
UNIVERSITY OF CALIFORNIA, SAN DIEGO

The Exponential Complexity of Satisfiability Problems

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Chris Calabro

Committee in charge:

Professor Ramamohan Paturi, Chair
Professor Samuel Buss
Professor Sanjoy Dasgupta
Professor Russell Impagliazzo
Professor David Meyer

2009

Copyright

Chris Calabro, 2009

All rights reserved.

The dissertation of Chris Calabro is approved, and
it is acceptable in quality and form for publication
on microfilm and electronically:

Chair

University of California, San Diego

2009

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Vita and Publications . x

Abstract of the Dissertation . xi

Chapter 1 Introduction . 1

Chapter 2 Preliminaries . 4
2.1 Mathematical notation . 4
2.2 Exponential approximation . 5
2.3 Binary entropy function . 6
2.4 Chernoff bounds . 8

2.4.1 Convex functions . 8
2.4.2 General Chernoff bound . 9
2.4.3 Large mean case . 10
2.4.4 Small mean case . 11

2.5 k-wise independent distributions . 11
2.6 Switching lemmas . 13
2.7 Basic definitions in complexity theory 18

2.7.1 What is exponential complexity? 18

Chapter 3 2-CNF . 21

Chapter 4 Resolution . 26
4.1 Restricted forms of resolution . 28
4.2 Implication trees . 29

Chapter 5 Sparsification . 32
5.1 Why it’s useful . 32
5.2 Sparsification algorithm . 33
5.3 Basic properties . 34
5.4 Choosing the θi . 36
5.5 Open problems . 40
5.6 Rate of growth of the θi . 40

Chapter 6 k-SAT upper bounds . 44
6.1 DPLL method . 44
6.2 PPZ algorithm . 45

6.2.1 Derandomization of PPZ . 48
6.3 PPSZ . 49

6.3.1 Derandomization of PPSZ, unique solution case 50
6.4 Local search . 51

iv

6.4.1 Derandomization of LocalSearch 54
6.5 Combine PPSZ with LocalSearch, k ∈ {3, 4} 55
6.6 Minor improvements . 57

6.6.1 Deterministic local search, k = 3 57
6.6.2 Improved analysis for Iwama-Tamaki, k = 3 57

6.7 Summary and open problems . 58

Chapter 7 Quantified k-SAT . 60
7.1 Π2 3-SAT lower bound . 61
7.2 Algorithms for 2 special cases . 62
7.3 Reduction to a canonical form . 64
7.4 Parameter trade-off at higher levels of the hierarchy 64

Chapter 8 Circuit-SAT upper bound . 66
8.1 Motivation . 66
8.2 The algorithm . 67

8.2.1 Definitions . 67
8.2.2 High level description . 67
8.2.3 Detailed description . 68

8.3 Run time analysis . 68
8.4 Open problems . 71

Chapter 9 Unique satisfiability . 73
9.1 Valiant-Vazirani reduction . 73

9.1.1 Hash function representation 76
9.1.2 Derandomization of the Valiant Vazirani reduction for 2o(n) so-

lutions . 79
9.2 Lower bound on the complexity of Unique-k-SAT 81
9.3 Limitations of oblivious isolation . 85

9.3.1 Conclusions . 88
9.4 Deciding unique satisfiability . 88

9.4.1 Previous work . 89
9.4.2 Efficient reductions . 89
9.4.3 Constraint satisfaction problems 90
9.4.4 Extending the result up the PH 91
9.4.5 Solution optimization problems 92
9.4.6 Constraint optimization problems 94
9.4.7 Conclusions . 96

Chapter 10 Clause width, density duality for SAT . 97
10.1 Definitions . 98
10.2 Previous work . 99
10.3 Relating the SAT constants . 101

10.3.1 Relating k-SAT to SAT∆ . 101
10.3.2 Relating k-SAT to f -Freq-SAT 102
10.3.3 Putting the bounds together 103

10.4 Impossibility of general sparsification 103
10.5 Conclusion . 104

Chapter 11 Summary and open problems . 106
11.1 Impact of quantum computers . 107

v

Bibliography . 108

vi

LIST OF FIGURES

Figure 2.1: binary entropy function and several approximations 6

Figure 5.1: sparsification algorithm . 33
Figure 5.2: randomized sparsification algorithm . 40

Figure 6.1: PPZ algorithm solving k-SAT . 45
Figure 6.2: Schöning’s local search algorithm . 51
Figure 6.3: deterministic local search . 56

Figure 8.1: linear size, constant depth circuit solver . 69
Figure 8.2: linear size, constant depth circuit solver, backtracking version 72

Figure 9.1: generating r . 80

Figure 10.1: width reduction algorithm . 100

vii

LIST OF TABLES

Table 6.1: performance of k-SAT algorithms . 58

viii

ACKNOWLEDGEMENTS

To my advisor Ramamohan Paturi for the core ideas on sparsification, circuit upper
bounds, and for spending far more time on his advisees than is typical for an advisor; to Russell
Impagliazzo for the intuitive proof of (2.3), for suggesting how to use the switching lemma, and
for philosophical discussions through the years; to Valentine Kabanets for helping to improve my
writing style; to the UCSD theory lab denizens – Kirill Levchenko, Sashka Davis, Yi-Kai Liu,
Vadim Lyubashevsky, Ragesh Jaiswal, Nathan Segerlind – who have all patiently entertained
my mathematical meanderings, even when there was little rational motive; to Julie Conner for
guiding me through all administrative matters; to my wife Paola Robotti for being the only one
who believed in me; and last to the committee for slugging through this massive document.

The material from chapters 5, 7, 8, 10 is joint work with Russell Impagliazzo and
Ramamohan Paturi. That from chapters 5, 10 appeared in the Proceedings of the 21st Annual
IEEE Conference on Computational Complexity, 2006. That from chapter 8 will be presented at
the Fourth International Workshop on Parameterized and Exact Computation, 2009. That from
chapter 7 is unpublished. That from §9.2 and theorem 6.1 is joint work with Russell Impagliazzo,
Ramamohan Paturi, and Valentine Kabanets and was published in the Journal of Computer and
System Sciences 74(3), 2008. That from §9.3 is unpublished joint work with Russell Impagliazzo.
That from §9.4 is joint work with Ramamohan Paturi, was presented at Computer Science in
Russia, 2009, and appears in Lecture Notes in Computer Science 5675.

ix

VITA

2000 B. S. in Computer Science and Mathematics, Rutgers University

2003-2009 Graduate Teaching Assistant, University of California, San Diego

2009 Ph. D. in Computer Science, University of California, San Diego

PUBLICATIONS

C. Calabro, R. Impagliazzo, and R. Paturi, “The Complexity of Satisfiability of Small Depth
Circuits”, IWPEC, 2009, (to appear in IWPEC 2009, LNCS).

C. Calabro and R. Paturi, “k-SAT is No Harder than Decision-Unique-k-SAT”, CSR, 59–70,
LNCS 5675, 2009.

C. Calabro, “A Lower Bound on the Size of Graphs Dense in Long Paths”, ECCC, Report
TR08-110, 2008.

C. Calabro, R. Impagliazzo, V. Kabanets, and R. Paturi, “The Complexity of Unique k-SAT:
An Isolation Lemma for k-CNFs”, JCSS, 74(3):386–393, 2008.

C. Calabro, R. Impagliazzo, and R. Paturi, “A Duality between Clause Width and Clause
Density for SAT”, CCC, 252–260, 2006.

x

ABSTRACT OF THE DISSERTATION

The Exponential Complexity of Satisfiability Problems

by

Chris Calabro
Doctor of Philosophy in Computer Science

University of California San Diego, 2009

Professor Ramamohan Paturi, Chair

The exponential complexity of a parameterized problem P is the infimum of those c such that P
can be solved in time poly(|x|)2cn on inputs x of parameter n. For example, any (d, k)-constraint
satisfaction problem over n variables can be solved in time poly(|x|)dn, and so has exponential
complexity at most lg d. We thoroughly explore the exponential complexity of k-SAT. We

• show that the exponential complexities of k-SAT and SAT with clause density or frequency
∆ are approximately the same when lg ∆ is between Ω(k) and O(k lg k).

• upper bound the gap between the exponential complexities of k-SAT and Unique-k-SAT by
O(lg2 k

k), and show that this is nearly optimal for current techniques. For the non-promise
version of Unique-k-SAT, we reduce this gap to 0.

• lower bound the exponential complexity of Π2 3-SAT, a canonical problem at the 2nd level
of the polynomial hierarchy, by that of k-SAT, independent of k, showing that a major
technical hurdle must be jumped to construct nontrivial algorithms for this problem.

• give what is likely the first nontrivial algorithm for the satisfiability of circuits of constant
depth and linear size.

xi

Chapter 1

Introduction

This work will explore the exponential complexity of satisfiability problems, i.e. answer-
ing questions of the form ∃x φ where φ is some predicate. Of course, this class is as general as the
computable functions, but we will always have some natural parameter n, such as the number of
variables or graph nodes in the problem instance, and only consider problems that can be solved
in time ≤ poly(|x|)2cn where c = 1 and x is the instance. Given a practical problem P where it
is not obvious how to make c = 0, just how small c can be made becomes important, and roughly
this is what we will call the exponential complexity of P . We mostly focus on P = k-SAT, since
it is standard, practical, and much can be said about it.

Random k-SAT with n variables and ∆n clauses is known to have a threshold for ∆,
namely 2k ln 2−O(k) ([AM02, AP03]), below which the formula is satisfiable with high probability
and above which the formula is unsatisfiable with high probability. It is also increasingly hard
to certify or refute satisfiability as ∆ gets closer to the threshold. Thus linear sized k-CNFs
appear to be the hardest, at least in the random input setting. For worst case complexity, it was
shown in [IPZ01] that the hardest cases of k-SAT have size linear in the number of variables.
The constant of linearity, however, was doubly exponential in k, which is very far from the
threshold for random instances. In chapter 5, we tighten the constant of linearity to exponential
in O(k lg k), which is much closer to the value we would expect.

In chapter 6, we review the currently best worst-case algorithms for k-SAT, deriving or
at least explaining their exponential complexity. This serves several purposes. First, we will see
how well we can currently do, and what the current best methods are. If one wants to select an
algorithm or design the next best one, it helps to have the currently best ones all in one place,
explained as a coherent whole, to understand where the bottlenecks are. Indeed, the best 3-SAT
algorithm is simply a combination of 2 other very different 3-SAT algorithms.

Next, several times throughout, we will use nontrivial properties of these algorithms
which can only be exposed by careful analysis, i.e. it may not suffice to say, “X’s algorithm
obviously has property Y ” – X may not have cared about property Y at the time of publication
and so it might not be obvious from X’s original exposition. Indeed, the reader may want to
check for properties this author did not think to consider.

Lastly, there will be 2 obvious trends to observe: that progress has significantly slowed,
and that all k-SAT algorithms have exponential complexity converging to 1 as k → ∞. The
former is the basis for the Exponential Time Hypothesis (ETH), which conjectures that there
is a positive exponential complexity for 3-SAT below which no algorithm can go. The latter
is the basis for the Strong Exponential Time Hypothesis (SETH), which conjectures that every
sequence of algorithms Ak, the kth of which solving k-SAT, must have exponential complexity
converging to 1.

Apart from organizing the information here, the only contribution this author made to

1

2

the area of k-SAT upper bounds was to show an upper bound on the performance of the PPZ
algorithm that decreases as the number of solutions in the problem instance increases, which is in
accord with a sort of naive intuition about all satisfiability algorithms, but contradicts the original
intuition actually used to analyze PPZ. This should embolden others to prove a similar property
about the PPSZ algorithm, which is based on PPZ, since that would dramatically improve the
best known upper bound on 3-SAT, rendering the currently best hybrid algorithms obsolete.

In chapter 7, we consider quantified k-SAT. There are currently no nontrivial algorithms
for this problem even when restricted to Π2 3-CNF, i.e. instances of the form ∀x ∃y φ where
φ ∈ 3-CNF. We give a weak alibi for this: Π2 3-SAT is at least as hard as k-SAT independent
of k. Thus SETH would preclude ever finding a nontrivial algorithm for this problem. We also
show several syntactic restrictions that admit nontrivial algorithms, giving evidence that these
are not the hardest and encouraging only focusing on a simple canonical form.

In chapter 8, we consider the satisfiability of circuits of constant depth d and linear
size, giving what we believe are the first nontrivial upper bounds. The ideas there are similar
in spirit to the switching lemma, but technically different. As should be expected, the bound
for moderate d is quite close to 1, so the algorithm is not practical for inverting actual circuits
of moderate depth, but it does make the philosophical point that exponential speed ups are
possible for inverting functions even in these fairly powerful computational models. Note that
most previous research has focused on the size of restricted classes of circuits that compute
particular functions, whereas we consider the complexity of deciding their satisfiability.

In chapter 9, we explore the relationship between the complexity of the satisfiability
problem and that of of the unique satisfiability problem for several problems P . There are
at least 2 ways of interpreting unique satisfiability. One is Unique-P , the problem of deciding
whether the instance has a solution under the promise that there is at most one. The other is
Decision-Unique-P , the problem of deciding whether the instance has exactly 1 solution.

Unique-P is the more important problem because the promise may allow the design
of better algorithms. For example, as mentioned before, the PPSZ algorithm is able to ex-
ploit uniqueness of a solution to yield better performance. It would be nice to claim that this
automatically yields improved performance for the non-unique case as well.

A second example is Grover’s quantum quadratic speedup algorithm. As originally
stated in [Gro96], it takes a black box predicate Q with exactly one solution, where Q takes an
n-bit input and is evaluable in time t, and finds that solution in time roughly O(t2n/2). This was
greatly strengthened by [BBHT96] to the following: any probabilistic algorithm running in time
t and with success probability p can be transformed into a quantum algorithm with running time
O(t/

√
p) and with constant success probability. In other words, [Gro96] and [BBHT96] showed

the same result, only [Gro96] required the assumption of a unique solution. The point here is
that algorithmic design may benefit by first assuming a unique solution and then removing this
assumption later. This is similar to how many algorithms are first designed by using randomness,
and later a clever derandomization is found.

The question of whether Unique-P has the same complexity as P for a given problem P is
really asking whether the second phase of this algorithmic design process can be automated. Can
we always remove the assumption of uniqueness without an exponential performance penalty?

