dense,
respectively, \delta X + \delta Y \geq \tau , and

gfix(\rho )
\bigl( 
Xfix(\rho ), Yfix(\rho )

\bigr) 
= \rho fix(\rho ).

We can now state our version of the uniform marginals lemma of [23], which
formalizes the idea that if X and Y are structured then their distribution is similar to
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188 CHATTOPADHYAY, FILMUS, KOROTH, MEIR, AND PITASSI

the uniform distribution over G - 1(z). In what follows, the parameter \gamma controls the
statistical distance from the uniform distribution, and recall that \eta is the parameter
that controls the discrepancy of g (i.e., disc(g) \leq 2 - \eta \cdot b).

Lemma 3.4 (uniform marginals lemma). There exists a universal constant h such
that the following holds: let \gamma > 0, let \rho be a restriction, and let z \in \{ 0, 1\} n be a
string that is consistent with \rho . Let X,Y be independent random variables that are
uniformly distributed over sets \scrX ,\scrY \subseteq \Lambda n, respectively, and assume that they are
(\rho , \tau )-structured where

\tau \geq 2 +
h

c
 - \eta + \gamma .

Let (X \prime , Y \prime ) be uniformly distributed over G - 1(z) \cap (\scrX \times \scrY ). Then, X and Y are
2 - \gamma \cdot b-close to X \prime and Y \prime , respectively.

Remark 3.5. Here, as well as in other claims in the paper, we denote by h some
constant that is large enough to make the proofs go through, and does not depend on
any other parameter. The constant h can be calculated explicitly, and we only refrain
from doing so in order to streamline the presentation. In all the cases where we use
this constant, it can be chosen to be at most 50.

1.1 We defer the proof of Lemma 3.4 to section 3.1, and move to discuss the next issue.
Recall that in order for X and Y to be structured, the random variables Xfree(\rho ) and
Yfree(\rho ) have to be dense. However, as the simulation progresses and the protocol
transmits information, this property may be violated, and Xfree(\rho ) or Yfree(\rho ) may
cease to be dense. In order to restore the density, we use the following folklore fact.

Proposition 3.6. Let X be a random variable, let \delta X > 0, and let I \subseteq [n] be a
maximal subset of coordinates such that H\infty (XI) < \delta X \cdot b \cdot | I| . Let xI \in \Lambda I be a value
such that

Pr [XI = xI ] > 2 - \delta X \cdot b\cdot | I| .

Then, the random variable X[n] - I | XI = xI is \delta X-dense.

Proof. Assume for the sake of contradiction that X[n] - I | XI = xI is not \delta X -dense.
Then, there exists a nonempty set J \subseteq [n] - I such that H\infty (XJ | XI = xI) < \delta X \cdot b\cdot | J | .
In particular, there exists a value xJ \in \Lambda J such that

Pr [XJ = xJ | XI = xI ] > 2 - \delta X \cdot b\cdot | J| .

But this implies that

Pr [XI = xI and XJ = xJ ] > 2 - \delta X \cdot b\cdot | I\cup J| ,

which means that
H\infty (XI\cup J) < \delta X \cdot b \cdot | I \cup J | .

However, this contradicts the maximality of I.

Proposition 3.6 is useful in the deterministic setting, since in this setting the
simulation is free to condition the distributions of X,Y in any way that maintains
their density. However, in the randomized setting, the simulation is more restricted,
and cannot condition the inputs on events such as XI = xI which may have very low
probability. In [23], this issue was resolved by observing that the probability space
can be partitioned to disjoint events of the form XI = xI , and that the randomized
simulation can use such a partition to achieve the same effect as Proposition 3.6. This
leads to the following lemma, which we use as well.
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Lemma 3.7 (density-restoring partition [23]). Let X be a random variable, let \scrX 
denote the support of X, and let \delta X > 0. Then, there exists a partition

\scrX def
= \scrX 1 \cup \cdot \cdot \cdot \cup \scrX \ell ,

where every \scrX j is associated with a set Ij \subseteq [n] and a value xj \in \Lambda Ij such that
\bullet XIj | X \in \scrX j is fixed to xj;
\bullet X[n] - Ij | X \in \scrX j is \delta X-dense.

Moreover, if we denote p\geq j
def
= Pr

\bigl[ 
X \in \scrX j \cup . . . \cup \scrX \ell 

\bigr] 
, then it holds that

H\infty (X[n] - Ij | X \in \scrX j) \geq H\infty (X) - \delta X \cdot b \cdot | Ij |  - log
1

p\geq j
.

We turn to discuss the ``conditioning issue"" that was discussed in section 1.3 and
its resolution: as mentioned above, the simulation uses Proposition 3.6 and Lemma 3.7
to restore the density of the inputs by conditioning some of the blocks. Specifically,
suppose, for example, that Xfree(\rho ) is no longer dense. Then, the simulation chooses
appropriate I \subseteq free(\rho ) and xI \in \Lambda I , and conditions X on the event XI = xI . At this
point, in order to make X and Y structured again, we need to remove I from free(\rho ),
so the simulation queries the bits in zI , and update the restriction \rho by setting \rho I = zI .
Now, we have to make sure that g(XI , YI) = zI . To this end, the simulation conditions
Y on the event g(xI , YI) = zI . However, the latter conditioning reveals information
about Y , which may have two harmful effects:

\bullet Leaking: As discussed in section 1.3, our analysis of the query complexity
assumes that the protocol transmits at most C bits of information. It is
important not to reveal more information than that, or otherwise our query
complexity may increase arbitrarily. On average, we expect that conditioning
on the event g(xI , YI) = zI would reveal only | I| bits of information, which
is sufficiently small for our purposes. However, there could be values of xI

and zI for which much more information is leaked. In this case, we say the
conditioning is leaking.

\bullet Sparsifying: Even if the conditioning reveals only | I| bits of information on Y ,
this could still ruin the density of Y if the set I is large. In this case, we say
that the conditioning is sparsifying.

This is the conditioning issue, and dealing with it is the technical core of the paper.
As explained in section 1.3, the simulation deals with this issue by recognizing in
advance which values of X are ``dangerous,"" in the sense that they may lead to a
bad conditioning, and discarding them before such conditioning may take place. The
foregoing discussion leads to the following definition of a dangerous value.

Definition 3.8. Let Y be a random variable taking values from \Lambda n. We say that
a value x \in \Lambda n is leaking if there exists a set I \subseteq [n] and an assignment zI \in \{ 0, 1\} I
such that

Pr
\bigl[ 
gI(xI , YI) = zI

\bigr] 
< 2 - | I|  - 1.

Let \delta Y , \varepsilon > 0, and suppose that Y is \delta Y -dense. We say that a value x \in \Lambda n is \varepsilon -
sparsifying if there exists a set I \subseteq [n] and an assignment zI \in \{ 0, 1\} I such that the
random variable

Y[n] - I | gI(xI , YI) = zI

is not (\delta Y  - \varepsilon )-dense. We say that a value x \in \Lambda n is \varepsilon -dangerous if it is either leaking
or \varepsilon -sparsifying.
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We can now state our main technical lemma, which says that X has only a small
probability to take a dangerous value. This allows the simulation to discard such
values and resolve the conditioning issue. In what follows, the parameter \gamma controls
the error probability, and recall that \eta is the parameter that controls the discrepancy
of g (i.e., disc(g) \leq 2 - \eta \cdot b).

Lemma 3.9 (main lemma). There exists a universal constant2 h such that the
following holds: let 0 < \gamma , \varepsilon , \tau \leq 1 be such that \tau \geq 2+ h

c\cdot \varepsilon  - \eta + \gamma and \varepsilon \geq 4
b , and let

X,Y be (\rho , \tau )-structured random variables. Then, the probability that Xfree(\rho ) takes a

value that is \varepsilon -dangerous for Yfree(\rho ) is at most 2 - \gamma \cdot b.

3.1. Proof of the uniform marginals lemma. Recall that the random vari-
ables X and Y are (\rho , \tau )-structured if there exist \delta X , \delta Y > 0 such that Xfree(\rho ) and
Yfree(\rho ) are \delta X -dense and \delta Y -dense, respectively,

\delta X + \delta Y \geq \tau , and gfix(\rho )
\bigl( 
Xfix(\rho ), Yfix(\rho )

\bigr) 
= \rho fix(\rho ).

In this section we prove the uniform marginals lemma, restated next.

Lemma 3.4. There exists a universal constant h such that the following holds:
let \gamma > 0, let \rho be a restriction, and let z \in \{ 0, 1\} n be a string that is consistent
with \rho . Let X,Y be independent random variables that are uniformly distributed over
sets \scrX ,\scrY \subseteq \Lambda n, respectively, and assume that they are (\rho , \tau )-structured where

\tau \geq 2 +
h

c
 - \eta + \gamma .

Let (X \prime , Y \prime ) be uniformly distributed over G - 1(z) \cap (\scrX \times \scrY ). Then, X and Y are
2 - \gamma \cdot b-close to X \prime and Y \prime , respectively.

In order to prove Lemma 3.4, we first prove the following proposition, which says
that the string gfree(\rho )(Xfree(\rho ), Yfree(\rho )) is close to the uniform distribution in a very
strong sense. In what follows, the parameter \gamma controls the distance from the uniform
distribution, and recall that \eta is the parameter that controls the discrepancy of g (i.e.,
disc(g) \leq 2 - \eta \cdot b).

Proposition 3.10 (generalization of [20, Lemma 13]). There exists a universal
constant h such that the following holds: let \gamma > 0. Let X,Y be random variables

that are (\rho , \tau )-structured for \tau \geq 2 + h
c  - \eta + \gamma , and let I

def
= free(\rho ). Then, for every

zI \in \{ 0, 1\} I it holds that

Pr
\bigl[ 
gI(XI , YI) = zI

\bigr] 
\in (1\pm 2 - \gamma \cdot b) \cdot 2 - | I| .