The first tool for analyzing this question was the randomized hashing technique of
Valiant and Vazirani [VV86]. We analyze this technique in detail, and show how to derandomize it
in the case that the input formula has 2o(n) solutions. [VV86] showed that if Unique-3-SAT ∈ RP,
then NP = RP. But this is almost entirely a negative result, only showing that Unique-3-SAT is
in some sense hard (unless you believe the rather strong hypothesis, that is). It does not provide
a means to solve practical problems if we can only solve Unique-3-SAT in exponential time.

We show a somewhat more practical result: that the exponential complexity of k-SAT
is not too much larger than that of Unique-k-SAT, where the gap shrinks to 0 as a function of
k. This also implies that ETH is equivalent to the assertion that Unique-3-SAT has positive

3

exponential complexity. (Unfortunately, this asymptotic result still does not say much for very
small k if ETH is true, but does become significant for moderate k.) We further show that the
gap we find is nearly optimal for oblivious hashing techniques, i.e. those that ignore the input
formula except to see how many variables it has. Currently there are no other techniques known.

The second version of the uniqueness question, Decision-Unique-P , which is equivalent
to asking whether a problem instance defines a unique constant, is of lesser importance, but still
may be of practical value, and we will prove much stronger results about it. We will show that the
exponential complexity of Decision-Unique-P and P are the same for many standard problems
P – including k-SAT, Max-k-SAT, Vertex Cover, Independent Set – both in the randomized and
deterministic settings. This resolves an open question of [GB97], and considerably more.

The lack of algorithms for Formula-SAT or even CNF-SAT with exponential complexity
< 1 naturally leads us to consider syntactically constrained versions of the problem. The most
common constraints considered bound the width of each clause, the number of clauses, or the
frequency of each variable (i.e. the number of clauses in which it appears). For each of these
types of constraint, we have nontrivial algorithms, and we now name a few results in this area.

[BKS07] consider 3-SAT with restricted variable frequency. They give a poly time
algorithm for 3-SAT where O(1) variables occur 4 times and the rest ≤ 3 times, and show that if
all variables occur ≤ 3 times except for one, which we allow to occur an arbitrary number of times,
then the complexity jumps to NP-hard. Ek-SAT (the ’E’ means each clause has width exactly k)
restricted to instances where each variable occurs ≤ s times is trivial when s ≤ f(k), in the sense
that such instances are automatically satisfiable, and NP-hard when s ≥ f(k)+1 for some function
f(k) ∈ Θ(2k/k) [KST93, Geb09] a result that is in concert with both the satisfiability threshold
for random k-SAT and the Lovász Local Lemma. Interestingly, f(3) = 3, f(4) = 4, f(5) ∈ [5, 7],
but we don’t know f(k) for any k ≥ 5. It is not even known whether f is a computable function
[HS06].

[Wah05] gives an algorithm for CNF-SAT when the average variable frequency is ≤ f̄
with exponential complexity ≤ .17364(f̄ −2). [Sch05] gives an algorithm for CNF-SAT when the
clause density is ≤ ∆ with exponential complexity ≤ 1− 1

lg ∆ .
In chapter 10, we show an intuitive functional relationship between the exponential

complexities of CNF-SAT with these various restriction types. In particular, assuming ETH,
k-SAT and SAT with clause density ∆ (or maximum variable frequency ∆ or average variable
frequency ∆) have almost the same exponential complexity when lg ∆ is between Ω(k) and
O(k lg k). So we have an automatic way to make progress in each area if we can make progress
in one (modulo some error terms); or, put another way, we are somewhat free to choose the
restriction type we feel will lead to the easiest algorithmic design.

Many of the results in all of these areas use the same basic mathematical tools – Chernoff
bounds, binary entropy approximations, switching lemmas, k-wise independence – and so we
begin in chapter 2 by collecting these tools, and extending several of them in interesting ways.
Occasionally, the added precision there over standard statements will come in handy.

Chapter 2

Preliminaries

2.1 Mathematical notation

We will consistently use ln, lg to be the natural and base 2 logarithms. The set of
natural numbers is N = {0, 1, 2, . . . }. For n ∈ N, [n] = {i ∈ N | 1 ≤ i ≤ n}. Interval notation,
such as [a, b] may refer to the reals between a and b or the integers between a and b, depending
on context. For a finite set S, x ∈u S means that x is chosen uniformly at random from S. If
n ∈ N is a prime power, Fn will denote the field of order n. For any field F , F [x] will denote the
polynomials in x with coefficients in F .

We will frequently want to discuss the limit of monotone sequences: if s1 ≤ s2 ≤ · · · is
a nondecreasing bounded sequence of reals, we let s∞ = limk→∞ sk.

In set theory, frequently the natural number n ∈ N is defined recursively as {0, . . . , n−1},
which provides a convenient canonical set of size n. E.g. 2 = {0, 1}. If A,B are sets, AB is the
set of maps from B to A. This is ambiguous if A,B are both natural numbers (e.g. is 22 a set of
maps or 4?), but this will rarely be a problem given context. If A is a ring and m,n ∈ N, then
Am×n is the set of m×n matrices with entries in A. The power set of a set S is P(S) = {T ⊆ S}.

When a1, . . . , ak are all related to b by the binary relation R, we may write a1, . . . , akRb,
as in ∀x, y > 0; but we will refrain from using bRa1, . . . , ak to mean bRa1, . . . , bRak since it is
not necessary when the relation reverse to R is available, and since we will want to reserve this
notation for making lists that contain both variables and binary relation predicates.

In first order formulas, after function symbols, quantifiers and the unary logical operator
¬ have the next highest precedence. The binary logical operators ∧,∨ have the next highest, and
→,↔,⊕ have the lowest. All binary logical operators associate from left to right. The universe
over which a quantifier is quantifying is often given explicitly, but otherwise is left to be divined
from context. A comma separated list after a quantifier indicates that the quantifier is to be
distributed among the items of the list. The space after the list indicates where the quantified
subformula begins. The ∃! notation is a minor extension of ∃, meaning “there is a unique”. Thus

∃x, y > 0, z A→ B → ¬C ∧D

means “((there is a positive x and positive y and a (not necessarily positive) z such that A)
→ B)→ ((¬C) ∧D)”.

A predicate in parentheses will denote its indicator function. Thus (x ∈ S) is 1 if x ∈ S
and 0 otherwise.

The Boolean operators ¬,∧,∨,⊕,→,↔ operate on 2, e.g. 1 ∧ 0 = 0. Occasionally we
will spell them out: NOT, AND, OR, XOR, IMPLIES, IFF. We overload them to operate on
formulas as well, e.g. if α, β are both formulas, then ¬(α∧β) is as well. Let V be a set of variables.
The set of Boolean formulas w.r.t. a basis B of Boolean functions is the closure of V under the

4

5

Boolean formula building operations corresponding to the functions in B. To get around needing
to define the Boolean functions and their corresponding formula building operations, we could
model a formula formally as the set of rooted, ordered trees with each internal node labeled with
an element of B and each leaf labeled with an element of V . However this is overly pedantic,
and when representing formulas by sequences of symbols, we will allow conventional ambiguity,
blurring the distinction between a function and its corresponding formula building operator. E.g.
x ∧ y may represent a formula or a truth value. If a Boolean function op labeling an internal
node v of a formula is symmetric in some k of its arguments, we may consider the corresponding
k children of v to be unordered.

Some Boolean operators, such as ∧,∨,⊕, are associative and commutative and so, unless
specified otherwise, we will not restrict the number of their arguments. Thus, a depth 2 formula
over the basis {∧,∨,¬}, by default, has unrestricted fan-in.

Circuits are defined the same way as formulas but are represented with directed acyclic
graphs instead of trees.

The variables-of map defines a homomorphism from the Boolean formulas to P(V):
var(α) is the set of variables that appear in α, i.e. if x ∈ V , op is a k-ary Boolean formula
building operator, α1, . . . , αk are Boolean formulas, then var(x) = {x}; var(op(α1, . . . , αk)) =⋃k
i=1 var(αi). Negating a variable x is so common that we will occasionally use the more compact

x̄ to denote ¬x. A variable or its negation is called a literal. We will adopt the convention that
¯̄x = x so that the set of literals is the closure of V under ¬.

An assignment to V is a map a : V → 2. The evaluation-at-a map defines a ho-
momorphism from the Boolean formulas to 2: a(op(α1, . . . , αk)) = op(a(α1), . . . , a(αk)), where
α1, . . . , αk are Boolean formulas and op is a k-ary formula building operator on the left hand
side (LHS) and the corresponding Boolean operator on the right hand side (RHS). We will also
write α(a) to mean a(α). If i ∈ V, a ∈ 2V , then a ⊕ i is the assignment a but with the ith bit
flipped, i.e.

(a⊕ i)(j) =

{
a(j) if j 6= i

1− a(j) if j = i
.

2.2 Exponential approximation

We commonly use that 1+x ≈ ex for x close to 0. Here are more exact statements that
will be frequently useful.

Theorem 2.1.

∀x ∈ R 1 + x ≤ ex

∀x ∈ [0, 1] 1 + x ≥ 2x

∀n ≥ 1, x ∈ [0, 1]
(
1− x

n

)n−1

≥ e−x.

Proof. The 1st statement is shown in most calculus books. To show the 2nd statement, take the
ln of both sides: we want to show f(x) = ln(1 + x) − x ln 2 ≥ 0 for x ∈ [0, 1]. f(0) = f(1) = 0
and f is concave down on [0, 1] since f ′′(x) = −(1 + x)−2 < 0 for x ∈ [0, 1]. To show the 3rd
statement, take the ln of both sides: we want to show g(x) = (n−1) ln(1− x

n)+x ≥ 0 for x ∈ [0, 1].

g(0) = 0, and g′(x) = (n− 1) −
1
n

1− x
n

+ 1 = 1−x
n−x is ≥ 0 when x ∈ [0, 1]. So ∀x ∈ [0, 1] g(x) ≥ 0.

In particular, taking x = 1 in theorem 2.1 gives

∀n ≥ 1
(
1− 1

n

)n−1

≥ e−1. (2.1)

6

2.3 Binary entropy function

Let X be a random variable uniform on [0, 1] and p ∈ [0, 1]. Let I be the indicator
random variable for the event that X ∈ [0, p] so that I is Bernoulli with parameter p. The binary
entropy function 1

h(p) = −p lg p− (1− p) lg(1− p) (2.2)

is the expected number of bits of information about X we learn when we observe the value of
I. E.g. if p = 1

2 , then upon observing I, we learn exactly the most significant bit of X, and so
h(p) = 1. The idea of what a bit is needs to be treated more carefully when there are not an
integer number of them, but we can take (2.2) as our definition and leave the rest to intuition.

We will often need to approximate h(p) by something simpler. The first 2 derivatives
of h are

h′(p) = lg(1− p)− lg p

h′′(p) = − 1
(ln 2)p(1− p)

.

Following is a plot of h and 3 approximations: the first term h1(p) = −p lg p in the definition
of h, the quadratic h2(p) = 1 − 4(p − 1

2)2 that agrees with h at the points p = 0, 1
2 , 1, and a

quadratic h3(p) = 1− 2
ln 2 (p− 1

2)2.

Figure 2.1: binary entropy function and several approximations

h1, h2 can be used for lower bounding and h3 for upper bounding:

∀p ∈ [0, 1] h1(p), h2(p) ≤ h(p) ≤ h3(p).

Since limp→0+ h′(p) =∞, for small values of p, say p < .01, h1 becomes a much better approxi-
mation than h2. But h2, h3 are more useful for p near 1

2 .
To upper bound h for small values of p, first we note that

∀p ∈
[
0,

1
2

]
− (1− p) lg(1− p) ≤ 2p,

1Throughout this section, expressions not officially defined on a point of their intended domain will represent
their continuous extensions. E.g. −p lg p will represent 0 at p = 0.

7

which can be seen by differentiating. So

∀p ∈
[
0,

1
2

]
h(p) ≤ −p lg p+ 2p = p lg

4
p
.

Let l(p) = p lg 1
p , u(p) = p lg 4

p be our lower and upper bounds for h(p) and restrict
their domains to [0, 1

2] so that we can take inverses. Since both are strictly monotonic, we have
∀p ∈ [0, 1

2], x ∈ [0, 1],

l(p) ≤h(p) ≤ u(p)
u−1(x) ≤h−1(x) ≤ l−1(x).

We now derive a simple upper bound for l−1 and a simple lower bound for u−1. Let p ∈ [0, 1
2],

and suppose p lg 1
p = x. Then p ≤ x. So

p =
x

lg 1
p

≤ x

lg 1
x

.

Now suppose p ∈ [0, 1
2] and p lg 4

p = x. Then x2 ≤ 9p, which can be seen by differentiating. This
implies

p =
x

lg 4
p

≥ x

2 lg 6
x

.

To summarize,

Theorem 2.2.

∀p ∈ [0, 1] p lg
1
p
, 1− 4

(
p− 1

2

)2

≤ h(p) ≤ 1− 2
ln 2

(
p− 1

2

)2

∀p ∈
[
0,

1
2

]
h(p) ≤ p lg

4
p

∀x ∈ [0, 1]
x

2 lg 6
x

≤ h−1(x) ≤ x

lg 1
x

.

Our primary use for h is to approximate the binomial coefficient
(
n
k

)
when k is θ(n).

Let X be a binomial random variable with parameters (n, p), where pn ∈ Z, so that µ = E(X) =
pn, σ2 = var(X) = np(1− p). Then µ is the most likely value of X. In fact,

Ω
(1
σ

)
≤ Pr(X = µ) =

(
n

pn

)
ppn(1− p)(1−p)n =

(
n

pn

)
2−h(p)n ≤ 1,

which proves the bound

Ω
(1√

n

)
2h(p)n ≤

(
n

pn

)
≤ 2h(p)n. (2.3)

A much less intuitive proof of the lower bound - but more compelling if one is more
willing to take for granted facts about factorials than about binomial distributions - relies on
Stirling’s approximation [Wei]: ∀n ≥ 1,

e
1

12n+1
√

2πnnne−n < n! < e
1

12n

√
2πnnne−n.

For our purposes, we can make due with the coarser approximation that ∀n ≥ 1,
√

2πnnne−n < n! < 1.1
√

2πnnne−n.

8

So ∀n ≥ 1, p ∈ (0, 1) for which pn ∈ Z,(
n

pn

)
=

n!
(pn)!((1− p)n)!

≥ 1
1.21

√
2πp(1− p)n

p−pn(1− p)−(1−p)n

≥ 1
2
√
n

2h(p)n,

making use of the fact that p(1− p) ≤ 1
4 .

We may also want to bound the size of the Hamming ball Bpn(0n) of radius pn about
0n. For p ∈ [0, 1

2],

1 ≥
bpnc∑
k=0

(
n

k

)
pk(1− p)n−k from the binomial theorem

≥
bpnc∑
k=0

(
n

k

)
ppn(1− p)(1−p)n since pk(1− p)n−k is nonincreasing in k

= |Bpn(0n)|2−h(p)n.

For p very close to 1
2 , the simpler bound |Bpn(0n)| ≤ 2n is usually sufficient. Summarizing,

Theorem 2.3. Let p ∈ [0, 1
2], n ≥ 1, p′ = bpnc

n (so p′ = p if pn ∈ N). Then

1
2
√
n

2h(p
′)n ≤

(
n

p′n

)
≤ |Bpn(0n)| ≤ 2h(p)n.

2.4 Chernoff bounds

2.4.1 Convex functions

Jensen’s inequality says that if f is convex and you concentrate the probability mass of
a random variable X around its mean, then E(f(X)) goes down. We want a theorem that goes
in the opposite direction: if you spread the probability mass of X out towards some endpoints
in such a way that the mean is preserved, then E(f(X)) goes up.

Theorem 2.4. Let f : [0, 1]→ R be convex, X ∈ [0, 1], Y ∈ {0, 1} be random variables, E(X) =
E(Y) = p. Then E(f(X)) ≤ E(f(Y)).

Proof. First assume that f is continuous. Then f is uniformly continuous. Given ε > 0, choose n
so large that on each interval of size ≤ 1

n , f varies by ≤ ε. Define the following partition of [0, 1]:
Ii = [i−1

n , in), i = 1, . . . , n− 1 and In = [1− 1
n , 1]. Set pi = Pr(X ∈ Ii) and xi = E(X | X ∈ Ii)

(or any value if pi = 0). We approximate X by the discrete distribution Z: Pr(Z = xi) = pi.
Notice that E(Z) = p.

Define new random variables Xi ∈ {0, 1} s.t. E(Xi) = xi. Then

E(f(Z)) =
∑

pif(xi) =
∑

pif(E(Xi))

≤
∑

piE(f(Xi)) by Jensen’s inequality

=
∑

pi((1− xi)f(0) + xif(1))

= (1− p)f(0) + pf(1) since
∑

pixi = p,
∑

pi = 1

= E(f(Y)).

9

So

E(f(X)) =
∑

piE(f(X) | X ∈ Ii)

≤
∑

pi(f(xi) + ε)

= E(f(Z)) + ε ≤ E(f(Y)) + ε.

Since ε was arbitrary, we have E(f(X)) ≤ E(f(Y)).
Now we remove the assumption that f is continuous. Since f is convex, f is bounded on

[0, 1] and continuous on (0, 1), f(0+) = limx→0+ f(x) exists and is ≤ f(0), f(1−) = limx→1− f(x)
exists and is ≤ f(1). We would like to reduce to the case where f is continuous, the problem
being that f might have jump discontinuities at 0, 1. Define

f ′(x) =


f(x) if x ∈ (0, 1)
f(0+) if x = 0
f(1−) if x = 1

.

Let X ′ have the conditional distribution of X given X ∈ (0, 1) and set q0 = Pr(X = 0), q1 =
Pr(X = 1). Let Y ′ ∈ {0, 1} with E(Y ′) = E(X ′) = p−q1

1−q0−q1 . Notice that f ′ is continuous and
convex. So

E(f ′(X ′)) ≤ E(f ′(Y ′))

=
(1− q0 − p

1− q0 − q1
f(0+) +

p− q1
1− q0 − q1

f(1−)
)

≤
(1− q0 − p

1− q0 − q1
f(0) +

p− q1
1− q0 − q1

f(1)
)
.

So

E(f(X)) = E(f ′(X ′))(1− q0 − q1) + q0f(0) + q1f(1)
≤ (1− q0 − p)f(0) + (p− q1)f(1) + q0f(0) + q1f(1)
= (1− p)f(0) + pf(1) = E(f(Y)).

2.4.2 General Chernoff bound

Lemma 2.5 (Markov inequality). Let X be a nonnegative random variable and let a > 0. Then
Pr(X ≥ a) ≤ E(X)

a .

Proof. Define the indicator I =

{
1 if X ≥ a
0 else

. Then I ≤ X
a , and so

Pr(X ≥ a) = E(I) ≤ E
(X
a

)
=
E(X)
a

.

Notice that the inequality holds even if X does not have finite expectation.

The family of probabilistic bounds known as Chernoff bounds all come from the appli-
cation of the following simple idea: if X is a random variable and a, t ∈ R, t > 0, then from the
Markov inequality

Pr(X ≥ a) = Pr(etX ≥ eta) ≤ e−taE(etX). (2.4)

10

The expectation E(etX) : R→ R is known as the moment generating function of X, since its ith

derivative, when evaluated at t = 0, is E(Xi), the ith moment of X.
Since (2.4) holds for all t > 0, it is advantageous to choose a t that minimizes the right

hand side. The best choice will often depend on the distribution of X, and hence there are many
different Chernoff bounds.

2.4.3 Large mean case

The following is useful when bounding the probability of large deviation from the mean
of a binomial random variable with parameters (n, p) and p is large, say ≥ 2

3 , although the
hypotheses of the theorem are weaker than this.

Theorem 2.6. Let X1, . . . , Xn be a sequence of independent random variables taking values in
the interval [0, 1] (Xi is not necessarily Bernoulli). Let X =

∑
Xi, µ = E(X), a > 0. Then

Pr(X − µ ≥ a) ≤ e− a2
2n

Pr(X − µ ≤ −a) ≤ e− a2
2n .

Proof. Define new random variables Yi = Xi − E(Xi) so that E(Yi) = 0. Also set Y =
∑
Yi.

Let t > 0. (2.4) gives

Pr(X − µ ≥ a) = Pr(Y ≥ a) ≤ e−taE(etY) = e−ta
n∏
i=1

E(etYi), (2.5)

the last equality coming from the independence of the Yi.
To bound E(etYi), we use a trick. Since t > 0, the function y 7→ ety is convex. The

chord joining the points at y = ±1 can be expressed as

f(y) =
et + e−t

2
+ y

et − e−t

2
= cosh t+ y sinh t,

and so for all y ∈ [−1, 1], ety ≤ f(y). So

E(etYi) ≤ E(cosh t+ Yi sinh t)
= cosh t+ E(Yi) sinh t = cosh t

= 1 +
t2

2!
+
t4

4!
+ · · ·

≤ 1 +
t2

2 · 1!
+

t4

22 · 2!
+ · · · since ∀k ≥ 0 2k · k! ≤ (2k)!

= e
t2
2 .

Continuing (2.5), we have

Pr(X − µ ≥ a) ≤ e−ta+ t2n
2 . (2.6)

Calculus shows that the exponent is minimized at t = a
n . Substituting this value of t back into

(2.6) gives

Pr(X − µ ≥ a) ≤ e− a2
n + a2

2n = e−
a2
2n .

The second bound is obtained in the same way by analyzing Pr(−X − (−µ) ≥ a).

11

2.4.4 Small mean case

The following is more useful when p < 2
3 .

Theorem 2.7. Let X1, . . . , Xn be a sequence of independent random variables taking values in
the interval [0, 1] (Xi is not necessarily Bernoulli), X =

∑
Xi, µ = E(X). Then

Pr(X − µ ≥ δµ) ≤
(eδ

(1 + δ)1+δ
)µ

if δ > 0

Pr(X − µ ≤ −δµ) ≤
(e−δ

(1− δ)1−δ
)µ

if δ ∈ (0, 1)

Pr(|X − µ| ≤ δµ) ≤ 2e−
δ2µ
3 if δ ∈ (0, 1).

This last form is useful when the first 2 forms prove unwieldy.

Proof. Let t > 0 and define new independent random variables Yi ∈ {0, 1} with E(Yi) = E(Xi) =
pi. Then by theorem 2.4,

E(etXi) ≤ E(etYi) = (1− pi) + pie
t

= 1 + pi(et − 1) ≤ epi(e
t−1).

(2.7)

Pr(X − µ ≥ δµ) = Pr(etX ≥ et(1+δ)µ)
≤ e−t(1+δ)µE(etX) by the Markov inequality

≤ e−t(1+δ)µ+(et−1)µ by independence and (2.7)

and substituting t = ln(1 + δ) gives the first bound. A similar analysis on Pr(X − µ ≤ −δµ) =
Pr(e−tX ≥ e−t(1−δ)µ) and substituting t = − ln(1− δ) gives the second bound. The last bound
follows from the first 2 and calculus by showing that eδ

(1+δ)1+δ ,
e−δ

(1−δ)1−δ ≤ − δ
2

3 .

2.5 k-wise independent distributions

In the design of algorithms, one frequently needs a sequence of random variables X =
(X1, . . . , Xl), which are generated as some function f of a sample space S. An obvious way to
remove the randomness completely is to run the algorithm on X = f(s) for every point s ∈ S,
which increases the runtime by a factor of |S|.

How to combine the answers to get a single answer depends on what kind of problem
the original algorithm was solving and its performance guarantees. E.g. if the original algorithm
solved a decision problem with 2-sided error < 1

2 , then we can take the majority answer; if the
original algorithm had 0 soundness error, then we can take the maximum answer; if the original
algorithm was an unbiased estimator of some value, then we can take the average answer.

If the Xi are independent and uniform over some set U of size ≥ 2, then this technique of
iterating over S is usually prohibitive, since |S| ≥ |U |l. However, in the analysis of the algorithm,
it may become apparent that the Xi need not be fully independent to get the desired result, thus
opening up an opportunity to reduce |S|.

For example, if we only care that the variance of
∑
iXi behaves as a binomial random

variable, then we can replace X by a pairwise independent distribution, which requires a much
smaller sample space. More generally, we may only need that X be k-wise independent, meaning
that every subset of size ≤ k of the Xi is independent. If we also require that each individual Xi

is uniform over U , we will say that such a distribution is k-universal over U (in the sense that
the map i 7→ Xi is a strongly k-universal hash function).

12

If, on an input of parameter n, |S| can be reduced to 2o(n), then the randomness can
be completely removed from the algorithm without increasing the exponential complexity. Since
this work is mainly concerned with the exponential complexity of problems, such a reduction in
randomness is often good enough for our purposes.

In this section, we show how to generate l random variables with a k-universal distri-
bution over n and give precise bounds on the size of the sample space and the resources needed
to generate a sample.

Theorem 2.8. Let n, k, l ∈ N and let
∏m
i=1 p

ei
i be the prime factorization of n, so that the pi are

distinct primes and each ei ≥ 1. Let e′i = max{ei, dlogpi
le}, ni = p

e′i
i , N =

∏m
i=1 ni. There is a

probability space S of size

Nk ≤ (nlm)k

on which we can define random variables X1, . . . , Xl that are k-universal over n. To sample
requires O(k lgN) random bits and O(ml(k + lg n)) operations on words of size O(lgN), where
lgN ≤ O(lg n + m lg l). If m = 1, we only need O(lk) operations. If m = 1 and n ≥ l, then
N = n.

Proof. Assume k ≤ l, else we can replace k by l. Also note that e′i ≤ ei + logpi
l, so N ≤∏

i(p
ei
i l) = nlm.

First suppose m = 1, n = pe, e′ = max{e, dlogp le}, n′ = pe
′
. Let

S = {g ∈ Fn′ [x] | deg(g) < k},

and then choose f ∈u S. We can think of f as a uniformly random vector in Fkn′ , and so our
sample space has size n′k. Let b : n′ → Fn′ be any bijection (Computationally, b will probably
be implemented as a simple type-cast and so takes 0 time to compute.). Note that l ≤ n′. Define
random variables

X ′
i = b−1(f(b(i))), i ∈ l.

The X ′
is are k-universal over n′ because, from Lagrange interpolation, given distinct x1, . . . , xk ∈

Fn′ and (not necessarily distinct) y1, . . . , yk ∈ Fn′ , there is exactly 1 polynomial g ∈ Fn′ [x] of
degree < k such that ∀j ∈ [k] g(xj) = yj , which implies that for distinct i1, . . . , ik ∈ l and (not
necessarily distinct) y1, . . . , yk ∈ n′,

Pr(∀j ∈ [k] X ′
ij = yj) = n′

−k
.

Our random variables are then

Xi =
⌊
X ′
in

n′

⌋
,

which is uniform over n since n|n′.
Now we handle the case where m > 1. For each i ∈ [m] define a sample space Si as

above so that |Si| = nki and define random variables Y ′
i,j on Si so that for each i, {Y ′

i,j | j ∈ l} is
k-universal over ni. Then set S =

∏m
i=1 Si, so that |S| = Nk, and

Yi,j =
⌊
Y ′
i,j

p
e′i−ei

i

⌋
.

13

Then for each i, {Yi,j | j ∈ l} is k-universal over pei
i . For j ∈ l, define Xj to be the unique

solution mod n to

Xj ≡Y1,j mod pe11
...

Xj ≡Ym,j mod pem
m

guaranteed by the Chinese remainder theorem, which we will abbreviate as CR(Y1,j , . . . , Ym,j).
CR is bijective and for each i ∈ [m], {Yi,j | j ∈ l}, is k-universal, so the Xj are also k-universal.

Now we analyze the time required to sample. All arithmetic operations are on words
of size O(lgN) = O(lg n+m lg l) where N =

∏
i ni. To evaluate the m degree < k polynomials

each on l points takes O(mlk) operations. The extended Euclidean algorithm on an input x, y
requires O(lg x + lg y) operations on words of size O(lg x + lg y). CR on a system with moduli
n1, . . . , nm can be computed by m applications of the extended Euclidean algorithm, the ith
call with inputs ni, Nni

, and so requires
∑
iO(lg ni + lg N

ni
) ≤ O(m lgN) operations. l such calls

requires O(ml lgN) operations. Other parts of the algorithm take less time than the polynomial
evaluations and Chinese remaindering. The total is then O(ml(k+ lgN)) operations. Note that
if m = 1, then Chinese remaindering can be avoided, and the complexity is reduced to O(lk)
operations.