Proof. Let h
def
= 8. We use Corollary 2.12 to upper bound the biases of gI(XI , YI),

and then apply Vazirani's lemma to show that it is close to the uniform distribution.
Let S \subseteq I. By assumption, the variables XI , YI are \delta X -dense and \delta Y -dense for some
\delta X , \delta Y for which \delta X + \delta Y \geq 2 + 8

c  - \eta + \gamma . Therefore, it holds that

H\infty (XS) +H\infty (YS) \geq 
\biggl( 
2 +

6

b
 - \eta + \gamma +

2

c

\biggr) 
\cdot b \cdot | S| 

and Corollary 2.12 implies (with \gamma = \gamma + 2
c ) that

bias
\bigl( 
g\oplus S(XS , YS)

\bigr) 
\leq 2 - (\gamma +

2
c )\cdot b\cdot | S| \leq 2 - \gamma \cdot b \cdot n - 2\cdot | S| \leq 2 - \gamma \cdot b \cdot (2 \cdot | I| ) - | S| .

2See Remark 3.5 for further explanation on the constant h.
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Since the latter inequality holds for every S \subseteq I, it follows by Lemma 2.5 that

Pr
\bigl[ 
gI(XI , YI) = zI

\bigr] 
\in (1\pm 2 - \gamma \cdot b) \cdot 2 - | I| 

for every zI \in \{ 0, 1\} I , as required.
We turn to prove the uniform marginals lemma.

Proof of Lemma 3.4. Let h\prime be the universal constant of Proposition 3.10 and let

h
def
= h\prime + 2. Let (X \prime , Y \prime ) be uniformly distributed over G - 1(z) \cap (\scrX \times \scrY ), and let

I
def
= free(\rho ). We prove that X is 2 - \gamma \cdot b-close to X \prime , and a similar argument works

for Y . Let \scrE \subseteq \scrX be any test event. We show that

| Pr [X \prime \in \scrE ] - Pr [X \in \scrE ]| \leq 2 - \gamma \cdot b.

Without loss of generality we may assume that Pr [X \in \scrE ] \geq 1
2 , since otherwise we

can replace \scrE with its complement. Since X and Y are (\rho , \tau )-structured, where

\tau \geq 2 +
h

c
 - \eta + \gamma \geq 2 +

h\prime 

c
 - \eta + \gamma +

2

b
,

Proposition 3.10 implies that

Pr
\bigl[ 
gI(XI , YI) = zI

\bigr] 
\in (1\pm 2 - \gamma \cdot b - 2) \cdot 2 - | I| .

Moreover, since Pr [X \in \scrE ] \geq 1
2 , conditioning on \scrE cannot decrease the density of X

by more than 1
b (since this conditioning increases any probability by a factor of at

most 2). Therefore X| \scrE and Y together are (\rho , \tau  - 1
b )-structured, where

\tau  - 1

b
\geq 2 +

h\prime 

c
 - \eta + \gamma +

1

b
.

Hence, Proposition 3.10 implies that

Pr
\bigl[ 
gI(XI , YI) = zI | X \in \scrE 

\bigr] 
\in (1\pm 2 - \gamma \cdot b - 1) \cdot 2 - | I| .

Now, it holds that

Pr [X \prime \in \scrE ] = Pr [X \in \scrE | G(X,Y ) = z]

(Bayes' formula) =
Pr [G(X,Y ) = z| X \in \scrE ]

Pr [G(X,Y ) = z]
\cdot Pr [X \in \scrE ]

(since gfix(\rho )(Xfix(\rho ), Yfix(\rho )) = zfix(\rho ) by assumption)

=
Pr
\bigl[ 
gI(XI , YI) = zI | X \in \scrE 

\bigr] 
Pr [gI(XI , YI) = zI ]

\cdot Pr [X \in \scrE ]

\leq 
\bigl( 
1 + 2 - \gamma \cdot b - 2

\bigr) 
\cdot 2 - | I| 

(1 - 2 - \gamma \cdot b - 1) \cdot 2 - | I| 
\cdot Pr [X \in \scrE ]\biggl( 

since
1

1 - \alpha 
\leq 1 + 2\alpha for every 0 < \alpha \leq 1

2

\biggr) 
\leq 
\bigl( 
1 + 2 - \gamma \cdot b - 2

\bigr) 
\cdot 
\bigl( 
1 + 2 \cdot 2 - \gamma \cdot b - 1

\bigr) 
\cdot Pr [X \in \scrE ]

\leq Pr [X \in \scrE ] + 2 - \gamma \cdot b.
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A similar calculation shows that

Pr [X \prime \in \scrE ] \geq 
\bigl( 
1 - 2 - \gamma \cdot b - 2

\bigr) 
(1 + 2 - \gamma \cdot b - 1)

\cdot Pr [X \in \scrE ]

\geq Pr [X \in \scrE ] - 2 - \gamma \cdot b.

It follows that

| Pr [X \prime \in \scrE ] - Pr [X \in \scrE ]| \leq 2 - \gamma \cdot b,

as required.

3.2. Proof of the main technical lemma. In this section we prove our main
technical lemma, which upper bounds the probability of a variable to take a dangerous
value. We first recall the definition of a dangerous value and the lemma.

Definition 3.8. Let Y be a random variable taking values from \Lambda n. We say that
a value x \in \Lambda n is leaking if there exists a set I \subseteq [n] and an assignment zI \in \{ 0, 1\} I
such that

Pr
\bigl[ 
gI(xI , YI) = zI

\bigr] 
< 2 - | I|  - 1.

Let \delta Y , \varepsilon > 0, and suppose that Y is \delta Y -dense. We say that a value x \in \Lambda n is \varepsilon -
sparsifying if there exists a set I \subseteq [n] and an assignment zI \in \{ 0, 1\} I such that the
random variable

Y[n] - I | gI(xI , YI) = zI

is not (\delta Y  - \varepsilon )-dense. We say that a value x \in \Lambda n is \varepsilon -dangerous if it is either leaking
or \varepsilon -sparsifying.

Lemma 3.9. There exists a universal constant h such that the following holds:
let 0 < \gamma , \varepsilon , \tau \leq 1 be such that \tau \geq 2 + h

c\cdot \varepsilon  - \eta + \gamma and \varepsilon \geq 4
b , and let X,Y be

(\rho , \tau )-structured random variables. Then, the probability that Xfree(\rho ) takes a value

that is \varepsilon -dangerous for Yfree(\rho ) is at most 2 - \gamma \cdot b.

Let h be a universal constant that will be chosen to be sufficiently large to make
the inequalities in the proof hold. Let \gamma , \varepsilon , \tau , \rho be as in the lemma, and assume that
X,Y are (\rho , \tau )-structured. For simplicity of the presentation, we assume that all the
coordinates of \rho are free---this can be assumed without loss of generality since the
fixed coordinates of \rho do not play any part in the lemma. Thus, our goal is to prove
an upper bound on the probability that X takes a value that is dangerous for Y . By
assumption, there exist some parameters \delta X , \delta Y > 0 such that X and Y are \delta X -dense
and \delta Y -dense, respectively, and such that \delta X + \delta Y \geq 2 + h

c\cdot \varepsilon  - \eta  - \gamma .
We start by discussing the high-level ideas that underlie the proof. We would like

to prove an upper bound on the probability that X takes a value that is either leaking
or sparsifying. Proving the upper bound for leaking values is relatively easy and is
similar to the proof of Proposition 3.10; basically, since XI and YI are sufficiently
dense, the string gI(XI , YI) is multiplicatively close to uniform, which implies that
most values xI are nonleaking.

The more difficult task is to prove the upper bound for sparsifying values. Ba-
sically, a value x is sparsifying if for some disjoint I, J \subseteq free(\rho ), conditioning on
the value of gI(xI , YI) decreases the min-entropy of YJ by more than \varepsilon \cdot b \cdot | J | bits.
Our first step is to apply Bayes' formula to the latter condition, thus obtaining a
more convenient condition which we refer to as ``skewing"": a value x is skewing if
conditioning on the value of YJ decreases the min-entropy of gI(xI , YI) by more than
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\varepsilon \cdot b \cdot | J | bits---in other words, the min-entropy of gI(xI , YI) conditioned on YJ should
be less than | I|  - \varepsilon \cdot b \cdot | J | (roughly).

It remains to prove an upper bound on the probability that X takes a skewing
value. This requires proving a lower bound of roughly | I|  - \varepsilon \cdot b \cdot | J | of on the min-
entropy of gI(xI , YI)| YJ for most x's. By the min-entropy version of Vazirani's lemma
(Lemma 2.6), in order to prove this lower bound, it suffices to prove an upper bound
on the bias of gS(xS , YS)| YJ for every set S \subseteq I for which3 | S| \gtrapprox \varepsilon \cdot c \cdot | J | .

To this end, we use the extractor-like property of gS : recall that by the discrep-
ancy of g (Corollary 2.13), the bias of gS(xS , YS)| YJ is small for most x's whenever
the min-entropy of XS and YS | YJ is high. Furthermore, recall that the min-entropy
of XS and YS is high since we assumed that X and Y are dense. The key step is to
observe that the min-entropy of YS | YJ is still high, since S is large compared to J .
Thus, the min-entropy of XS and YS | YJ is high, so the bias of gS(xS , YS)| YJ is small,
and this implies the desired lower on the min-entropy of gI(xI , YI)| YJ .

The argument we explained above almost works, except for a small issue: we said
that H\infty (YS | YJ) is still high, since S is large compared to J . Here, we implicitly
assumed that conditioning on the value of YJ decreases the min-entropy of YS by
roughly | J | \cdot b bits. This assumption is true for the average value of YJ , but may fail
for values of YJ that have a very small probability. In order to deal with such values,
we define a parameter eyJ

which measures the ``excess entropy"" of yJ , and keep track
of it throughout the proof. The key observation is that if we consider a value yJ
that has a small probability, then the criterion of skewing actually requires the min-
entropy of gI(xI , YI) to decrease by roughly \varepsilon \cdot b \cdot | J | +eyJ

. Intuitively, this means that
the smaller the probability of yJ , the harder it becomes for x to be skewing. After
propagating the additional term of eyJ

throughout our proof, we get that the set S
can be assumed to satisfy

| S| \gtrapprox \varepsilon \cdot c \cdot | J | + eyJ

log n
.

This makes the set S sufficiently large compared to eyJ
that we can still deduce that

YS | YJ = yJ has high min-entropy, which finished the argument. We now turn to
provide the formal proof, starting with a formal definition of the parameter eyJ

and
the criterion of skewing.

Definition 3.11. Recall that since Y is \delta Y -dense, it holds that Pr [YJ = yJ ] \leq 
2 - \delta Y \cdot b\cdot | J| for every J \subseteq [n] and yJ \in \Lambda J . We denote by eyJ

\in \BbbR the (nonnegative)
number that satisfies

Pr [YJ = yJ ] = 2 - \delta Y \cdot b\cdot | J|  - eyJ .

We say that a value x \in \Lambda n is \varepsilon -skewing if there exist disjoint nonempty sets I, J \subseteq [n]
and a value yJ \in \Lambda J such that

H\infty 
\bigl( 
gI(xI , YI)

\bigm| \bigm| YJ = yJ
\bigr) 
< | I|  - \varepsilon \cdot b \cdot | J |  - eyJ

+ 1.

Next, we show that every dangerous value must be either leaking or skewing by
applying Bayes' formula.

Claim 3.12. Let x \in \Lambda n be an \varepsilon -dangerous value that is not leaking for Y . Then
x is \varepsilon -skewing.

Proof. Suppose that x is \varepsilon -dangerous for Y and that it is not leaking. We prove
that x is \varepsilon -skewing. By our assumption, x must be \varepsilon -sparsifying, so there exists a set

3Recall that c is a large constant such that b \geq c \cdot logn.
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I \subseteq [n] and an assignment zI \in \{ 0, 1\} I such that the random variable

Y[n] - I | gI(xI , YI) = zI

is not (\delta Y  - \varepsilon )-dense. Thus, there exists a set J \subseteq [n] - I and a value yJ \in \Lambda n such
that

Pr
\bigl[ 
YJ = yJ | gI(xI , YI) = zI

\bigr] 
> 2 - (\delta Y  - \varepsilon )\cdot b\cdot | J| .

By Bayes' formula, it holds that

Pr [YJ = yJ | g(xI , YI) = zI ] =
Pr
\bigl[ 
gI(xI , YI) = zI | YJ = yJ

\bigr] 
\cdot Pr [YJ = yJ ]

Pr [g(xI , YI) = zI ]

(definition of eyJ
) =

Pr
\bigl[ 
gI(xI , YI) = zI | YJ = yJ

\bigr] 
\cdot 2 - \delta Y \cdot b\cdot | J|  - eyJ .

Pr [g(xI , YI) = zI ]

(since x is not leaking for Y ) \leq 
Pr
\bigl[ 
gI(xI , YI) = zI | YJ = yJ

\bigr] 
\cdot 2 - \delta Y \cdot b\cdot | J|  - eyJ .

2 - | I|  - 1
.

Hence, it follows that

Pr
\bigl[ 
gI(xI , YI) = zI | YJ = yJ

\bigr] 
\cdot 2 - \delta Y \cdot b\cdot | J|  - eyJ

2 - | I|  - 1
> 2 - (\delta Y  - \varepsilon )\cdot b\cdot | J| ,

which implies that

Pr
\bigl[ 
gI(xI , YI) = zI | YJ = yJ

\bigr] 
> 2 - | I| +\varepsilon \cdot b\cdot | J| +eyJ - 1.

This means that

H\infty 
\bigl( 
gI(xI , YI)

\bigm| \bigm| YJ = yJ
\bigr) 
< | I|  - \varepsilon \cdot b \cdot | J |  - eyJ

+ 1.

That is, x is \varepsilon -skewing, as required.

As explained above, we will upper bound the probability of dangerous values
by upper bounding the biases of g(xS , YS)| YJ for every S \subseteq I. To this end, it is
convenient to define the notion of a ``biasing value,"" which is a value x for which one
of the biases is too large.

Definition 3.13. We say that a value x \in \Lambda n is biasing (for Y ) with respect to
disjoint sets S, J \subseteq [n] and an assignment yJ \in \Lambda J if

bias
\bigl( 
g\oplus S(xS , YS)| YJ = yJ

\bigr) 
>

1

2
\cdot (2n) - | S| .

We say that x is \varepsilon -biasing (for Y ) with respect to a set S \subseteq [n] if there exists a set
J \subseteq [n] - S and an assignment yJ \in \Lambda J that satisfy

(4) | S| \geq c \cdot \varepsilon \cdot | J | + eyJ
+ 2

log n

such that x is biasing with respect to S, J , and yJ (if J is the empty set, we define
eyJ

= 0). Finally, we say that x is \varepsilon -biasing (for Y ) if there exists a nonempty set S
with respect to which x is \varepsilon -biasing.

We now apply the min-entropy version of Vazirani's lemma to show that values
that are not biasing are not dangerous.
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Claim 3.14. If a value x \in \Lambda n is not \varepsilon -biasing for Y then it is not \varepsilon -dangerous
for Y .

Proof. Suppose that x \in \Lambda n is a value that is not \varepsilon -biasing for Y . We prove that
x is not \varepsilon -dangerous for Y . We start by proving that x is not leaking. Let I \subseteq [n]

and let zI \in \{ 0, 1\} I . We wish to prove that

Pr
\Bigl[ 
Pr
\bigl[ 
gI(xI , YI) = zI

\bigr] 
\geq 2 - | I|  - 1

\Bigr] 
.

Observe that, by the assumption that x is not \varepsilon -biasing, it holds for every nonempty
set S \subseteq I that

bias
\bigl( 
g\oplus S(xS , YS)

\bigr) 
\leq 1

2
\cdot (2n) - | S| 

(this follows by substituting J = \emptyset in the definition of \varepsilon -biasing and noting that in this
case eyJ

= 0). It now follows from Lemma 2.6 that Pr
\bigl[ 
gI(xI , YI) = zI

\bigr] 
\geq 2 - | I|  - 1, as

required.
We turn to prove that x is not \varepsilon -skewing. Let I, J \subseteq [n] be disjoint sets and let

yJ \in \Lambda J be an assignment. We wish to prove that

H\infty 
\bigl( 
gI(xI , YI)

\bigm| \bigm| YJ = yJ
\bigr) 
\geq | I|  - \varepsilon \cdot b \cdot | J |  - eyJ

+ 1.

By Lemma 2.6, it suffices to prove that for every set S \subseteq I such that | S| \geq \varepsilon \cdot b\cdot | J| +eyJ+2

logn
it holds that

bias
\bigl( 
g\oplus S(xS , YS)| YJ = yJ

\bigr) 
\leq (2n)

 - | S| 
.

To this end, observe that every such set S satisfies

| S| \geq \varepsilon \cdot c \cdot | J | + eyJ
+ 2

log n
,

and since by assumption x is not \varepsilon -biasing with respect to S, the required upper
bound on the bias must hold. It follows that x is neither leaking nor \varepsilon -skewing, and
therefore it is not \varepsilon -dangerous, as required.

Finally, we prove an upper bound on the probability of X to take an \varepsilon -biasing
value, which together with Claim 3.14 implies Lemma 3.9. As explained above, the
idea is to combine the discrepancy of g with the observation that XS and YS have
large min-entropy even conditioned on YJ = yJ (which holds since X,Y are dense
and S is large compared to | J | and eyJ

).

Proposition 3.15. The probability that X takes a value x that is \varepsilon -biasing for Y
is at most 2 - \gamma \cdot b.

Proof. We begin with upper bounding the probability of X to take a value that
is \varepsilon -biasing with respect to specific choices of S, J , and yJ , and the rest of the proof
will follow by applying union bounds over all possible choices of S, J , and yJ . Let
S, J \subseteq [n] be disjoint sets and let yJ \in \Lambda J be an assignment such that S, J , and yJ
together satisfy (4), i.e.,

| S| \geq c \cdot \varepsilon \cdot | J | + eyJ
+ 2

log n
.

For simplicity, we assume that J is nonempty (in the case where J is empty, the ar-
gument is similar but simpler). Since we assumed that \varepsilon \geq 4

b and that J is nonempty,
and it holds that 1

2 \cdot c \cdot \varepsilon \cdot | J | \geq 2
logn and therefore

| S| \geq 1

2
\cdot c \cdot \varepsilon \cdot | J | + eyJ

log n
.
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In other words, it holds that

(5) | S| \cdot log n \geq 1

2
\cdot \varepsilon \cdot b \cdot | J | + eyJ

.

By assumption, Y is \delta Y -dense, so H\infty (YS) \geq \delta Y \cdot b \cdot | S| . By Fact 2.2, it follows that

H\infty (YS | YJ = yJ) \geq \delta Y \cdot b \cdot | S|  - log
1

Pr [YJ = yJ ]

= \delta Y \cdot b \cdot | S|  - (\delta Y \cdot b \cdot | J | + eyJ
)

\geq \delta Y \cdot b \cdot | S|  - (b \cdot | J | + eyJ
)

\geq \delta Y \cdot b \cdot | S|  - 2

\varepsilon 
\cdot 
\biggl( 
1

2
\cdot \varepsilon \cdot b \cdot | J | + eyJ

\biggr) 
(by (4)) \geq \delta Y \cdot b \cdot | S|  - 2

\varepsilon 
\cdot | S| \cdot log n

(since b \geq c \cdot log n)) \geq 
\biggl( 
\delta Y  - 2

c \cdot \varepsilon 

\biggr) 
\cdot b \cdot | S| .