If we settle for exact k-wise independence but only approximate uniformity, then we
can reduce the size of the sample space even further than in the previous construction and avoid
arithmetic operations in fields of order pe where e > 1.

Theorem 2.9. Let n, k, l ∈ N, ε > 0, N = max{nε , l} so that lgN ≤ lg(nε + l). There is
a probability space S of size (2N)k on which we can define random variables X1, . . . , Xl with
codomain n that are k-wise independent and with ∀i ∈ n, j ∈ [m],∣∣∣Pr(Xj = i)− 1

n

∣∣∣ ≤ ε

n
.

To sample requires O(k lgN) random bits and O(lk) operations on words of size O(lgN).

Proof. Choose a prime p ∈ [N, 2N], let

f ∈u {g ∈ Fp[x] | deg(g) < k} = S,

and for j ∈ l, define X ′
j = f(j) and Xj = bX

′
jn

p c. Then the conclusions are immediate.

2.6 Switching lemmas

Switching lemmas say that after applying a suitable random restriction to a program in
some source computational model, what remains can be represented in some target computational
model with high probability. Thus we can switch between 2 computational models after applying
a suitable restriction.

H̊astad’s switching lemma [H̊as86] allows transformation, with failure probability ≤
(5pk)k

′
, from k-CNF to k′-DNF, or k-DNF to k′-CNF, by applying a p-restriction, which leaves

each each variable free independently with probability p and otherwise sets it uniformly randomly.
Because of the desire for generality and the best possible constants, the proof in [H̊as86] is
complex. Razoborov has a short constructive proof, which can be found in [Bea94], allowing
transformation, with failure probability ≤ (7pk)k

′
, from a k-CNF or k-DNF to a k′-DT (decision

tree of depth k′, a generalization of both k′-CNF and k′-DNF), by applying a restriction that

14

chooses a random set of variables of size exactly pn to remain free and uniformly randomly sets
the rest.

The main application for these switching lemmas is to provide lower bounds on the
size of bounded depth circuits that compute particular functions. For example, note that any
restriction of a parity function is again a parity function. By applying a variant of H̊astad’s
switching lemma, the bottom level of a depth d circuit computing parity can be “switched” from
AND to OR, or vice versa, allowing collapse of that level w.h.p. while still leaving a linear number
of variables free. Repeated application allows collapse into a depth 2 circuit computing parity
with a linear number of variables free. Such a circuit must still be large to compute parity, so
the original circuit must be large too. [Bop97] uses such an argument to give tight lower bounds
on the size of any bounded depth circuit computing a sensitive function.

In this section, we will state several of these switching lemmas precisely. Let V be a set
of variables. A decision tree is a binary tree T where each internal node is labeled with a variable
and the left (right) edges are labeled with 0 (1) and the leaves are labeled 1. The solutions sol(T)
of T are the assignments consistent with T ; i.e. those assignments a ∈ 2V such that ∃ a root-to-
leaf path p = i1 · · · ir+1 where each ij is a node and ∀j ∈ [r] a(label(ij)) = label({ij , ij+1}). Let
k-DT be the decision trees of depth ≤ k. E.g.

represents sol(x̄1x̄2 + x̄1x2 + x1x̄3), where the left (right) edges are implicitly labeled 0 (1). The
key property of decision trees is that a tree of depth k can be represented by either a k-CNF or
a k-DNF, as we show below.

Letting f : 2n → 2 be a Boolean function, the CNF, DNF, and DT complexities of f
are

CNF(f) = min{k ∈ N | ∃F ∈ k-CNF f−1(1) = sol(F)}
DNF(f) = min{k ∈ N | ∃G ∈ k-DNF f−1(1) = sol(G)}

DT(f) = min{k ∈ N | ∃H ∈ k-DT f−1(1) = sol(H)}.

Lemma 2.10. Let f : 2V → 2 be a Boolean function. Then DT(f) = DT(f̄) and CNF(f) =
DNF(f̄).

Proof. Let T be a decision tree for f . Add leaves labeled with 0 for non-solutions. Then inter-
change 0’s and 1’s on the leaf labels. Then recursively trim 0 leaves. What remains is a decision
tree for f̄ . E.g.

For the second statement, note that any F ∈ k-CNF and G = dual(F) ∈ k-DNF (obtained by
interchanging ∧,∨ and negating all literals) satisfy sol(F) = sol(G).

Lemma 2.11. If f ∈ 2V → 2, then

DT(f) ≥ max{CNF(f),DNF(f)}.

15

Proof. To show DT(f) ≥ DNF(f), let T ∈ k-DT. We can construct an F ∈ k-CNF s.t. sol(F) =
sol(T) by having a k′-term for each leaf of T at depth k′. To show DT(f) ≥ CNF(f), use lemma
2.10:

DT(f) = DT(f̄) ≥ DNF(f̄) = CNF(f).

A restriction of a variable set V is a map ρ : V → {0, 1, ∗}. If a ∈ 2V , S ⊆ V , define

ρa,S =

{
∗ if i ∈ S
a(i) if i /∈ S

.

The restriction of Boolean function f : 2V → 2 to ρ is (f � ρ) : ρ−1(∗) → 2 defined by
(f � ρ)(a) = f(b) where b(i) is a(i) if i ∈ dom(a) and ρ(i) otherwise.

Say ρa,S has distribution DV,p iff a ∈u 2V and S ∈u {S′ ⊆ V | |S′| = p|V |}. Say ρa,S
has distribution D′V,p iff a ∈u 2V and each i ∈ V is in S independently with probability p.

Theorem 2.12 (Razborov’s switching lemma). ∀G ∈ k-DNF, V = var(G), k′ ≥ 0, p ∈ [0, 1] s.t.
p|V | ∈ N,

Prρ∈DV,p
(DT(G � ρ) ≥ k′) ≤ (7pk)k

′
.

Theorem 2.13 (H̊astad’s switching lemma). ∀F ∈ k-CNF, V = var(G), k′ ≥ 0, p ∈ (0, 1]

Prρ∈D′
V,p

(DNF(F � ρ) ≥ k′) ≤ αk
′

where α is the unique positive solution to(
1 +

4p
1 + p

1
α

)k
=

(
1 +

2p
1 + p

1
α

)k
+ 1. (2.8)

H̊astad pointed out that α ≤ 5pk if p ∈ o(1). Actually, we do not need this assumption.

Lemma 2.14. In (2.8), α ≤ 5pk.

Proof. Let fp(x) = (1 + 4p
1+p

1
x)k, gp(x) = (1 + 2p

1+p
1
x)k + 1. The derivative of fp − gp is < 0 when

x, p > 0. Also, limx→0+(fp − gp)(x) =∞, so indeed fp − gp has at most 1 root α. We can upper
bound α by β = 5pk by showing that (fp − gp)(β) < 0. Let

F (p) = fp(β) =
(
1 +

4
5

1
1 + p

1
k

)k
G(p) = gp(β) =

(
1 +

2
5

1
1 + p

1
k

)k
+ 1.

The derivative of F − G is < 0. From theorem 2.1, F (0) ≤ e
4
5 and G(0) ≥ 2

2
5 + 1. So

(F −G)(0) < 0, which implies ∀p ∈ (0, 1] (fp − gp)(β) = (F −G)(p) < 0.

As long as we only want to transform between k-CNF and k′-DNF, theorem 2.13 is at
least as strong as 2.12, mainly because the distributions DV,p,D′V,p are so similar. We can make
this more formal.

Theorem 2.15. ∀G ∈ k-DNF, V = var(G), k′ ≥ 0, p ∈ [0, 1] s.t. p|V | ∈ N,

Prρ∈DV,p
(CNF(G � ρ) ≥ k′) ≤ 2Prρ∈D′

V,p
(CNF(G � ρ) ≥ k′).

16

Proof. First note that for any nonnegative, nondecreasing function f , random variable X, and
x ∈ R, we have from Markov’s inequality (lemma 2.5)

f(x)Pr(X ≥ x) ≤ f(x)Pr(f(X) ≥ f(x)) ≤ E(f(X)). (2.9)

Let n = |V | and apply (2.9) with f(y) = Prρ∈DV,
y
n

(CNF(G � ρ) ≥ k′), X a binomial random
variable with parameters (n, p), and x = np. We claim that x ∈ N is sufficient to conclude
that Pr(X ≥ x) ≥ 1

2 , which ought to be at least plausible from the central limit theorem.
(Surprisingly, a complete proof of this simple fact did not surface until 1970. This fact and a
thorough treatment of the relationship between the mean, median, and mode of binomial random
variables can be found in [RK80].) So we have

Prρ∈DV,p
(CNF(G � ρ) ≥ k′)

=f(x) ≤ E(f(X))
Pr(X ≥ x)

≤ 2E(f(X))

=2Prρ∈D′
V,p

(CNF(G � ρ) ≥ k′).

It’s not as clear how to use Razborov’s switching lemma to upper bound the switching
failure probability in H̊astad’s switching lemma. The problem is that the number of free variables
in the restriction ρ ∈ D′V,p is binomial, and has a tail that’s just a bit too heavy. However, if
k′ ≤ O(pn), we get something.

Theorem 2.16. ∀G ∈ k-DNF, V = var(G), n = |V |, k′ ≥ 0, α > 0, p ∈ [0, 1] s.t. αpn ∈ N,

Prρ∈D′
V,p

(CNF(G � ρ) ≥ k′) ≤ Prρ∈DV,αp
(CNF(G � ρ) ≥ k′) +

(eα−1

αα

)pn
.

Proof. The first term on the RHS is an upper bound on the LHS conditioned on the event that
ρ ∈ D′V,p leaves ≤ αpn variables free. The second term on the RHS is an upper bound from the
Chernoff bound (theorem 2.7) on the probability that ρ leaves ≥ αpn variables free.

Lemma 2.17. We can interchange DNF, CNF in each of theorems 2.12, 2.13, 2.15, 2.16.

Proof. For theorem 2.12, let F ∈ k-CNF, V = var(F), k′ ≥ 0, p ∈ [0, 1], ρ ∈ DV,p, G = dual(F).
Then sol(F � ρ) = (sol(F)) � ρ = (sol(G)) � ρ = sol(G � ρ). From theorem 2.12,

Prρ(DT(F � ρ) ≥ k′) = Prρ(DT(G � ρ) ≥ k′) ≤ (7pk)k
′
.

The argument for the other theorems is similar.

Below we show that theorem 2.13 is tight up to the constant in the parentheses, at least,
for any fixed k ≥ 2, p ∈ (0, 1

4k].

Theorem 2.18. ∀k ≥ 2, p ∈ (0, 1
4k] ∃n0 ∀n ≥ n0 ∃G ∈ k-DNF, k′ ≥ 0 with V = var(G), |V | = n

s.t.

Prρ∈D′
V,p

(CNF(G � ρ) ≥ k′) ≥
(1

16
pk

)k′
.

Proof. We claim that for any monotone DNF G consisting of terms with disjoint sets of variables,

CNF(G) =

{
0 if 1 ∈ G
|G− {0}| if 1 /∈ G

. (2.10)

17

To see this, if 1 ∈ G, then G is a constant, and so can be represented by the empty CNF.
Otherwise, if 1 /∈ G, then CNF(G) ≤ t = |G−{0}| since F =

∏
(G−{0}) is a suitable CNF (here

the product is the set of all tuples that select one literal from each term ofG−{0}). Conversely, let
F be a CNF representingG and suppose indirectly that there is a clause C ∈ F with |C| < t. Then
by the pigeonhole principle, there is a term T ∈ G with var(T)∩ var(C) = ∅. Let a ∈ sol(T) and
b = (a but with the literals of C that are true at a flipped). Then b ∈ sol(T) ⊆ sol(G) ⊆ sol(C),
a contradiction. So every clause of F has size ≥ t. If F has at least one clause, we are done. The
form of G prevents it from being a tautology, so F has at least one clause.

For n′ specified later, let V be n = n′k variables and T1, . . . , Tn′ be a partition of V
into n′ blocks each of size k. Let G be the monotone k-DNF consisting of terms T1, . . . , Tn′ . Let
ρ ∈ D′V,p. For any k-term T ,

Pr(T � ρ 6= 0) =
(
p+ (1− p)1

2

)k
=

(1 + p

2

)k
Pr(T � ρ = 1) =

(1− p
2

)k
p′

def= Pr(T � ρ 6= 0 | T � ρ 6= 1)

=
Pr(T � ρ 6= 0)− Pr(T � ρ = 1)

Pr(T � ρ 6= 1)

=

(
1+p
2

)k − (
1−p
2

)k
1−

(
1−p
2

)k .

p ≤ 1
k implies that (1 + p)k ∈ [1 + kp, 1 + 2kp] and (1 − p)k ∈ [1 − kp, 1]. So p′ ≥ kp

2k and
p′ ≤ 3kp

2k−1
≤ 4kp

2k , since k ≥ 2. So p′ ∈ [kp
2k ,

4kp
2k]. From (2.10), given that 1 /∈ G � ρ, CNF(G � ρ)

is X = |{T ∈ G � ρ | T 6= 0}|, and this is binomial with parameters (n′, p′). So

Pr(CNF(G � ρ) ≥ k′) = Pr(X ≥ k′)Pr(1 /∈ G � ρ)

= Pr(X ≥ k′)
(
1−

(1− p
2

)k)n′
≥ Pr(X = k′)(1− 2−k)n

′

=
(
n′

k′

)
p′k

′
(1− p′)n

′−k′(1− 2−k)n
′

(2.11)

Choose k′ = n′

2k . Then the first 2 factors in (2.11) are(
n′

k′

)
p′k

′
≥ 1

2
√
n′

2h(2
−k)n′p′k

′
using theorem 2.3

≥ 1
2
√
n′

2kk
′
(kp

2k
)k′

using theorem 2.2

≥ 1
2
√
n′

(kp)k
′
.