Moreover, X is \delta X -dense and thus

H\infty (XS)+H\infty (YS | YJ = yJ) \geq 
\biggl( 
\delta X + \delta Y  - 2

c \cdot \varepsilon 

\biggr) 
\cdot b\cdot | S| \geq 

\biggl( 
2 +

8

c \cdot \varepsilon 
 - \eta + \gamma 

\biggr) 
\cdot b\cdot | S| ,

where the second inequality is made to hold by choosing h to be sufficiently large. It
follows by Corollary 2.13 (with \lambda = 3

c\cdot \varepsilon and \gamma = \gamma + 5
c\cdot \varepsilon ) that the probability that XS

takes a value xS \in \Lambda S for which

(6) bias
\bigl( 
g\oplus S(\alpha , YS)| YJ = yJ

\bigr) 
>

1

2
\cdot (2n) - | S| \geq 2 - 3 logn\cdot | S| \geq 2 - 

3
c\cdot \varepsilon \cdot b\cdot | S| 

is at most 2 - (\gamma +
5

c\cdot \varepsilon )\cdot b\cdot | S| .
We turn to applying the union bounds. First, we show that for every S \subseteq 

[n], the probability that X takes a value that is \varepsilon -biasing with respect to S is at

most 2 - (\gamma +
2

c\cdot \varepsilon )\cdot b\cdot | S| by taking the upper bound over all choices of J and yJ . Note that
we only need to consider sets J \subseteq [n] for which | J | \leq 1

c\cdot \varepsilon \cdot | S| . It follows that the
probability that XS takes a value that satisfies (6) for some J and yJ is at most\sum 

J\subseteq [n]:| J| \leq 1
c\cdot \varepsilon \cdot | S| 

\sum 
yJ\in \Lambda J

2 - (\gamma +
5

c\cdot \varepsilon )\cdot b\cdot | S| 

\leq 
1

c\cdot \varepsilon \cdot | S| \sum 
j=1

\biggl( 
n

j

\biggr) 
\cdot 2b\cdot j \cdot 2 - (\gamma + 5

c\cdot \varepsilon )\cdot b\cdot | S| +1

\leq n \cdot 
\biggl( 

n
1
c\cdot \varepsilon \cdot | S| 

\biggr) 
\cdot 2 1

c\cdot \varepsilon \cdot | S| \cdot b \cdot 2 - (\gamma + 5
c\cdot \varepsilon )\cdot b\cdot | S| 

\leq 2 - (\gamma +
5

c\cdot \varepsilon )\cdot b\cdot | S| +
1

c\cdot \varepsilon \cdot | S| \cdot (logn+b)+logn

\leq 2 - (\gamma +
2

c\cdot \varepsilon )\cdot b\cdot | S| ,

where the last inequality follows since

1

c \cdot \varepsilon 
\cdot | S| \cdot (log n+ b) + log n \leq 1

c \cdot \varepsilon 
\cdot 2b \cdot | S| + b \leq 3

c \cdot \varepsilon 
\cdot b \cdot | S| .
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The above calculation showed that the probability that X takes a value that is \varepsilon -
biasing with respect to a fixed set S is at most 2 - (\gamma +

2
c\cdot \varepsilon )\cdot b\cdot | S| . Taking a union bound

over all nonempty sets S \subseteq [n], the probability that X takes a value that is \varepsilon -biasing
for Y is at most \sum 

\emptyset \not =S\subseteq [n]

2 - (\gamma +
2

c\cdot \varepsilon )\cdot b\cdot | S| \leq 
n\sum 

s=1

\biggl( 
n

s

\biggr) 
\cdot 2 - (\gamma + 2

c\cdot \varepsilon )\cdot b\cdot s

\leq 
n\sum 

s=1

2 - (\gamma +
2

c\cdot \varepsilon )\cdot b\cdot s - s\cdot logn

\biggl( 
b

c \cdot \varepsilon 
\geq log n

\biggr) 
\leq 

n\sum 
s=1

2 - (\gamma +
1

c\cdot \varepsilon )\cdot b\cdot s

\leq 2 - (\gamma +
1

c\cdot \varepsilon )\cdot b+1

\leq 2 - \gamma \cdot b.

We have thus shown that the probability that X takes a value that is \varepsilon -biasing
is at most 2 - \gamma \cdot b, as required.

4. The deterministic lifting theorem. In this section, we prove the deter-
ministic part of our main theorem. In fact, we prove the following more general
result.

Theorem 4.1 (deterministic lifting theorem). For every \eta > 0 there exists c =

O( 1
\eta 2 ) such that the following holds: let n \in \BbbN be such that n \geq 2, let \Lambda 

def
= \{ 0, 1\} b be

such that b \geq c \cdot log n, let g : \Lambda \times \Lambda \rightarrow \{ 0, 1\} be a function such that disc(g) \leq 2 - \eta \cdot b,
and let G = gn. Let \Pi be a deterministic protocol that takes inputs in \Lambda n \times \Lambda n and
that has communication complexity C and round complexity r. Then, there exists a
deterministic parallel decision tree T that on input z \in \{ 0, 1\} n outputs a transcript \pi 
of \Pi that is consistent with some pair of inputs (x, y) \in G - 1(z), and that has query
complexity O(Cb ) and depth r.

Observe that this theorem implies the lower bound of the main theorem: given
a protocol \Pi that solves \scrS \circ G with complexity C, we use the theorem to construct
a tree T that on input z outputs the output of \Pi on some pair of inputs in G - 1(z).
This tree T clearly solves \scrS , and the query complexity of T is O(Cb ). This implies
that Ddt(\scrS ) = O (Dcc(\scrS \circ G)/b) or, in other words, Dcc(\scrS \circ G) = \Omega 

\bigl( 
Ddt(\scrS ) \cdot b

\bigr) 
, as

required.
For the rest of this section, fix \Pi to be an arbitrary deterministic protocol that

takes inputs in \Lambda n \times \Lambda n, and denote by C and r its communication complexity and
round complexity, respectively. The rest of this section is organized as follows: we
first describe the construction of the parallel decision tree T in section 4.1. We then
prove that the output of T is always correct in section 4.2. Finally, we upper bound
the query complexity of T in section 4.3.

4.1. The construction of \bfitT . Let h\prime be the maximum among the universal
constants of Proposition 3.10 and the main technical lemma (Lemma 3.9), and let
h be a universal constant that will be chosen to be sufficiently large to make the

inequalities in the proof hold. Let \varepsilon 
def
= h

c\cdot \eta , let \delta 
def
= 1 - \eta 

4 + \varepsilon 
2 , and let \tau 

def
= 2 \cdot \delta  - \varepsilon .

The tree T constructs the transcript \pi by simulating the protocol \Pi round-by-round,
each time adding a single message to \pi . Throughout the simulation, the tree maintains
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198 CHATTOPADHYAY, FILMUS, KOROTH, MEIR, AND PITASSI

a rectangle \scrX \times \scrY \subseteq \Lambda n\times \Lambda n of inputs that are consistent with \pi (but not necessarily
of all such inputs). In what follows, we denote by X and Y random variables that
are uniformly distributed over \scrX and \scrY , respectively. The tree will maintain the
invariant that X and Y are (\rho , \tau )-structured, where \rho is a restriction that keeps track
of the queries the tree has made so far. In fact, the tree will maintain a more specific
invariant: whenever it is Alice's turn to speak, Xfree(\rho ) is (\delta  - \varepsilon )-dense and Yfree(\rho ) is
\delta -dense, and whenever it is Bob's turn to speak, the roles of X and Y are reversed.

When the tree T starts the simulation, the tree sets the transcript \pi to be the
empty string, the restriction \rho to \{ \ast \} n, and the sets \scrX ,\scrY to \Lambda n. At this point the
invariant clearly holds. We now explain how T simulates a single round of the protocol
while maintaining the invariant. Suppose that the invariant holds at the beginning
of the current round, and assume without loss of generality that it is Alice's turn to
speak. The tree T performs the following steps:

1. The tree conditions Xfree(\rho ) on not taking a value that is \varepsilon -dangerous for
Yfree(\rho ) (i.e., the tree removes from \scrX all the values x for which xfree(\rho ) is
\varepsilon -dangerous for Yfree(\rho )).

2. The tree T chooses an arbitrary message M of Alice with the following prop-
erty: the probability of Alice sending M on input X is at least 2 - | M | (the
existence of M will be justified soon). The tree adds M to the transcript \pi ,
and conditions X on the event of sending M (i.e., the tree sets \scrX to be the
subset of inputs that are consistent with M).

3. Let I \subseteq free(\rho ) be a maximal set that violates the \delta -density of Xfree(\rho ) (i.e.,
H\infty (XI) < \delta \cdot b \cdot | I| ), and let xI \in \Lambda I be a value that satisfies Pr [XI = xI ] >
2 - \delta \cdot b\cdot | I| . The tree conditions X on XI = xI (i.e., the tree removes from \scrX 
all the values that are inconsistent with that event). By Proposition 3.6,
Xfree(\rho ) - I is now \delta -dense.

4. The tree queries zI , and updates \rho accordingly.
5. The tree conditions Y on gI(xI , YI) = \rho I (i.e., the tree sets \scrY to be the subset

of values y for which gI(xI , yI) = \rho I). Due to step 1, the variable Xfree(\rho )

must take a value that is not \varepsilon -dangerous and, therefore, Yfree(\rho ) is necessarily
(\delta  - \varepsilon )-dense.

After those steps take place, it becomes Bob's turn to speak and, indeed, Xfree(\rho )

and Yfree(\rho ) are \delta -dense and (\delta  - \varepsilon )-dense, respectively. Thus, the invariant is main-
tained. When the protocol \Pi stops, the tree T outputs the transcript \pi and halts.
In order for the foregoing construction to be well-defined, it remains to explain three
points:

\bullet First, we should explain why the set \scrX remains nonempty after step 1 (oth-
erwise, the following steps are not well-defined). To this end, recall that
X and Y are (\rho , \tau )-structured and observe that \tau can be made larger than

2+ h\prime 

c\cdot \varepsilon  - \eta by choosing h to be sufficiently large (see section 4.3 for a detailed
calculation). Hence, by our main lemma (Lemma 3.9), the variable Xfree(\rho )

has a nonzero probability to take a value that is not \varepsilon -dangerous for Yfree(\rho ),
so \scrX is nonempty after this step.

\bullet Second, we should explain why the message M in step 2 exists. To see why,
observe that the set of possible messages of Alice forms a prefix-free code---
otherwise, Bob will not be able to tell when Alice finished speaking and his
turn starts. Hence, by Fact 2.8, it follows that there exists a message M with
probability at least 2 - | M | .D

ow
nl

oa
de

d 
05

/1
9/

24
 to

 1
28

.9
5.

10
4.

10
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LIFTING USING LOW-DISCREPANCY GADGETS 199

\bullet Third, we should explain why the set \scrY remains nonempty after step 5. To
this end, recall that X must take a value that is not \varepsilon -dangerous for Y and,
in particular, the value of X is necessarily not leaking. This means that in
particular that the string gI(xI , YI) has nonzero probability to be equal to
\rho I , so \scrY is nonempty after this step.

The depth of T . We now observe that the depth of T is equal to the round
complexity of \Pi . Note that in each round, the tree T issues a set of queries I simulta-
neously. Thus, T is a parallel decision tree whose depth equals the maximal number
of rounds of \Pi , as required.

4.2. The correctness of \bfitT . We now prove that when the decision tree T halts,
the transcript \pi is consistent with some inputs (x, y) \in G - 1(z). Clearly, the tran-
script \pi is consistent with all the inputs in the rectangle \scrX \times \scrY . Thus, it suffices to
show that there exist x \in \scrX and y \in \scrY such that G(x, y) = z. To this end, recall that
when the tree halts, the random variables X and Y are (\rho , \tau )-structured. Since \rho is
consistent with z, it holds for every x \in \scrX and y \in \scrY that

(7) gfix(\rho )(xfix(\rho ), yfix(\rho )) = zfix(\rho ).

It remains to deal with the free coordinates of \rho . Since \tau can be made larger than 2+
h\prime 

c  - \eta by choosing h to be sufficiently large (see section 4.3 for a detailed calculation),
it follows by Proposition 3.10 that

Pr
\Bigl[ 
gfree(\rho )(xfree(\rho ), yfree(\rho )) = zfree(\rho )

\Bigr] 
> 0.

In particular, there exist x \in \scrX and y \in \scrY such that

(8) gfree(\rho )(xfree(\rho ), yfree(\rho )) = zfree(\rho ).

By combining (7) and (8), we get that G(x, y) = z, as required.

4.3. The query complexity of \bfitT . We conclude by showing that the total
number of queries the tree T makes is at most O(Cb ). To this end, we define the
deficiency of X,Y to be

2 \cdot b \cdot | free(\rho )|  - H\infty (Xfree(\rho )) - H\infty (Yfree(\rho )).

We will prove that whenever the protocol transmits a message M , the deficiency
increases by O(| M | ), and that whenever the tree T makes a query, the deficiency
is decreased by \Omega (b). Since the deficiency is always nonnegative, and the protocol
transmits at most C bits, it will follow that the tree must make at most O(Cb ) queries.
More specifically, we prove that in every round, the first two steps from section 4.1
increase the deficiency by at most | M | + 1 in total, and the rest of the steps decrease
the deficiency by at least \Omega (| I| \cdot b), and this will imply the desired result.

Fix a round of the simulation, and assume without loss of generality that the
message is sent by Alice. We start by analyzing step 1. At this step, the tree con-
ditions Xfree(\rho ) on taking dangerous values that are not \varepsilon -dangerous for Yfree(\rho ). We
show that this step increases the deficiency by at most one bit. By applying our main
technical lemma (Lemma 3.9) with \gamma = 1

b , it follows that the probability that Xfree(\rho )

is \varepsilon -dangerous is at most 1
2 . By Fact 2.2, it follows that conditioning on nondanger-

ous values decreases H\infty (Xfree(\rho )) by at most one bit and, therefore, it increases the

deficiency by at most one bit. To see why we can apply the main lemma with \gamma = 1
b ,
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recall that at this point X and Y are (\rho , \tau )-structured, where

\tau 
def
= 2 \cdot \delta  - \varepsilon 

(by definition of \delta ) = 2 \cdot 
\Bigl( 
1 - \eta 

4
+

\varepsilon 

2

\Bigr) 
 - \varepsilon 

= 2 - \eta 

2

= 2 +
\eta 

2
 - \eta \biggl( 

since \varepsilon 
def
=

h

c \cdot \eta 

\biggr) 
= 2 +

h

2 \cdot c \cdot \varepsilon 
 - \eta 

\geq 2 +
h\prime 

c \cdot \varepsilon 
 - \eta +

1

b
,

where the last inequality can be made to hold by choosing h to be sufficiently large.
Next, in step 2, the tree conditions X on the event of sending the message M ,

which has probability at least 2 - | M | . By Fact 2.2, this decreases H\infty (Xfree(\rho )) by at
most | M | bits, which increases the deficiency by at most | M | bits. All in all, we showed
that the first two steps of the simulation increase the deficiency by at most | M | + 1.

Let I be the set of queries chosen in step 3. We turn to show that the rest of the
steps decrease the deficiency by at least \Omega (b \cdot | I| ). Without loss of generality, assume
that I \not = \emptyset (otherwise the latter bound holds vacuously). The rest of the steps apply
the following changes to the deficiency:

\bullet Step 3 conditions X on the event XI = xI , which has probability greater
than 2 - \delta \cdot b\cdot | I| by the definition of xI . Hence, this conditioning increases the
deficiency by less than \delta \cdot b \cdot | I| (by Fact 2.3).

\bullet Step 4 removes the set I from free(\rho ). Looking at the definition of deficiency,
this change decreases the term of 2 \cdot b \cdot | free(\rho )| by 2 \cdot b \cdot | I| , decreases the term
H\infty (Yfree(\rho )) by at most b \cdot | I| (by Fact 2.3), and does not change the term
H\infty (Xfree(\rho )) (since at this point XI is fixed to xI). All in all, the deficiency
is decreased by at least b \cdot | I| .

\bullet Finally, step 5 conditions Y on the event gI(xI , YI) = \rho I . This event has
probability at least 2 - | I|  - 1 by the assumption that X is not dangerous (and
hence not leaking). Thus, this conditioning increases the deficiency by at
most | I| + 1 (by Fact 2.3).

Summing all those effects together, we get that the deficiency was decreased by
at least

b \cdot | I|  - \delta \cdot b \cdot | I|  - (| I| + 1) \geq 
\biggl( 
1 - \delta  - 2

b

\biggr) 
\cdot b \cdot | I| .

By choosing c to be sufficiently large, we can make sure that 1  - \delta  - 2
b is a positive

constant independent of b and n, and therefore the decrease in the deficiency will be
at least \Omega (b \cdot | I| ), as required. To see it, observe that

\delta +
2

b
= 1 - \eta 

4
+

\varepsilon 

2
+

2

b\biggl( 
since \varepsilon 

def
=

h

c \cdot \eta 

\biggr) 
= 1 - \eta 

4
+

h

2 \cdot c \cdot \eta 
+

2

b

(since b \geq c) \leq 1 - \eta 

4
+

h+ 4

2 \cdot c \cdot \eta 
.

Therefore, if we choose c > 2\cdot (h+4)
\eta 2 , the expression on the right-hand side will be a

constant that is strictly smaller than 1, as required.
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5. The randomized lifting theorem. In this section, we prove the randomized
part of our main theorem. In fact, we prove the following more general result.

Theorem 5.1 (randomized lifting theorem). For every \eta > 0 there exists c =

O( 1
\eta 2 \cdot log 1

\eta ) such that the following holds: Let n \in \BbbN be such that n \geq 2, let \Lambda 
def
=

\{ 0, 1\} b be such that b \geq c\cdot log n, let g : \Lambda \times \Lambda \rightarrow \{ 0, 1\} be a function such that disc(g) \leq 
2 - \eta \cdot b, and let G = gn. Let \Pi be a randomized (public-coin) protocol that takes inputs
in \Lambda n \times \Lambda n that has communication complexity C \leq 2 \cdot b \cdot n and round complexity r.
Then, there exists a randomized parallel decision tree T with the following properties:

\bullet On input z \in \{ 0, 1\} n, the tree outputs a transcript \pi of \Pi , whose distribution
is 2 - 

\eta 
8 \cdot b-close to the distribution of the transcripts of \Pi when given inputs

that are uniformly distributed in G - 1(z).
\bullet The tree T has query complexity O(Cb + 1) and depth r.

We first observe that Theorem 5.1 indeed implies the lower bound of our main
theorem.

Proof of Theorem 1.2 from Theorem 5.1. Let \scrS : \{ 0, 1\} n \rightarrow \scrO be a search prob-

lem, and let \varepsilon > 0 and \varepsilon \prime 
def
= \varepsilon + 2 - 

\eta 
8 \cdot b. We prove that Rcc

\varepsilon (\scrS \circ G) = \Theta 
\bigl( 
Rdt

\varepsilon \prime (\scrS ) \cdot b
\bigr) 
.