(2.12)

18

Note that 1− p′ ≥ 1− 4kp
2k ≥ 1− 2−k. So the last 2 factors in (2.11) are

≥ (1− 2−k)2n
′−k′

= (1− 2−k)(2
k−1) 2k

2k−1
2n′−k′

2k

≥ e−
2k

2k−1
(2k′− k′

2k) using theorem 2.1

≥ e−
4
3 (2k′− k′

2k) since k ≥ 2

≥ 2−4k′ω(
√
n′).

(2.13)

Combining (2.12), (2.13), we get that for sufficiently large n′,

Pr(CNF(G � ρ) ≥ k′) ≥
(1

16
pk

)k′
.

2.7 Basic definitions in complexity theory

The relative error of an approximation x to a value y ∈ R is

relerror(x, y) =


|x−yy | if y 6= 0
0 if x = y = 0
∞ if x 6= y = 0

.

A Fully Polynomial Randomized Approximation Scheme (FPRAS) for a function f : Σ∗ → R is
a randomized algorithm A such that ∀ε > 0, x ∈ Σ∗

Pr
(
relerror(A(ε, x), f(x)) > ε

)
≤ 1

4

and A runs in time poly(|x|, 1
ε).

2.7.1 What is exponential complexity?

If a parameterized problem P with parameter n can be solved in time t = 2cn, then a
reasonable question is how small c can be made, which we may call the exponential complexity c
of P (to be defined more precisely later), but we must first ask what it means to be able to solve
a problem in time t: in what computational model? The strong Church-Turing thesis says that
every reasonable model of computation is polynomially simulable by any other, meaning that for
any 2 ’reasonable’ models A,B, there is a k so that t steps in A can be simulated by O(tk) steps
in B. But this only helps to define c up to its big-Theta class, which isn’t very helpful when c is
already a constant.

For explicit upper bound results, this is an unimportant point, since a statement such
as “k-SAT can be solved in time 2.41n” means that it can be done in so much time on some
modern computer – if you want to solve it in that much time, at worst you need to find that
computer, and probably you have one sitting on your desk right now. But for lower bound or
implicit upper bound results, we should be a little more careful.

One reason this is rarely addressed is that there are no strong lower bounds and perhaps
we will only cross that bridge when we come to it! Another is that the polynomial simulability
between reasonable models is mostly a theoretical curiosity that applies mostly to simulating k-
tape Turing machines by 1-tape Turing machines, and similar such models that are unpopular on

19

the consumer market (my last laptop certainly wasn’t a k-tape Turing machine). Experience has
shown us that simulability between popular machines is actually very efficient. Modern computers
easily simulate many older ones with essentially only a constant factor penalty in terms of number
of clock cycles, and even that is more than negated by increased cycle frequency. One clock cycle
of a new microprocessor instruction can nearly always be simulated by a constant number of
instructions in the old set, and one extra register can be simulated by loading and storing to
external memory.

Thus, a reasonable way out is to fix the computational model to something similar to
modern computers, e.g. a RAM machine, and define c in terms of that.

One may worry that this may reduce the applicability of results, since, unlikely though
it may seem now, if another, polynomially more efficient computational model becomes popular,
then one would either have to reprove old results, or use general reductions that simulate one
machine by another, which may weaken the results substantially. We will give a few reasons for
why this should not be a big concern.

One is that current results only (implicitly) assume that the computational model is
at least as strong as this minimal model, only assuming things like function call can be done in
time linear in the input size or that arithmetic on words of size lg of the input size can be done
in constant time. This is reasonable since future computers, even if polynomially faster on some
computation, are unlikely to be polynomially slower on some other computation used in a proof,
since that may render legacy code impractical, making such new machines hard to sell.

A second reason is that the RAM model seems to capture the energy requirements of
a computation for realistically-sized inputs. It’s hard to imagine a physical machine that uses
polynomially less than n2 energy for matrix-vector multiply. (Although quantum computation
challenges such statements for some specialized computations. We will have more to say on that
later.)

Our last justification for fixing a computational model comes from the fact that many
current exponential time algorithms are exponential iterations of poly time algorithms. The
exponential complexity of such an algorithm is undisturbed by a change in machine model,
provided the target machine is still powerful enough to count in a loop efficiently.

From now on, all computations are assumed to take place in a randomized RAM model:
with O(1) registers and instructions load/store immediate/memory/random bit, add/subtract,
bit shift immediate, jump if zero. Deterministic computations simply don’t get access to the
load-random-bit instruction. With our model in hand, we now make some definitions.

Let Σ be a finite alphabet. A language over Σ is a set L ⊆ Σ∗. An algorithm A solves
instance x ∈ Σ∗ of L iff

A(x) =

{
1 if x ∈ L
0 if x /∈ L

.

A promise problem is a pair P = (L, I) where L, I ⊆ Σ∗ represent the language and promised
instances of the problem. x ∈ Σ∗ meets the promise of P iff x ∈ I. An algorithm A solves
instance x ∈ Σ∗ of P iff

A(x) =

{
1 if x ∈ I ∩ L
0 if x ∈ I − L

.

Notice that we still say A solves x if x /∈ I. We could also equivalently model a promise problem
by a pair (Y,N) representing the yes,no instances of the problem, but we take this approach to
name the promise explicitly. P is equivalent to the language L when I = Σ∗.

A parameterized problem P includes a collection of metrics µ1, . . . , µk : Σ∗ → N on
instances. We will not usually name these metric functions explicitly. Rather, for nearly all
problems treated herein, we will use n,m to refer to the number of variables and constraints, for

20

problems involving Boolean formulas, or the number of nodes and edges for problems involving
graphs.

The exponential complexity of a randomized algorithm A, implemented on a RAM
machine and solving a parameterized promise problem P = (L, I) with 2-sided error ≤ 1

3 , is

cA = inf{c ≥ 0 | ∀x ∈ I time A(x) ≤ poly(|x|)2cn},

or ∞ if there is no such c. The exponential complexity of P is

cP = inf
{
cA | randomized algorithm A solves P with 2-sided error ≤ 1

3

}
.

The deterministic exponential complexity of P is

dcP = inf
{
cA | deterministic algorithm A solves P

}
.

For most problems considered here (but not, for example, CNF-SAT), |x| ≤ poly(n),
so that the poly(|x|) can usually be dropped from the above definition. Clearly cP ≤ dcP . The
reverse inequality is not known, and even a strong hypothesis like P = BPP does not obviously
imply it since, for all we know, derandomization may square running time, assuming it can be
done at all.

Chapter 3

2-CNF

Let V be a finite set of variables. The solutions of a Boolean formula φ is

sol(φ) = {a : var(φ)→ 2 | φ(a) = 1}.

φ is satisfiable iff sol(φ) 6= ∅. Formula-SAT is the problem of deciding whether a given Boolean
formula φ is satisfiable.

A literal is a variable v ∈ V or its negation v̄. Recall our convention that ¯̄v = v. Two
literals l1, l2 conflict iff l̄1 = l2. A clause is a set of literals, representing their disjunction (i.e.
OR), and it is proper iff no two of its literals conflict. Unless stated otherwise, all clauses in
the text are assumed to be proper. A k-clause ((≤ k)-clause) is a clause of size = k (≤ k). A
conjunctive normal form formula (CNF) is a set of clauses, representing their conjunction (i.e.
AND). A k-CNF is a set of (≤ k)-clauses. 1

We represent CNFs by sets of sets of literals for convenience, evaluation at the assign-
ment a : var(φ)→ 2 is still defined as one would expect:

• for a literal l, l(a) is a(l) if l is a variable, or a(l̄) otherwise;

• for a clause C, C(a) =
∨
l∈C l(a);

• for a CNF φ, φ(a) =
∧
C∈φ C(a).

A partial assignment to var(φ) is a map a : V ′ → 2 where V ′ ⊆ var(φ). The restriction φ|a of φ
to a is obtained from φ by removing all false literals and true clauses at a. Partial assignments
are sometimes denoted by predicates, e.g. φ|x1=0, φ|C=0.

CNF-SAT (k-SAT) is the problem of deciding whether a given CNF (k-CNF) is satisfi-
able, and is among the first combinatoric problems shown to be NP-complete [Coo71]. We first
focus on 2-CNFs, surveying the complexity of various related problems. Though deciding their
satisfiability is only in P, several other problems involving 2-CNFs are NP-hard, and many of
the tools for analyzing 2-CNFs will be useful for developing nontrivial algorithms, and avoiding
dead ends, for other NP-hard problems.

A 2-CNF φ not containing ∅ can be represented by its (directed) implication graph
G = (V,E) where V is the set of literals of φ and E = {(a, b) | {ā, b} ∈ φ}. Note that each 2-
clause of φ will correspond to 2 edges in E, and each 1-clause will correspond to 1 edge. Improper
clauses would correspond to self-loops. Conversely, if G = (V,E) is a digraph where V is a set
of literals, we say G represents the formula φ = {{ā, b} | (a, b) ∈ E}. G obeys path duality iff
∀a, b ∈ V (∃ a path from a to b in G ↔ ∃ a path from b̄ to ā in G). The following is obvious.

1The literature occasionally uses k-CNF to mean a set of k-clauses, e.g. in the Lovász Local Lemma.

21

22

Lemma 3.1 (2-CNF graph representation). Let φ ∈ 2-CNF and G be its implication graph.
Then G obeys path duality. If ∅ /∈ φ, then G is the unique digraph representing φ that obeys path
duality. If ∅ ∈ φ, then no digraph represents φ. Furthermore, any digraph obeying path duality
represents a unique 2-CNF not containing ∅.

In chapter 4, we will show that if ∅ /∈ φ, then every clause logically implied by φ can be
deduced from path connectivity in the implication graph of φ, which implies that 2-SAT can be
solved in linear time.

However, there are still difficult problems involving 2-CNFs. Max-2-SAT (“given a
2-CNF with non-negative clause weights, is there an assignment so that the total weight of
the satisfied clauses is at least some given value?”) is NP-complete (theorem 3.6), but can be
approximated to within α ≈ .94017 of optimal 2 by a poly time algorithm [LLZ02], and this is
amazingly close to optimal: unless P = NP, no poly time algorithm with approximation ratio of
≥ 21

22 + ε ≈ .9545 + ε is possible [H̊as01]; and, assuming the Unique Games Conjecture (UGC),
[LLZ02] is tight in that no poly time algorithm with approximation ratio ≥ α + ε is possible
[Aus07]. (It is also interesting that the inapproximability ratio for Max-E3-SAT matches the
approximation ratio [H̊as01].) Approximation of the unit weight version is essentially no easier:
if we take a Max-k-SAT instance to be a multiset of clauses, then we can reduce to the unit
weight case by approximation of the weights and repetition of the clauses.

The power of the implication graph may give the impression that the structure of
the solution space of a 2-CNF is easy to grasp, but this is far from the truth. Deciding the
simultaneous satisfiability of a monotone 2-CNF and a single linear inequality is NP-complete.
To see this, reduce from Independent Set: given a graph G = (V,E) and k ∈ [0, n], n = |V |, treat
V as a set of variables and construct F = {{ā, b̄} | (a, b) ∈ E} ∈ 2-CNF and the linear equation∑
v∈V v ≥ k. The problem remains NP-complete if the linear inequality is changed to an equality:

add a set U of n − k slack variables and change the linear inequality to
∑
v∈U∪V v = n. The

problem remains NP-complete if the inequality is replaced by a sparse linear system by reduction
from 3-Coloring: given a graph G = (V,E), create a variable xi,j for each node i and color j
that means “assign i to j”, set F = {{x̄i,j , x̄i′,j} | {i, i′} ∈ E}, and create a linear system with
equations xi,1 + xi,2 + xi,3 = 1, i ∈ V . Notice that the reduction still works even if we treat the
equations as being over the field Z2.

#2-SAT (counting the number of solutions to a 2-CNF) is #P-complete [Val79b], even
when restricted to monotone formulas (to be discussed later), although counting the number of
maximum weight assignments to a weighted 2-CNF can be solved in time O(2.317n) and poly space
[FK07]. #Monotone 2-SAT is equivalent to #Vertex-Cover, which is NP-hard to approximate
to within 2n

1−ε

[Rot96]. If we restrict further so that the formula is monotone and, when viewed
as the edge set of a graph, is bipartite (#Monotone Bipartite 2-SAT), then this is equivalent
to #Bipartite Vertex Cover, and to this author the status of approximability is unknown. By
contrast, there is an FPRAS for #DNF-SAT [KLM89] (theorem 3.7).

To prove the #P-completeness of #2-SAT is surprisingly difficult, considering that
the #P-completeness of #3-SAT follows almost immediately from Cook’s computation tableaux
reduction [Coo71]. We will give only an outline to highlight the techniques involved. The main
problem is that any attempt to construct a 2-CNF whose solutions are in a k-to-1 relation with
those of a given 3-CNF is doomed to fail, unless P = NP, since 2-SAT ∈ P. This obstacle can be
averted by first reducing to the problem of computing the permanent, a sort of weighted counting
problem that allows negative weights. A more direct reduction would be interesting.

The permanent of an n × n matrix A is Perm(A) =
∑
σ

∏
iAi,σ(i), where the sum is

over all permutations of n. A cycle cover of an edge-weighted graph G = (V,E,w) is a set of
node-disjoint simple cycles that covers V , and its weight is the product of the weights of the
edges used. If A is the adjacency matrix of G, with Ai,j = w(i, j) if (i, j) ∈ E and 0 otherwise,

2α was computed with a numerical optimization in Matlab, not by formal proof. [Aus07] demotes the state of
this bound to “the believed approximation ratio”.

23

then Perm(A) is the sum of the weights of the cycle covers of G. Similarly, if G = (L,R,E,w)
is an edge-weighted bipartite graph with |L| = |R| and A is its biadjacency matrix, which is the
same as the adjacency matrix except that the row (column) indexes only range over L (R), then
Perm(A) is the sum of the weighted perfect matchings of G.

#3-SAT can be reduced to Permanent where the matrix entries are only in the set
{−1, 0, 1} ([Val79a, BDH93] plus some trivial observations) by constructing from the input 3-
CNF F a graph G with a node for each variable and a gadget for each clause. The gadget
representing clause C has 3 input edges and 3 output edges, each indexed with the literals of C.
Edges outside the gadgets are called external and have weight 1, the other edges are internal.
External edges are added so that for each literal l involving variable x, there is a cycle through
x and the gadgets corresponding to clauses containing l. We want that each solution to F
corresponds to a set of cycle covers with total weight 12|F | so that knowing the permanent of the
adjacency matrix of G allows deduction of the number of solutions of F .