Let \Pi be an optimal protocol that solves \scrS \circ G with complexity C
def
= Rcc(\scrS \circ G),

and observe that we can assume without loss of generality that C \leq 2 \cdot b \cdot n (since the
players can solve any search problem by sending their whole inputs). By applying the
theorem to \Pi , we construct a tree T that on input z samples a transcript of \Pi as in
the theorem, and outputs the output that is associated with this transcript. It is not
hard to see that the output of T will be in \scrS (z) with probability at least

1 - \varepsilon  - 2 - 
\eta 
8 \cdot b \geq 1 - \varepsilon \prime ,

and that the query complexity of T is O(Cb + 1). This implies that Rdt
\varepsilon \prime (\scrS ) =

O (Rcc
\varepsilon (\scrS \circ G)/b+ 1), or in other words, Rcc

\varepsilon (\scrS \circ G) = \Omega 
\bigl( \bigl( 
Rdt

\varepsilon \prime (\scrS ) - O(1)
\bigr) 
\cdot b
\bigr) 
as

required.

In the rest of this section we prove Theorem 5.1. We start the proof by observing
that it suffices to prove the theorem for the special case in which the protocol \Pi is
deterministic. To see why, recall that a randomized public-coin protocol is a distri-
bution over deterministic protocols. Thus, if we prove the theorem for deterministic
protocols, we can extend it to randomized protocols as follows: given a randomized
protocol \Pi , the tree T will start by sampling a deterministic protocol \Pi det from the
distribution \Pi , and will then apply the theorem to \Pi det. It is not hard to verify that
such a tree T satisfies the requirements of Theorem 5.1. Thus, it suffices to consider
the case where \Pi is deterministic.

For the rest of this section, fix \Pi to be an arbitrary deterministic protocol that
takes inputs in \Lambda n \times \Lambda n, and denote by C and r its communication complexity and
round complexity, respectively. The rest of this section is organized as follows: we first
describe the construction of the parallel decision tree T in section 5.1. We then prove
that the transcript that T outputs is distributed as required in section 5.2. Finally,
we upper bound the query complexity of T in section 5.3.

5.1. The construction of \bfitT . The construction of the randomized tree T is
similar to the construction of the deterministic lifting theorem (section 4.1), but has
the following differences in the simulation:

\bullet In the deterministic construction, the tree chose the message M arbitrarily
subject to having sufficiently high probability. The reason we could do it is
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that it did not matter which transcript the tree would output as long as it was
consistent in G - 1(z). In the randomized construction, on the other hand, we
would like to output a transcript whose distribution is close to the ``correct""
distribution. Therefore, we change the construction such that the message M
is chosen randomly according to the distribution of the inputs.

\bullet Since the messages are now sampled according to the distribution of the in-
puts, we can no longer guarantee that the message M has sufficiently high
probability. Therefore, the tree may choose messages M that have very low
probability, and such messages may reveal too much information about the
inputs. In order to avoid that, the tree maintains a variable K which keeps
track of the amount of information that was revealed by the messages. If
at any point K becomes too large, the tree halts and declares failure. This
modification is important since if we allow the chosen messages to reveal too
much information, then they will lead the tree to make too many queries. In
particular, the bound on K is used in section 5.3 to upper bound the query
complexity of T .

\bullet In the deterministic construction, the tree restored the density of X by fixing
some set of coordinates I to some value xI (using Proposition 3.6). Again, this
was possible since it did not matter which transcript the tree would output.
In the randomized construction, we cannot do it, since the transcript has to
be distributed in a way that is close to being correct. In order to resolve this
issue, we follow [23] and use their ``density-restoring partition"" (Lemma 3.7).
Recall that this lemma says that the probability space ofX can be partitioned
into dense parts. The tree now samples one of those parts according to their
probabilities and conditions X on being in this part. If this conditioning
reveals too much information, then the tree halts and declares failure.

We turn to give a formal description of the construction. Let h\prime be the maximum
among the universal constants of the uniform marginals lemma (Lemma 3.4) and
the main technical lemma (Lemma 3.9), and let h be a universal constant that will
be chosen to be sufficiently large to make the inequalities in the proof hold. Let

\varepsilon 
def
= h\cdot log c

c\cdot \eta and, as before, \delta 
def
= 1  - \eta 

4 + \varepsilon 
2 and \tau 

def
= 2 \cdot \delta  - \varepsilon . As before, the parallel

decision tree T constructs the transcript \pi by simulating the protocol \Pi round-by-
round, each time adding a single message to \pi . Throughout the simulation, the tree
maintains a rectangle \scrX \times \scrY \subseteq \Lambda n \times \Lambda n of inputs that are consistent with \pi (but
not necessarily of all such inputs). In what follows, we denote by X and Y random
variables that are uniformly distributed over \scrX and \scrY , respectively. As before, the
tree will maintain the invariant thatX and Y are (\rho , \tau )-structured, and that moreover,
they are (\delta  - \varepsilon )-dense and \delta -dense, respectively, in Alice's rounds and the other way
around in Bob's rounds. As mentioned above, the tree will also maintain a variable K
from iteration to iteration, which will measure the information revealed so far.

When the tree T starts the simulation, the tree sets the transcript \pi to be the
empty string, the restriction \rho to \{ \ast \} n, the variableK to zero, and the sets \scrX ,\scrY to \Lambda n.
At this point the invariant clearly holds. We now explain how T simulates a single
round of the protocol while maintaining the invariant. Suppose that the invariant
holds at the beginning of the current round, and assume without loss of generality
that it is Alice's turn to speak. The tree T performs the following steps:

1. The tree conditions Xfree(\rho ) on not taking a value that is \varepsilon -dangerous for
Yfree(\rho ) (i.e., the tree removes from \scrX all the values x for which xfree(\rho ) is
\varepsilon -dangerous for Yfree(\rho )).
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2. The tree samples a message M of Alice according to the distribution induced
by X. Let pM be the probability of M . The tree adds M to the transcript,
adds log 1

pM
to K, and conditions X on M (i.e., the tree sets \scrX to be the

subset of inputs that are consistent with M).
3. If K > C + b, the tree halts and declares error.
4. Let \scrX free(\rho ) = \scrX 1 \cup . . . \cup \scrX \ell be the density-restoring partition of Lemma 3.7

with respect to Xfree(\rho ). The tree chooses a random class in the partition,

where the class \scrX j is chosen with probability Pr
\bigl[ 
Xfree(\rho ) \in \scrX j

\bigr] 
. Let \scrX j

be the chosen class, and let Ij and xIj be the set and the value associated
with \scrX j . The tree conditions X on the event Xfree(\rho ) \in \scrX j (i.e., the tree
sets \scrX to be the subset of inputs x such that xfree(\rho ) \in \scrX j). The variable
Xfree(\rho ) - Ij is now \delta -dense by the properties of the density-restoring partition.

5. Recall that

p\geq j
def
= Pr

\bigl[ 
Xfree(\rho ) \in \scrX j \cup \cdot \cdot \cdot \cup \scrX \ell 

\bigr] 
(see Lemma 3.7). If p\geq j <

1
8 \cdot 2 - 

\eta 
8 \cdot 1

2\cdot n\cdot b , the tree halts and declares error.
6. The tree queries the coordinates in Ij , and updates \rho accordingly.
7. The tree conditions Y on gI(xIj , YIj ) = \rho Ij (i.e., the tree sets \scrY to be the

subset of values y for which gI(xIj , YIj ) = \rho Ij ). Due to step 1, the vari-
able Xfree(\rho ) must take a value that is not \varepsilon -dangerous and, therefore, Yfree(\rho )

is necessarily (\delta  - \varepsilon )-dense.
After those steps take place, it becomes Bob's turn to speak, and indeed, Xfree(\rho ) and
Yfree(\rho ) are \delta -dense and (\delta  - \varepsilon )-dense respectively. Thus, the invariant is maintained.
When the protocol \Pi stops, the tree T outputs the transcript \pi and halts. The
proof that the above steps are well-defined is similar to the proof for the deterministic
construction and is therefore omitted.

The depth of T . As in the proof of the deterministic lifting theorem, it is not hard
to see that the depth of T is equal to the round complexity of \Pi .

5.2. The correctness of \bfitT . In this section, we prove the correctness of the
construction. For convenience, we first prove the correctness of a modified tree T \ast ,
whose construction is the same as that of T except that step 3 is omitted. Fix an
input z \in \{ 0, 1\} n. We define the following (random) transcripts of the protocol \Pi :

\bullet Let \pi be a transcript that T outputs when given z.
\bullet Let \pi \ast be a transcript that T \ast outputs when given z.
\bullet Let \pi \prime be a transcript of \Pi when given inputs (X \prime , Y \prime ) that are uniformly
distributed in G - 1(z).

Our end goal is to prove that \pi and \pi \prime are 2 - 
\eta 
8 \cdot b-close. In order to do so, we will first

prove that \pi \ast is ( 12 \cdot 2 - 
\eta 
8 \cdot b)-close to \pi \prime . We will then prove that \pi is 2 - b-close to \pi \ast .

Together, the two results imply that \pi is 2 - 
\eta 
8 \cdot b-close to \pi \prime , as required.