To make this happen, the gadgets need the property that each contributes a factor of
12 to the total cycle cover weight iff the set s of input indexes it uses is the same as the set of
output indexes it uses and s 6= ∅. This can be achieved with a 7 node graph, although it’s fairly
complex and has edge weights in the set {−1, 1, 2, 3}. Also, although the weight of the cycle
covers corresponding to a single solution to F is a constant, the number of them is not, and it is
this clever weighting that forms much of the magic of the construction.

A simple gadget can replace each edge with weight 2 or 3 by a graph with edge weights
1 so that the matrix only has entries in {−1, 0, 1}. So this proof also shows that approximating
the permanent of a {−1, 0, 1}-matrix to within any factor is NP-hard. By contrast there is an
FPRAS for nonnegative integer matrices [JSV04]. (Unfortunately, one does not easily reduce
to the other: the standard reduction, to be discussed, from permanent with negative entries
to one with nonnegative entries using modular arithmetic would require an exponentially small
approximation factor to distinguish between 0 and > 0.)

The integer permanent problem can be reduced to the nonnegative integer permanent
problem by replacing A by A mod Q when Q is any integer > twice an upper bound on Perm(A).
This can be reduced to the permanent problem where each entry is 0 or a power of 2 by replacing
each edge with weight a by a simple gadget representing the binary representation of a. This can
be reduced to the permanent problem for 0-1 matrices by replacing each edge with weight 2k by
a simple gadget allowing k 2-way decisions for a cycle cover that passes through it.

The permanent problem for 0-1 matrices is the same as counting the number of perfect
matchings in a bipartite graph. This can be reduced, via O(n) oracles calls, to counting the
number of matchings in a bipartite graph with a brilliant arithmetic trick [Val79b]. Given
a bipartite graph G = (L,R,E) and a parameter k, we construct a new graph Gk from G by
attaching new nodes to each node in R so that there are many more choices of matchings possible.
By being clever, we can arrange for the number of matchings in Gk to be a polynomial in k, where
the coefficients are the number of matchings of each size in G. The oracle allows us to evaluate
this polynomial. By evaluating at |L|+ 1 points, we can interpolate to find the coefficients and
therefore the number of perfect matchings of G (or for that matter, the number of matchings of
any size).

Counting the number of matchings in a bipartite graph easily reduces to #Monotone
2-SAT by having a variable for each edge indicating whether it is in the matching and clauses
forbidding inclusion of edges that touch.

Theorem 3.2. There is an FPRAS for counting the number of matchings in a bipartite graph.

Proof. Let G = (L,R,E) be bipartite. Let n = min{|L|, |R|} and r ∈ [0, n]. Let L′, R′ be sets of
new nodes, L′ ∩R′ = ∅, |L′| = |R′| = r. Define Gr = (L∪R′, R∪L′, E ∪L×L′ ∪R′ ×R). Then
the number of matchings of G of size n− r is the number of perfect matchings in Gr, and there
is an FPRAS for the latter [JSV04]. By adding up 1 + ε factor approximations for the number

24

of perfect matchings of Gr for each r ∈ [n] we get a 1 + ε factor approximation for the number
of matchings of G.

The reduction from counting the number of matchings of a bipartite graph to #Mono-
tone 2-SAT is so simple that it is surprising, given theorem 3.2, that there is not an FPRAS for
#Monotone 2-SAT, unless P = NP. To this author, the status of approximating #Monotone
Bipartite 2-SAT is unknown. This restricted version is equivalent, via parsimonious reductions,
to #Bipartite Vertex Cover, which is equivalent to the following combinatoric problem, which we
will call Exponential Intersection Counting: given a set system S ⊆ P(U) where S is a multiset,
evaluate

∑
T⊆S 2|

T
T |.

Lemma 3.3. #Monotone Bipartite 2-SAT, #Bipartite Vertex Cover, Exponential Intersection
Counting are poly time parsimoniously interreducible.

Proof. The first 2 are the same problem. To reduce from #Bipartite Vertex Cover to Exponential
Intersection Counting, given G = (L,R,E), let S be the multiset of complements of neighbor sets
of nodes in L (or R). To reduce from Exponential Intersection Counting to #Bipartite Vertex
Cover, given S, set G = (S,

⋃
S, {{A, x} | A ∈ S, x ∈ Ā}).

Although the status of approximating #Bipartite Vertex Cover seems to be unknown,
the very special case of #3-Regular Planar Bipartite Vertex Cover is #P-complete [XZ06]. Ap-
parently, hardness results for restricted versions of standard counting problems are rare and
inapproximability results are rarer due to the need for restriction-preserving reductions [Vad01].

We now show the NP-completeness of Max-2-SAT. Given F ∈ CNF, define the not all
equal 3-SAT problem as follows.

solNAE(F) = {a ∈ 2var(F) | ∀C ∈ F ∃l1, l2 ∈ C l1(a) 6= l2(a)}
NAE-3-SAT = {F ∈ 3-CNF | solNAE(F) 6= ∅}.

Lemma 3.4. ∀F ∈ CNF, a ∈ solNAE(F) ā ∈ solNAE(F).

Proof. Let C ∈ F . Then ∃l1, l2 ∈ C l1(a) 6= l2(a). So l1(ā) = l1(a) 6= l2(a) = l2(ā). So
ā ∈ solNAE(F) too.

Theorem 3.5. NAE-3-SAT ∈ NP-complete.

Proof. NAE-3-SAT ∈ NP since we can verify whether an assignment is a NAE solution to a
given formula by checking that each clause has a true and false literal. To show NP-hardness, we
reduce from 3-SAT. Let F ∈ 3-CNF. ∀C = {l1, l2, l3} ∈ F , add 2 clauses {l1, l2, zC}, {l3, zC , b}
to formula G where zC is a new variable for each clause and b is just one new variable. We claim
that F ∈ 3-SAT⇔ G ∈ NAE-3-SAT.

(⇒) Let a ∈ sol(F). Extend a to an assignment a′ ∈ 2var(G) as follows: a′(b) = 0,
∀C = {l1, l2, l3} ∈ F a′(zC) = l1(a)∧ l2(a). If l1(a)∧ l2(a) = 1, then l1(a′) = 0 6= 1 = zC(a′) and
l3(a′) = 1 6= 0 = b(a′). If l1(a) ∧ l2(a) = 0, then one of l1(a′), l2(a′) is 1 while zC(a′) = 0 and
zC(a′) = 1 6= 0 = b(a′). So a′ ∈ solNAE(G).

(⇐) Let a′ ∈ solNAE(G). By lemma 3.4, wlog b(a′) = 0. We claim that the restriction
a = a′| var(F) is a solution to F . Let C = {l1, l2, l3} ∈ F . If l3(a′) = 0, then zC(a′) = 1, and so
one of l1(a′), l2(a′) is 1. So a ∈ sol(F).

Theorem 3.6. Max-2-SAT ∈ NP-complete.

Proof. We reduce from NAE-3-SAT. Let F ∈ 3-CNF. We will construct an equivalent instance
G of weighted 2-SAT. For each clause C = {l1, l2, l3} ∈ F , add 6 clauses to G: {li, lj}, {l̄i, l̄j},
for i 6= j. Notice that an assignment satisfies 1 or 2 literals in C iff ≥ 5 of the corresponding 6
clauses are satisfied. So G has an assignment satisfying ≥ 5|F | clauses iff F has a NAE satisfying
assignment. That Max-2-SAT is in NP is clear.

25

Theorem 3.7 ([KLM89]). #DNF-SAT ∈ FPRAS.

Proof. Let F = {T1, . . . , Tm} ∈ DNF, Si = sol(Ti), S = sol(F). Each Si has 3 useful properties:
|Si| can be computed in poly time, Si can be uniformly sampled in poly time, membership in Si
can be decided in poly time. Let U = {(i, a) | a ∈ Si}. Then U has these same 3 properties. Let
s = maxi |Si|. Then |S|, |U | ∈ [s,ms] and |S| ≤ |U |. So p = |S|

|U | ∈ [1
m , 1].

If we sample (i, a) ∈ U uniformly at random, the probability that Ti is the first term
satisfied by a is exactly p, and this can be tested in poly time. If we do this test n times and
let X be the number of successes, then X

n is a good estimator for p and Y = X
n |U | is a good

estimator for |S|. More precisely, by the Chernoff bound (theorem 2.7), for ε ∈ (0, 1),

Pr(|Y − |S|| ≥ |S|ε) = Pr(|X − np| ≥ npε) ≤ 2e−
ε2np

3 ≤ 2e−
ε2n
3m ,

which is < 1
3 if we choose n = 6m

ε2 .

Chapter 4

Resolution

In this chapter, we show 2 basic proof systems on which the main k-SAT algorithms
of chapter 6 are based. The notion of a contradictory cycle, in particular, will come in handy
several times later.

Clauses C,D are resolvable iff they differ on exactly 1 variable, i.e. ∃! literal l (whose
variable is called the conflict variable) such that l ∈ C and l̄ ∈ D. In this case, the resolvent of
C,D is R = resolve(C,D) = C ∪D − {l, l̄}.

Define a resolution dag G for φ ∈ CNF as a dag with a clause labeled at each node s.t.
the label of each leaf node (i.e. with indegree 0) is in φ, and the label of each interior node (i.e.
with indegree ≥ 1) is the resolvent of the labels of its 2 children. ψ ∈ CNF is deducible through
resolution from φ, and we write φ ` ψ iff there is a resolution dag for φ containing the clauses of
ψ as node labels. We can extend this notation to individual clauses as well, e.g. φ ` C. Say that
a formula φ implies ψ, and write φ |= ψ, iff sol(φ) ⊆ sol(ψ). Obviously `, |= are both reflexive
and transitive.

Say G is complete iff the resolvent of every resolvable pair of node labels in G is already
a node label in G. Though complete resolution dags are not necessarily unique, the set of their
node labels is, since this is simply the closure of φ under the resolution operation. The dag itself
can be seen as a proof that these clauses are in the closure.

Theorem 4.1 (Power of resolution). Let φ ∈ CNF and C be a clause.

(Soundness) If φ ` C, then φ |= C.

(Completeness) If φ |= C, then ∃D ⊆ C φ ` D.

It would be cleaner if we could say φ |= C iff φ ` C, but this is not true. We could make
it true by allowing the resolution operator to produce supersets of clauses, but such an extension
adds no real power and would make it onerous in some cases to exhaustively search all resolution
proofs.

Proof. (Soundness) This can be shown by induction on the length l of a longest path from C to
a leaf in the resolution dag. Obviously it holds for l = 0 since then C is at a leaf. Now suppose
it holds for some l and let l+1 be the length of a longest path from a node x labeled C to a leaf.
Let y, z be the children of x and A,B be their labels. Then the length of a longest path from
y or z to a leaf is ≤ l. By the induction hypothesis, φ |= {A,B}. Wlog suppose some variable
v ∈ A, v̄ ∈ B. Then for any assignment a satisfying both A,B, if a sets v to true, then B − {v̄}
is true, else A− {v} is true. So φ |= {A,B} |= C.

26

27

(Completeness) We will show that ∃D ⊆ C and a resolution tree T for φ with D at the
root by induction on n = | var(φ)|. Suppose n = 0, so that C = ∅. If φ = ∅, then the hypothesis
φ |= C is false 1, so φ = {∅} and a tree with just one node labeled C suffices.

Now suppose n ≥ 1 and let x ∈ var(φ). If C = ∅, then φ is unsatisfiable, and so is
φ|x=1. By the induction hypothesis, there is a resolution tree T0 for φ|x=1 with ∅ at the root.
Adding x back into the clauses of T0 generates a resolution tree T ′0 for φ with either {x̄} or ∅ at
the root. Similarly, there is a resolution tree T ′1 for φ with either {x} or ∅ at the root. If neither
of T ′0, T

′
1 has ∅ at the root, then the labels at their roots can be resolved to yield ∅.

Suppose C 6= ∅. φ|C=0 is unsatisfiable and has < n variables. By the induction hypoth-
esis, there is a resolution tree for φ|C=0 with ∅ at the root. Adding the variables of C back into
the tree yields a resolution tree for φ with some subset of C at the root.

Call a resolution tree for φ ∈ CNF with ∅ at the root a refutation tree for φ. Note that
if φ ∈ 2-CNF, then each of its non-root node labels {a, b} can be interpreted as either the edge
ā→ b or b̄→ a.

Lemma 4.2. Let T be a resolution tree for φ ∈ 2-CNF with no node label equal to ∅. For each
of the 2 interpretations a → b, b̄ → ā of the label {a, b} at the root as an edge, say c → d, there
is an ordering of the children of each interior node of T and an interpretation of each non-root
node label as an edge such that the inorder sequence of node labels at the leaves forms a path in
the implication graph G of T from c to d.

Proof. We use induction on the depth of T . If T has depth 0, then the lemma is trivial, so assume
T has positive depth. Let x, y be the children of the root and A,B be their labels. Let e be the
conflict variable of A,B. The node label of at least one of x, y contains c̄. Order x, y so that
this node, say x, is a left child. Interpret A as an edge to a literal whose variable is e, and B as
an edge from a literal whose variable is e. Now invoke the induction hypothesis to complete the
proof.

Define a contradictory cycle in the implication graph as a path from some literal l to l̄
to l.

Corollary 4.3. Let T be a refutation tree for φ ∈ 2-CNF and assume ∅ /∈ φ. There is an ordering
of the children of each interior node of T and an interpretation of each non-root node label as
an edge such that the inorder sequence of node labels at the leaves forms a contradictory cycle in
the implication graph G of T .

Proof. Since ∅ /∈ φ, T has positive depth. Let the left (right) child of the root have label ā (a).
The left (right) subtree of T does not contain ∅ as a node label since ∅ is not resolvable with
any clause. By lemma 4.2, for the left (right) subtree, the children of each interior node can be
ordered and the node labels can be interpreted so that the inorder sequence of node labels at the
leaves form a path from a to ā (ā to a), which completes the proof.