\pi \ast is close to \pi \prime . We first prove that \pi \ast is ( 12 \cdot 2 - 
\eta 
8 \cdot b)-close to \pi \prime . To this end,

we construct a coupling of \pi \ast and \pi \prime such that Pr [\pi \ast \not = \pi ] \leq 1
2 \cdot 2 - 

\eta 
8 \cdot b. Essentially,

we construct the coupling by going over the simulation step-by-step and using the
uniform marginals lemma to argue that at each step, X and X \prime are close and can
therefore be coupled (and similarly for Y and Y \prime ). We start by setting some notation:
for every i \in [r], let us denote by \scrX i \times \scrY i the rectangle \scrX \times \scrY from section 5.1 at the
end of the ith round of the simulation of T \ast (if T \ast halts before the ith round ends,
set \scrX i \times \scrY i to be the rectangle \scrX \times \scrY at the end of the simulation). In our proof, we
construct, for every i \in [r],
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\bullet a random rectangle \scrX \prime i \times \scrY \prime i that is jointly distributed with X \prime , Y \prime with the
following property: conditioned on a specific choice of \scrX \prime i \times \scrY \prime i, the pair
(X \prime , Y \prime ) is uniformly distributed over (\scrX \prime i \times \scrY \prime i) \cap G - 1(z);

\bullet a coupling of \scrX i \times \scrY i and \scrX \prime i \times \scrY \prime i such that Pr [\scrX i \times \scrY i \not = \scrX \prime i \times \scrY \prime i] \leq 1
2 \cdot 

2 - 
\eta 
8 \cdot b \cdot i

2\cdot n\cdot b .
Observe that if we can construct such rectangles and couplings, then it follows that
\pi \ast and \pi \prime are close. To see it, observe that at any given point during the simulation,
all the inputs in the rectangle \scrX \times \scrY are consistent with the transcript \pi . Hence, if
\scrX r \times \scrY r = \scrX \prime r \times \scrY \prime r, it necessarily means that the inputs (X \prime , Y \prime ) are consistent with
the transcript \pi , so \pi = \pi \prime . It follows that

Pr [\pi \not = \pi \prime ] \leq Pr [\scrX r \times \scrY r \not = \scrX \prime r \times \scrY \prime r]

\leq 1

2
\cdot 2 - 

\eta 
8 \cdot b \cdot r

2 \cdot n \cdot b

\leq 1

2
\cdot 2 - 

\eta 
8 \cdot b \cdot C

2 \cdot n \cdot b

\leq 1

2
\cdot 2 - 

\eta 
8 \cdot b,

as required.
It remains to construct the rectangles \scrX \prime i \times \scrY \prime i and the associated couplings. We

construct them by induction. Let i \in [r], and suppose we have already constructed
\scrX \prime i - 1 \times \scrY \prime i - 1 and its associated coupling (here, if i = 1 we set both \scrX i - 1 \times \scrY i - 1 and
\scrX \prime i - 1\times \scrY \prime i - 1 to \Lambda n\times \Lambda n). The ith coupling first samples \scrX i - 1\times \scrY i - 1 and \scrX \prime i - 1\times \scrY \prime i - 1
from the (i - 1)th coupling. If they are different, then we set \scrX \prime i \times \scrY \prime i arbitrarily and
assume that the coupling failed (i.e., \scrX i \times \scrY i and \scrX \prime i \times \scrY \prime i are different). Suppose
now that \scrX i - 1 \times \scrY i - 1 and \scrX \prime i - 1 \times \scrY \prime i - 1 are equal, and condition on some specific
choice of this rectangle. If the tree T \ast has already halted by this point, we set
\scrX \prime i \times \scrY \prime i = \scrX \prime i - 1 \times \scrY \prime i - 1. Otherwise, we proceed as follows.

Let (X,Y ) be a random pair that is uniformly distributed over \scrX i - 1 \times \scrY i - 1,
and recall that due to our conditioning, the pair (X \prime , Y \prime ) is uniformly distributed
over (\scrX \prime i - 1 \times \scrY \prime i - 1) \cap G - 1(z). We construct the rest of the coupling by following the
simulation step-by-step. For step 1, with probability

Pr
\Bigl[ 
X \prime free(\rho ) is \varepsilon -dangerous for Yfree(\rho )

\Bigr] 
,

we assume that the coupling failed and set \scrX \prime i\times \scrY \prime i arbitrarily. Otherwise, we condition
both X and X \prime on not taking a dangerous value. In order to analyze the probability
of failure, recall that at the beginning of this step, (X,Y ) are (\rho , \tau )-structured, where

\tau 
def
= 2 \cdot \delta  - \varepsilon 

(by definition of \delta ) = 2 \cdot 
\Bigl( 
1 - \eta 

4
+

\varepsilon 

2

\Bigr) 
 - \varepsilon 

= 2 - \eta 

2

\geq 2 +
\eta 

4
 - \eta +

\eta 

8\biggl( 
since \varepsilon 

def
=

h \cdot log c
c \cdot \eta 

\biggr) 
= 2 +

h \cdot log c
4 \cdot c \cdot \varepsilon 

 - \eta +
\eta 

8

\geq 2 +
h\prime 

c \cdot \varepsilon 
 - \eta +

\eta 

8
+

3 log c

c
+

4

b
,
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where the last inequality can be made to hold by choosing h to be sufficiently large.
Hence, our main technical lemma (Lemma 3.9) implies that the probability that
Xfree(\rho ) is \varepsilon -dangerous for Yfree(\rho ) is at most

2 - (
\eta 
8+

3 log c
c + 4

b )\cdot b \leq 1

8
\cdot 2 - 

\eta 
8 \cdot b \cdot 1

2 \cdot n \cdot b
.

Moreover, the uniform marginals lemma (Lemma 3.4) implies that X \prime is
( 18 \cdot 2 - 

\eta 
8 \cdot b \cdot 1

2\cdot n\cdot b )-close to X and therefore the probability that X \prime free(\rho ) is \varepsilon -dangerous

for Yfree(\rho ) is at most 2 \cdot 1
8 \cdot 2 - 

\eta 
8 \cdot b \cdot 1

2\cdot n\cdot b . Hence, the failure probability at this step is

at most 1
4 \cdot 2 - 

\eta 
8 \cdot b \cdot 1

2\cdot n\cdot b . Note that if the coupling does not fail, X is conditioned on
an event of probability at least 1

2 and, therefore, after the conditioning X and Y are
(\rho , \tau  - 1

b )-structured.
For steps 2 and 4, let M and \scrX j be the message and partition classes that are dis-

tributed according to the input X, respectively. Let M \prime and \scrX j \prime be the corresponding
message and class of X \prime . Since X and Y are (\rho , \tau  - 1

b )-structured, it can again be

showed by the uniform marginals lemma that X and X \prime are ( 18 \cdot 2 - 
\eta 
8 \cdot b \cdot 1

2\cdot n\cdot b )-close

and, therefore, the pair (M,\scrX j) is ( 18 \cdot 2
 - \eta 

8 \cdot b \cdot 1
2\cdot n\cdot b )-close, to the pair (M \prime ,\scrX j \prime ). This

implies that there exists a coupling of (M,\scrX j) and (M \prime ,\scrX j \prime ) such that the probability

that they differ is at most 1
8 \cdot 2
 - \eta 

8 \cdot b \cdot 1
2\cdot n\cdot b . We sample (M,\scrX j) and (M \prime ,\scrX j \prime ) from this

coupling. If they differ, we assume that the coupling failed, and set \scrX \prime i \times \scrY \prime i arbitrarily.
Otherwise, we condition both X and X \prime on being consistent with the message M and
the class \scrX j , and denote by Ij , xIj the set and values associated with \scrX j . Finally,

for step 5, if p\geq j \leq 1
8 \cdot 2 - 

\eta 
8 \cdot b \cdot 1

2\cdot n\cdot b , then we assume that the coupling fails and set

\scrX \prime i \times \scrY \prime i arbitrarily (note that this happens with probability at most 1
8 \cdot 2 - 

\eta 
8 \cdot b \cdot 1

n\cdot b ).
At this point, we set \scrX \prime i = \scrX j , and set \scrY \prime i to be the set of inputs y \in \scrY i - 1 for

which g(xIj , yIj ) = zIj . It is easy to see that this choice satisfies \scrX \prime i \times \scrY \prime i = \scrX i \times \scrY i.
To analyze the total failure probability of this coupling, observe that by the induction
assumption, the failure probability of the (i - 1)th coupling is at most 1

2 \cdot 2
 - \eta 

8 \cdot b \cdot i - 1
2\cdot n\cdot b ,

and the other failure events discussed above add to that a failure probability of at
most \biggl( 

1

4
+

1

8
+

1

8

\biggr) 
\cdot 2 - 

\eta 
8 \cdot b \cdot 1

2 \cdot n \cdot b
=

1

2
\cdot 2 - 

\eta 
8 \cdot b \cdot 1

2 \cdot n \cdot b
.

Hence, the failure probability of the ith coupling is at most 3
4 \cdot 2
 - \eta 

4 \cdot b \cdot i
n\cdot b , as required.

It remains to show that conditioned on any specific choice of \scrX \prime i \times \scrY \prime i, the pair
(X \prime , Y \prime ) is uniformly distributed over (\scrX \prime i \times \scrY \prime i) \cap G - 1(z). In the cases where the
coupling fails, we can ensure this property holds by first sampling (X \prime , Y \prime ) and then
setting \scrX \prime i \times \scrY \prime i = \{ (X \prime , Y \prime )\} . Suppose that the coupling did not fail. Recall that by
the induction assumption, it holds that conditioned on the choice of \scrX \prime i - 1 \times \scrY \prime i - 1, the
pair (X \prime , Y \prime ) is uniformly distributed over (\scrX \prime i - 1 \times \scrY \prime i - 1) \cap G - 1(z). Observe that all
the ith coupling changes in the distribution of (X \prime , Y \prime ) is to condition it on being in
\scrX \prime i\times \scrY \prime i. Thus, at the end of the ith coupling, the pair (X \prime , Y \prime ) is uniformly distributed
over (\scrX \prime i \times \scrY \prime i) \cap G - 1(z), as required.