We can define another proof system based on paths in the implication graph. Let
φ ∈ 2-CNF, ∅ /∈ φ, G be the implication graph of φ, and let C be a (≤ 2)-clause. Say that φ path
deduces C, and write φ `path C, iff there is a path in G from ā to b where C = {a, b}, or there is
a contradictory cycle in G in the case that C = ∅.

Notice that path deduction is just slightly weaker than resolution in that the implication
graph does not represent whether ∅ ∈ φ, which is why we add the hypothesis ∅ /∈ φ to the following
corollaries.

Corollary 4.4. Let φ ∈ 2-CNF, ∅ /∈ φ, C be a (≤ 2)-clause. Then φ ` C iff φ `path C.

1being careful to interpret the left hand side as a set of clauses but the right hand side as a single clause

28

Proof. (⇒) Follows from lemma 4.2.
(⇐) First suppose C 6= ∅. Let C1, . . . , Cm be the edge path in the implication graph

G of φ deducing C. Interpreting each Ci as a clause, define the following left-heavy resolution
tree T : let D1 = C1 and for i = 2, . . . ,m, let Di be the resolvent of Di−1 and Ci. Now suppose
C = ∅ and suppose φ `path {ā}, {a}. From the first case, φ ` {{ā}, {a}} ` ∅.

Corollary 4.5. Let φ ∈ 2-CNF, ∅ /∈ φ. φ is unsatisfiable iff its implication graph contains a
contradictory cycle.

The advantage of path deductions for 2-CNFs is that we may restrict our attention to
simple paths without losing any deductive power. We will find a nice application of this idea
when we develop algorithms for Π23-SAT in §7.2. An application we can state here is to use
Tarjan’s linear time strong components algorithm [Tar72], and then detect whether any literal is
in the same strong component as its complement. This gives a linear time 2-SAT algorithm. In
fact, Tarjan et al [APT79] show that 2-QBF, the problem of deciding the truth value of a 2-CNF
where the variables are quantified arbitrarily, is solvable in linear time using almost the same
algorithm.

4.1 Restricted forms of resolution

Notice in the proof of completeness in theorem 4.1 that the only case in which node
labels get reused (i.e. appear on more than 1 node) is when trying to derive ∅. One might ask
whether resolution would still be complete in the sense above if we restricted the resolution tree
to never reuse node labels. Certainly this would be an advantage if one were trying to enumerate
all resolution trees. But alas, such trees are not as powerful, as the following example will show
(corollary 4.6).

Corollary 4.5 provides an easy way to construct unsatisfiable 2-CNFs. Below we con-
struct a graph on 4 literals such that the only such cycle uses some edge twice, namely the one
from b to c.

We can extend this graph to satisfy the path duality property of lemma 3.1:

This graph G0 represents the 2-CNF φ0 = {{ā, b}, {b̄, c}, {c̄, ā}, {ā, b}, {c̄, a}}, which has 3 vari-
ables and 5 clauses. It can be checked by brute force that every contradictory cycle in this graph
uses some edge twice, extending the intuition we developed about the first graph.

29

Corollary 4.6. Every refutation tree T for φ0 uses some node label twice.

Proof. By corollary 4.3, some ordering and interpretation of the leaves of T is a contradictory
cycle in G0, and so uses some edge twice. So some node label is used twice.

We can weaken our notion of tree-with-unique-labels by allowing the leaves to have
repeated labels but the labels of the interior nodes must be distinct. Such a proof system is
powerful enough to refute unsatisfiable 2-CNFs, as we now show.

Lemma 4.7. Every unsatisfiable φ ∈ 2-CNF has a refutation tree with no repeated interior node
labels.

Proof. There is a simple contradictory cycle p from some variable a to ā to a, i.e. where both
the path from a to ā and that from ā to a is simple (though viewed as a single path, p might
not be simple). Applying the proof of corollary 4.4 yields the desired tree. To see this, note
that each interior node label in the left (right) subtree contains ā (a) and none in the right (left)
contains ā (a), and each subtree individually does not repeat interior node labels because the
path it represents is simple.

4.2 Implication trees

Resolution dags represent deductions made by DPLL-like algorithms (discussed in chap-
ter 6): the labels of interior nodes being intermediate theorems deduced. We now propose a
combinatoric structure, related to tableaux proofs, more closely representing random walk algo-
rithms.

Let φ ∈ CNF with literal set S. A tree T = (V,E) with node labels L : V → S is
an implication tree iff for each interior node v1 with children v2, . . . , vk and where li = L(vi),
there is a clause {l̄1, l2, . . . , lk} ∈ φ. Note that this definition permits a node labeled l̄ to include
l among the labels of its children, which allows unit clauses to generate edges. The following
obvious lemma captures the semantics of implication trees.

Lemma 4.8. Let T be an implication tree for φ ∈ CNF. If a ∈ sol(φ), then at a, each interior
node with a true label has a child with a true label.

Say a root-to-leaf path is a contradiction path iff ∃l ∈ S such that the path contains
labels l followed by l̄ followed by l. An implication tree is a contradiction tree iff it is nonempty
and each root-to-leaf path contains a contradiction path. We now show the soundness and
completeness of this proof system.

Theorem 4.9 (Power of implication trees). Let φ ∈ CNF.

(Soundness) If φ has a contradiction tree, then φ /∈ SAT.

(Completeness) If φ /∈ SAT, then ∅ ∈ φ or φ has a contradiction tree.

Proof. (Soundness) Let T be a contradiction tree for φ and suppose indirectly that a ∈ sol(φ).
At a, let v be a highest true node in T so that its ancestors are all false. (If there is no true
node, then in the following, just set p to be any root-to-leaf path.) By lemma 4.8, some path p′

starting at v and going to a leaf is all true. Let p be the root-to-leaf path that includes p′. Then
p starts with all true nodes and is followed by all false. But p contains some literal l followed by
l̄ followed by l. By the pigeonhole principle, some 2 consecutive of these literals is in the same
region and so are assigned the same way, a contradiction.

30

(Completeness) Say that φ ∈ CNF is minimal unsatisfiable iff φ /∈ SAT and ∀C ∈
φ φ − {C} ∈ SAT. An unsatisfiable core 2 of φ ∈ CNF-SAT is a subset of φ that is minimal
unsatisfiable. Obviously every unsatisfiable φ contains an unsatisfiable core.

We use induction on the number of variables n to prove something subtle: for every
minimal unsatisfiable φ ∈ CNF and each literal l of a variable actually occurring in φ, there is a
contradiction tree T for φ with l at the root.

If n = 0, then φ has no literals in it and we are done. Otherwise, let l be a literal. We
want to construct a contradiction tree with l at the root. Let ψ = φ |l=1. ψ /∈ SAT since ψ is a
restriction of φ. We claim that

some unsatisfiable core ψ′ of ψ contains a clause C
such that C ∪ {l̄} ∈ φ.

(∗)

Otherwise ψ′ ⊆ φ. l̄ occurs in some clause in φ since φ is minimal unsatisfiable. So ψ′ ⊂ φ and
so ψ′ ∈ SAT, a contradiction. So (∗) holds. By the induction hypothesis, for each literal l′ in ψ′,
there is a contradiction tree for ψ′ with l′ at the root.

Case I: ψ′ = {∅}. Then {l̄} ∈ φ. In this case, define tree T to contain l at the root and
a single child labeled l̄.

Case II: ψ′ 6= {∅}. Then ∅ /∈ ψ′ since ψ′ is minimal unsatisfiable. So C 6= ∅, say
C = {l1, . . . , lk}. For i = 1, . . . , k, there is a contradiction tree Ti for ψ′ with li at the root.
Reinserting l̄ into Ti (i.e. as a child of those internal nodes whose children came from a clause
D of ψ′ where D ∪ {l̄} ∈ φ) yields an implication tree T ′i for φ with li at the root and each
root-to-leaf path leads to a contradiction or to l̄. Define tree T with l at the root and subtrees
T ′i .

For both cases I and II, T is an implication tree for φ with l at the root and each
root-to-leaf path leads to a contradiction or to l̄. By symmetry, there is an implication tree T ′

for φ with l̄ at the root and each root-to-leaf path leads to a contradiction or to l. Glue copies
of T ′ to the end of each l̄ in T to get the desired contradiction tree.

Consider the following simple upper bounds on the depth d(n) and size s(n) of the
contradiction trees produced by the above proof. To get a tree for n variables, we take 2 trees
each for n−1 variables, add ≤ 1 node to each internal node of one, and glue copies of the second
onto the first. A tree for 1 variable has depth ≤ 2 and size ≤ 3. So

d(n) ≤ 2d(n− 1) d(1) ≤ 2

s(n) ≤ s(n− 1) + s(n− 1)2 s(1) ≤ 3.

So d(n) ≤ 2n. The recurrence for s(n) yields an upper bound somewhere between
√

2
2n

and
√

6
2n

. But these bounds don’t take advantage of the fact that gluing trees together opens up
opportunities for contradiction paths that are partially in each. We now show much tighter upper
bounds.

Theorem 4.10. If φ ∈ CNF has a contradiction tree, then it has one of depth ≤ (2n)2 and size
≤ n(2n)2 where n = | var(φ)|.

Proof. Let T be a contradiction tree with the smallest possible size among those with the least
possible depth, and let v0, . . . , vd be a root-to-leaf path. Let l be a literal and vi1 , . . . , vik with
i1 < · · · < ik < d be the nodes other than the leaf that are labeled l. For j = 1, . . . , k, let Sj be
the set of labels on v1, v2, . . . , vij .

2The literature calls these minimal unsatisfiable cores, but this seems silly since then ’core’ becomes another
word for ’subset’.

31

We claim S1 ⊂ · · · ⊂ Sk. For suppose indirectly that Sj = Sj+1 for some j. Then we
could replace the subtree rooted at vij with that at vij+1 to obtain a contradiction tree of no
greater depth and strictly smaller size, contradicting the minimality of T . So S1 ⊂ · · · ⊂ Sk,
which implies k ≤ 2n, which implies d ≤ (2n)2. The size bound comes from observing that the
branching factor of T is ≤ n.

The above bound is still not small enough for a contradiction tree to be a viable alter-
native to resolution as a general purpose refutation method, but it still may be handy in special
cases or as a conceptual tool.

Chapter 5

Sparsification

[IPZ01] presents a subexponential time Turing reduction from k-SAT to bounded-clause-
density-k-SAT. In particular, they give an algorithm A so that for each k, ε > 0, φ ∈ k-CNF,
Ak,ε(φ) outputs φ1, . . . , φs ∈ k-CNF, with nO(k) delay (meaning nO(k) time passes before out-
putting each successive element of the sequence) and so that s ≤ 2εn, sol(φ) =

⋃
i sol(φi), and

the number of occurrences of each literal in each φi is bounded above by a constant, called the
sparsification constant, depending only on k, ε.

The original proof [IPZ01] of the lemma bounds the sparsification constant from above
by a double exponential in k, roughly (8k2k

ε)2
k−1

. We will bring this down to O(kε)
3k, rewriting

the proof of the sparsification lemma for clarity. A sketch of this proof also appeared in [CIP06].
The improvement comes from tightening a single combinatoric inequality, propagating it through
the rest of the analysis, and analyzing a curious sequence, each term of which is the convolution
of the preceding terms.

5.1 Why it’s useful

As long as we are aiming to produce an exponential time algorithm, we may usually
assume that any input φ ∈ k-CNF is sparsified, which is especially useful in algorithms that
need a linear number of clauses, as this bounds the degree of interaction between variables and
between clauses. For example, define the variable dependence graph to have the variables as nodes
and an edge between nodes iff they are in a clause together. Similarly we can define the clause
dependence graph to have clauses as nodes and an edge between nodes iff they have a variable in
common. The variable and clause dependence graphs of sparsified formulas are both bounded in
degree by a constant depending only on k, ε.

As a concrete example of how sparsification can be used, let Unique-k-SAT be k-SAT
but where the input is promised to have ≤ 1 solution, and define

sk = ck-SAT s∞ = lim
k→∞

sk

σk = cUnique-k-SAT σ∞ = lim
k→∞

σk.
(5.1)

In [CIKP08] (and here in theorem 9.17) it is shown that σ3 = 0 ⇒ s∞ = 0 by demonstrating
a subexponential time randomized reduction from k-SAT to Unique-3-SAT that only linearly
increases the number of variables. To make this reduction work, it is crucial that the input
formula have only m = O(n) clauses because reducing the clause width to 3 by the standard
algorithm increases the number of variables to O(n+m). For this to be linear in n we must first
sparsify φ.

32

33

There is a close relationship between the complexity of k-SAT and SAT∆ (the satisfi-
ability problem for CNF formulas with clause-to-variable ratio ≤ ∆). In fact, we suspect that
the problems can be reduced to each other in subexponential time when ∆ = Θ(2k). To show
such an assertion, we need tight reductions. In particular, to show that k-SAT reduces to SAT∆

in subexponential time for ∆ = O(2k), it would suffice to bound the sparsification constant by
O(2k). We do not accomplish this, but do step in the right direction. Also, in chapter 10, we show
a slightly different assertion: that cSAT∆ is not too much larger than ck-SAT when k = Θ(lg ∆).

5.2 Sparsification algorithm

The idea of the algorithm is simple: if a subexpression H of φ occurs frequently enough
and we branch on it, then both branches will greatly simplify φ. The only trick is how to decide
what constitutes ’frequently enough’ and in what order to branch. Greater depth of the design
philosophy can be found in [IPZ01].

Recall that a clause is a set of noncontradictory literals so that every subset of a clause
is a clause. A k-clause is a clause of size (exactly) k. A k-CNF φ is a set of clauses each of
size ≤ k. φ is reduced iff no clause is a subset of any other. The reduction of φ = redφ =
{⊆-minimal elements of φ}.

Let θi be a positive increasing sequence of integers to be specified later. For now, let us
insist that θ0 = 2. Define

φc = {C ∈ φ | |C| = c}
φc,h = {H | |H| = h ≥ 1 ∧ |{C ∈ φc | H ⊆ C}| ≥ θc−h}.

c, h stand for clause size, heart size. The sparsification algorithm is in figure 5.1.