\pi is close to \pi \ast . We turn to prove that \pi is 2 - b-close to \pi \ast . Let \scrE denote the
event that the tree T halts in step 3. It is not hard to see that the statistical distance
between \pi and \pi \ast is exactly Pr [\scrE ]. We show that Pr [\scrE ] < 2 - b, and this will conclude
the proof of correctness.

Intuitively, the reason that Pr [\scrE ] < 2 - b is that the tree halts only if the probability
of the transcript up to that point is less than 2 - C - b: to see it, observe that the variable
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K measures (roughly) the logarithm of the probability of the transcript up to that
point, and recall that the tree halts when K > C + b. By taking the union bound
over all possible transcripts, we get that the halting probability is less than 2 - b.

Unfortunately, the formal proof contains a messier calculation: the reason is that
the probabilities of the messages as measured by K depend on the choices of the
classes \scrX j in step 4, so the foregoing intuition only holds for a given choice of these
classes. Thus, the formal proof also sums over all the possible choices of classes \scrX j

and conditions on those choices. However, while the resulting calculation is more
complicated, the idea is the same.

In order to facilitate the formal proof, we set up some useful notation. Let
M1, . . . ,Mr be the messages that are chosen in step 2 of the simulation (so \pi =
(M1, . . . ,Mr)), and let J = (j1, . . . , jr) be the indices of the classes that are chosen
in step 4 (if the tree halts before the ith round, set Mi to the empty string and set
ji = 1). Observe that the execution of T is completely determined by \pi and J and,
in particular, \pi and J determine whether the event \scrE happens or not. With some
abuse of notation, let us denote the fact that a particular choice of (\pi , J) is consis-
tent with \scrE by (\pi , J) \in \scrE . For any i \in [r], let us denote \pi \leq i = (M1, . . . ,Mi - 1) and
J\leq i = (j1, . . . , ji). Observe that at the ith round, the probability pMi

in step 2 is
determined by \pi <i and J<i, and let us denote by pMi| \pi <i,J<i

this probability for a
given choice of \pi <i and J<i. We are now ready to prove the upper bound on Pr [\scrE ].
It holds that

Pr [\scrE ] =
\sum 

(\pi ,J)\in \scrE 

Pr [\pi , J ]

=
\sum 

(\pi ,J)\in \scrE 

Pr [M1] \cdot Pr [j1| \pi \leq 1] \cdot \cdot \cdot Pr [Mr| \pi \leq r - 1, J\leq r - 1] \cdot Pr [jr| \pi \leq r, J\leq r - 1]

=
\sum 

(\pi ,J)\in \scrE 

pM1 \cdot pM2| \pi \leq 1,J\leq 1
\cdot \cdot \cdot pMr| \pi \leq r - 1,J\leq r - 1

\cdot Pr [j1| \pi \leq 1] \cdot \cdot \cdot Pr [jr| \pi \leq r, J\leq r - 1] .

Next, observe that for every choice of (\pi , J), the corresponding value of K at the end
of the simulation is

log
1

pM1

+ log
1

pM2| \pi <2,J<2

+ \cdot \cdot \cdot + log
1

pMr| \pi <r,J<r

.

In particular, if (\pi , J) \in \scrE , then it holds that K > C + b and, therefore,

pM1 \cdot pM2| \pi <2,J<2
\cdot \cdot \cdot pMr| \pi <r,J<r

< 2 - C - b.

It follows that

Pr [\scrE ] =
\sum 

(\pi ,J)\in \scrE 

pM1 \cdot pM2| \pi <2,J<2
\cdot \cdot \cdot pMr| \pi <r,J<r

\cdot Pr [j1| \pi \leq 1] \cdot \cdot \cdot Pr [jr| \pi \leq r, J\leq r - 1]

<
\sum 

(\pi ,J)\in \scrE 

2 - C - b \cdot Pr [j1| \pi \leq 1] \cdot \cdot \cdot Pr [jr| \pi \leq r, J\leq r - 1]

\leq 
\sum 
(\pi ,J)

2 - C - b \cdot Pr [j1| \pi \leq 1] \cdot \cdot \cdot Pr [jr| \pi \leq r, J\leq r - 1]
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\leq 2 - C - b \cdot 
\sum 
M1,j1

Pr [j1| \pi \leq 1] \cdot 
\sum 
M2,j2

Pr [j2| \pi \leq 2, J\leq 1]

\cdot \cdot \cdot 
\sum 
Mr,jr

Pr [j2| \pi \leq 2, J\leq 1]

= 2 - C - b \cdot 
\sum 
M1

1 \cdot 
\sum 
M2

1 \cdot \cdot \cdot 
\sum 
Mr

1(9)

= 2 - C - b \cdot 
\sum 
\pi 

1

\leq 2 - b,(10)

as required. In the calculation above, equality (9) follows since each sum goes over all
the possible choices of ji, and inequality (10) follows since \Pi has at most 2C distinct
transcripts.

5.3. The query complexity of \bfitT . The analysis of the query complexity here
is similar to the analysis of the deterministic query complexity. The main difference
is the following: in the deterministic setting, the increase in the deficiency due to a
single message M was upper bounded by | M | and, therefore, the total increase in the
deficiency was upper bounded by | C| . In the randomized case, the increase in the
deficiency due to a single message M is upper bounded by log 1

pM
. Thus, we upper

bound the total increase in the deficiency by K. Since K is never larger than C + b
due to step 3, we conclude that the query complexity is at most O(C+b

b ) = O(Cb +1);
details follow.

As before, we define the deficiency of X,Y to be

2 \cdot b \cdot | free(\rho )|  - H\infty (Xfree(\rho )) - H\infty (Yfree(\rho )).

We prove that whenever the protocol transmits a message M , the deficiency increases
by O(log 1

pM
), and that whenever the tree T makes a query, the deficiency is decreased

by \Omega (b). Since the deficiency is always nonnegative, and K is never more than C + b,
it will follow that the tree must make at most O(C+b

b ) queries. More specifically, we
prove that in every round, the first two steps increase the deficiency by log 1

pM
+ 1,

and the rest of the steps decrease the deficiency by \Omega (| Ij | \cdot b), and this will imply the
desired result.

Fix a round of the simulation, and assume without loss of generality that the
message is sent by Alice. We start by analyzing step 1. At this step, the tree condi-
tions Xfree(\rho ) on taking dangerous values that are not \varepsilon -dangerous for Yfree(\rho ). Using
the same calculation as in section 5.2, it can be shown that the probability of non-
dangerous values is at least 1

2 . Therefore, this step increases the deficiency by at most
1 bit. Next, in step 2, the tree conditions X on an event of choosing the message M ,
whose probability is pM by definition. Thus, this step increases the deficiency by at
most log 1

pM
bits. All in all, we showed that the first two steps of the simulation

increase the deficiency by at most log 1
pM

+ 1 bits.

Let \scrX j be the partition class that is sampled in step 4, and let Ij , xj be the set
and value that are associated with \scrX j . We turn to show that the rest of the steps
decrease the deficiency by \Omega (b \cdot | Ij | ). Those steps apply the following changes to the
deficiency:

\bullet step 4 conditions X on the event Xfree(\rho ) \in \scrX j . By Lemma 3.7, this condi-

tioning increases the deficiency at most \delta \cdot b \cdot | I| + log 1
p\geq j

. Recall that by
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step 5, the probability p\geq j can never be less than 1
8 \cdot 2 - 

\eta 
8 \cdot b \cdot 1

2\cdot n\cdot b . Thus, this
step increases the deficiency by at most

\delta \cdot b \cdot | I| + \eta 

8
\cdot b+ log(2 \cdot n \cdot b) + 3 \leq 

\biggl( 
\delta +

\eta 

4
+

6

c

\biggr) 
\cdot b \cdot | I| .

\bullet Step 6 removes the set I from free(\rho ). Looking at the definition of deficiency,
this change decreases the term of 2 \cdot b \cdot | free(\rho )| by 2 \cdot b \cdot | I| , decreases the term
of H\infty (Yfree(\rho )) by at most b \cdot | I| (Fact 2.3), and does not change the term
H\infty (Xfree(\rho )) (since at this point XI is fixed to xI). All in all, the deficiency
is decreased by at least b \cdot | I| .

\bullet Finally, step 7 conditions Y on the event gI(xI , YI) = \rho I . This event has
probability at least 2 - | I|  - 1 by the assumption that X is not dangerous (and
hence not leaking). Thus, this conditioning increases the deficiency by at
most | I| + 1.

Summing all those effects together, we get that the deficiency was decreased by at
least

b \cdot | I|  - 
\biggl( 
\delta +

\eta 

8
+

6

c

\biggr) 
\cdot b \cdot | I|  - (| I| + 1) \geq 

\biggl( 
1 - \delta  - \eta 

8
 - 7

c

\biggr) 
\cdot b \cdot | I| .

By choosing c to be sufficiently large, we can make sure that 1 - \delta  - \eta 
8  - 

7
c is a positive

constant independent of b and n and, therefore, the decrease in the deficiency will be
at least \Omega (b \cdot | I| ), as required. To see it, observe that

\delta +
\eta 

8
+

7

c
= 1 - \eta 

8
+

\varepsilon 

2
+

\eta 

8
+

7

c\biggl( 
since \varepsilon 

def
=

h \cdot log c
c \cdot \eta 

\biggr) 
= 1 - \eta 

8
+

h \cdot log c
2 \cdot c \cdot \eta 

+
7

c

\leq 1 - \eta 

8
+

(h+ 14) \cdot log c
2 \cdot c \cdot \eta 

.

Thus, if we choose c such that c
log c > h+14

2\cdot \eta 2 , the expression on the right-hand side will
be a constant that is strictly smaller than 1. It is not hard to see that we can choose
such a value of c that satisfies c = O( 1

\eta 2 \cdot log 1
\eta ).
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