1 Ak,ε(φ ∈ k-CNF)
2 φ← redφ
3 if ∃(c, h) φc,h 6= ∅ {
4 select the lexicographically first (c, h)
5 (meaning smallest c, then largest h) such that φc,h 6= ∅
6 select an arbitrary H ∈ φc,h
7 P ← {C −H | H ⊆ C ∈ φc}
8 /* branch: if we set H to 1, we call this a heart operation
9 if we set H to 0, we call this a petal operation */
10 Ak,ε(φ ∪ {H})
11 Ak,ε(φ ∪ P)
12 }
13 output φ /* φ is sparsified */

Figure 5.1: sparsification algorithm

Several optimizations come to mind: before calling Ak,ε(φ∪P), we could set each l ∈ H
to 0 and simplify the formula; we could also terminate early if φ contains contradictory unit
clauses. These optimizations would only change a few of the constants in the following analysis,
so we don’t bother making them.

We break up the analysis into 2 parts. First we show properties that hold regardless of
our choice of the θi, then we choose the θi and show what new properties our choices cause.

34

5.3 Basic properties

Let T be the binary tree of the computation, each node of which is labeled with a
k-CNF. The root is labeled redφ. If node x is labeled ψ and the condition on line 3 is satisfied,
then x will have 2 children, else 0 children (so T is full). Let (c, h) be as in line 4 and choice(φc,h)
denote the arbitrary choice made on line 6. Let

H(ψ) = heart of ψ = choice(ψc,h)
F (ψ) = flower of ψ = {C ∈ ψc | H(ψ) ⊆ C}
P (ψ) = petals of ψ = {C −H(ψ) | C ∈ F (ψ)}.

The left child of x is labeled red(ψ∪{H(ψ)}). Note carefully that this could be smaller
than (ψ − F (ψ)) ∪ {H(ψ)} since F (ψ) ⊆ ψc. In other words, the flower is defined as a subset of
the clauses of size c, but reduction could discard clauses of any size (smaller or larger than c) as
long as H(ψ) is a proper subset of them. The right child of x is labeled red(ψ ∪ P (ψ)). Again,
we may be discarding more than F (ψ).

A c-flower F of φ is a subset of φc with nonempty intersection. Let H =
⋂
F, h = |H|.

F is admissible iff |F | ≥ θc−h. Say φ is c-sparsified iff ∀c′ ≤ c, φ has no admissible c′-flower.
Also, φ is sparsified iff φ is k-sparsified.

Lemma 5.1. Suppose ψ is not sparsified. (e.g. the label of an interior node of T) Then ∅ /∈
P (ψ) 6= ∅ (so that 0 < h < c) and H(ψ) =

⋂
F (ψ).

Proof. If ∅ ∈ P (ψ) or P (ψ) = ∅, then since each element of P has the same size, we have
|P (ψ)| ≤ 1 < θ0 ≤ θc−h, a contradiction. Now we show H(ψ) =

⋂
F (ψ).

(⊆) Clear.
(⊇) This depends on the lexicographical ordering of the (c, h) pairs. Suppose indirectly

that H = H(ψ) ⊂
⋂
F (ψ) = H ′. Then

• h′ = |H ′| > |H| = h

• H ′ occurs as a subset of clauses in ψc with the same frequency f as H does, since {C ∈
ψc | H ′ ⊆ C} = {C ∈ ψc | H ⊆ C}.

So h′ > h ≥ 1 ∧ f ≥ θc−h ≥ θc−h′ ∧ ψc,h′ 6= ∅, contradicting the minimality of (c, h).

Let us say that CNF α is a refinement of β iff ∀a ∈ α ∃b ∈ β a ⊆ b. Note that redψ
is a refinement of ψ since redψ ⊆ ψ. α is a proper refinement of β iff α is a refinement of β
and α 6= β. Refinement is transitive, but proper refinement is not, although it is if we restrict to
reduced CNFs.

Lemma 5.2. If ψ,ψ′ are reduced, ψ is not sparsified, and ψ is a refinement of ψ′, then

H(ψ) ∈ red(ψ ∪ {H(ψ)})− ψ′

P (ψ) ⊆ red(ψ ∪ P (ψ))− ψ′.

Proof. If H(ψ) /∈ red(ψ∪{H(ψ)}), then ∃a, b ∈ ψ a ⊂ H(ψ) ⊂ b, contradicting that ψ is reduced.
Similarly, if ∃a ∈ P (ψ)− red(ψ ∪ P (ψ)), then a fails to be in red(ψ ∪ P (ψ)) either because it is
a proper superset of some b ∈ ψ or some c ∈ P (ψ). The first case contradicts that ψ is reduced;
the second, that the elements of P (ψ) have the same size.

If a ∈ ({H(ψ)}∪P (ψ))∩ψ′, then we would have ∃b ∈ ψ, c ∈ ψ′ a ⊂ b ⊆ c, contradicting
that ψ′ is reduced.

Let us use the notation l(x) to refer to the label of node x in T .

35

Lemma 5.3. Let y be a proper ancestor of x in T . Then α = l(x) is a proper refinement of
β = l(y). Furthermore, the number of clauses in the labels of the nodes from y to x forms a
nonincreasing sequence.

Proof. Notice that for any nonsparsified CNF ψ and any 2 refinements γ, δ, we have that
ψ, {H(ψ)}, P (ψ), red(ψ), γ∪δ are all refinements of ψ, and refinement is transitive. By induction
on the distance from x to y, α is a refinement of β.

To show that α 6= β, let z = parent(x) and γ = l(z). If x is the left child of z, then by
lemma 5.2, H(γ) ∈ α − β. If x is the right child of z, then by lemma 5.1, ∃a ∈ P (γ), and by
lemma 5.2, a ∈ α− β. Either way we conclude that α is a proper refinement of β.

The last assertion can be shown by induction: for any nonsparsified CNF ψ,

| red(ψ ∪ {H(ψ)})| ≤ |ψ ∪ {H(ψ)} − F (ψ)| ≤ |ψ|
and | red(ψ ∪ P (ψ))| ≤ |ψ ∪ P (ψ)− F (ψ)| ≤ |ψ|.

Let r be the root of T and p be a path from r to a leaf. A clause a is introduced at node x
iff either (x is a left child and a = H(l(parent(x)))) or (x is a right child and a ∈ P (l(parent(x)))).
So no clause is introduced at r. We say a is introduced along p iff ∃ node x along p such that a
is introduced at x.

A clause a is new at x iff a ∈
(
l(x) − l(r)

)
−

⋃
proper ancestors y of x l(y). So no clause is

new at r. We say a is new along p iff ∃ node x along p such that a is new at x.

Lemma 5.4. Clause a is introduced at node x iff a is new at x.

Proof. (⇒) x 6= r. a is new at x by lemmas 5.2, 5.3 applied to l(parent(x)).
(⇐) Since a ∈ l(x) − l(r), x 6= r. Let z = parent(x). Then a ∈ l(x) − l(z). So

a = H(l(z)) if x is a left child and a ∈ P (l(z)) if x is a right child. So a is introduced at x.

This tells us that each clause a can be introduced at most once along any root-to-leaf
path in T .

Lemma 5.5. Let x be a node of T at which a clause of size c is introduced. Then l(parent(x))
is c-sparsified.

Proof. If l(parent(x)) has an admissible c′-flower for some c′ ≤ c, then a clause of size < c would
have been introduced at x instead of a clause of size c.

Lemma 5.6. Let ψ be c-sparsified. Then

1. ∀ h-clause a with h ≥ 1 |{b ∈ ψc | a ⊆ b}| < θc−h

2. |ψc| < θc−1
2n
c

Proof. Let F = {b ∈ ψc | a ⊆ b} and suppose indirectly that |F | ≥ θc−h. Let H =
⋂
F . Then

a ⊆ H, and so |H| ≥ h. So |F | ≥ θc−h ≥ θc−|H|. So F is an admissible c-flower, contradicting
that ψ is c-sparsified.

Now suppose indirectly that |ψc| ≥ θc−1
2n
c . Then the average number of times each

literal occurs in ψc is

1
2n

∑
literals l

∑
b∈ψc

{
1 if l ∈ b
0 else

=
1
2n

∑
b∈ψc

∑
literals l

{
1 if l ∈ b
0 else

=
1
2n
|ψc|c ≥ θc−1.

Some literal l achieves at least the average, which contradicts the first assertion.

36

Let us say that a clause a eliminates clause b at node x iff a ∈ l(x), b ∈ l(parent(x)),
and a ⊂ b. Note that it is possible for more than 1 clause to eliminate a given clause at x.

Lemma 5.7. A clause b can only be eliminated by a new clause a, and only at the node where
a is introduced.

Proof. Let b be eliminated by a at x and let ψ = l(parent(x)). If x is a left (right) child, then
b ∈ ψ−red(ψ∪{H(ψ)}) (b ∈ ψ−red(ψ∪P (ψ))). Since ψ is reduced, we must have a = H(ψ) ⊂ b
(a ∈ P (ψ), a ⊂ b), so a is introduced at x. By lemma 5.4, a is also new at x.

Lemma 5.8. Let p be a root-to-leaf path, a be a clause along p. Then a does all of its eliminating
precisely at the node where a is introduced. (clauses at the root cannot eliminate anything)

Proof. If a eliminates at 2 distinct nodes x, y along p, then by lemma 5.7, a is new at both x, y,
and one is a proper ancestor of the other, contradicting the definition of new.

The following lemma is the source of our improvement in the sparsification constant.
The analysis in [IPZ01] bounded the number of new c-clauses that a single clause could eliminate
by 2θc−1 − 2.

Lemma 5.9. Let a be a clause of size h < c. If a eliminates any new clauses of size c, then a
can eliminate at most 2θc−h − 2 clauses of size c (new or not) along root-to-leaf path p.

Proof. Suppose indirectly that a eliminates ≥ 2θc−h − 1 clauses of size c along p and let γ be
this set of clauses. By lemma 5.8, a must eliminate γ all at once when a is introduced. Let x be
the first node along p such that γ ⊆ l(x) = α.

Since γ contains a new clause, x 6= r. (This seemingly trivial use of the fact that γ
contains a new clause is crucial, since this is our only use of this fact and the lemma is actually
false if we do not assume γ contains a new clause.) By minimality of x, some c-clause of γ is
introduced at x. Let y = parent(x), β = l(y). By lemma 5.5, β is c-sparsified. By lemma 5.6,
|{b ∈ βc | a ⊆ b}| ≤ θc−h − 1, yet |{b ∈ αc | a ⊆ b}| ≥ 2θc−h − 1. So ≥ θc−h of the clauses of γ
are introduced at x.

If x is a right child, then ∃ a flower F ⊆ β with heart H = H(β) and petals all from γ
and |F | ≥ θc−h. (i.e. ∃H ⊆

⋂
F ∀C ∈ F C −H ∈ γ) Suppose indirectly that a ⊆ H. Let b ∈ γ.

Since b is also a petal of F , a ∩ b ⊆ H ∩ b = ∅, contradicting that a eliminates b. So a−H 6= ∅.
But then H ∪ a is an even bigger heart of the same flower contradicting that we branched on H
at y.

If x is a left child, then 2 = θ0 ≤ θc−h ≤ the number of clauses introduced at x, which
is 1, a contradiction.

5.4 Choosing the θi

We wish to define constants βc, dependent only upon k, ε, c such that the number of
new c-clauses in a root-to-leaf path p is ≤ βcn.

For an α ≥ 2 to be determined later, set

β1 = 2, θ0 = 2

βc =
c−1∑
h=1

4αβc−hβh for c ≥ 2

θc = βcα for c ≥ 1.

Since α ≥ 2, the θc are increasing.

37

Lemma 5.10. The number of new clauses of size ≤ c in any root-to-leaf path p of T is ≤ βcn.

Proof. We use induction on c. The number of new 1-clauses is obviously ≤ 2n = β1n. For c > 1,
we have

new clauses of size ≤ c

≤
c−1∑
h=1

new c-clauses that got eliminated by a new h-clause

+ # c-clauses in the leaf of p+ # new clauses of size ≤ c− 1
(using lemma 5.7)

≤
c−1∑
h=1

(2θc−h − 2)βhn+ θc−1
2n
c

+ βc−1n

(by lemmas 5.6, 5.9, and the induction hypothesis)

≤
c−1∑
h=1

2αβc−hβhn+ 2αβc−1n

≤
c−1∑
h=1

4αβc−hβhn = βcn.

Lemma 5.11. The length of any path p in T is ≤ βk−1n.

Proof. By lemma 5.4, each edge of T introduces at least new 1 clause. The length of p is at most
the number of new clauses, which is at most βk−1n, by lemma 5.10.

Lemma 5.12. The number of petal operations (right edges) in any path p of T is ≤ (k−1)n
α .

Proof.

petal operations

=
k−1∑
c=1

petal operations that introduce c-clauses

≤
k−1∑
c=1

new c-clauses
θc

≤
k−1∑
c=1

βcn

θc
by lemma 5.10

=
(k − 1)n

α
.

Wlog suppose ε ≤ 1, k ≥ 3. Choose α = 2(k−1)2

ε lg 32(k−1)2

ε .

Lemma 5.13. T has s ≤ 2εn leaves.

Proof. We will show in §5.6, theorem 5.21, that

∀c ≥ 1 βc ≤ 4(32α)c−1, (5.2)

38

and this is tight up to a subexponential factor. Since a leaf of T is determined by the sequence
of left and right edges taken to reach it from the root, we have from lemmas 5.11, 5.12

s ≤
bKn

α c∑
j=0

(
βKn

j

)
letting K = k − 1

=
∣∣BKn

α
(0βKn)

∣∣
≤ 2h(

K
αβK

)βKn by theorem 2.3,

the exponent of which divided by n is

≤ K

α
lg

(4αβK
K

)
by theorem 2.2

≤ K

α
lg

(
(32α)K

)
by (5.2)

= 32K2 lg(32α)
32α

.

(5.3)

We would like to choose α to make this ≤ ε. It is easy to show that ∀y ∈ (0, 1
4], if x ≥ 2

y lg 1
y ,

then lg x
x ≤ y. So it is sufficient to choose 32α = 2·32K2

ε lg 32K2

ε , which is how α was chosen.

Lemma 5.14. If φ is sparsified, then each disjunction of h literals occurs ≤ O(kε)
3(k−h) times

in φ.

Proof. By lemma 5.6, the frequency of a subexpression of size h is

≤
k−h∑
c=0

θc = 2 + α
k−h∑
c=1

βc

≤ 2 + 4α(32α)k−h−1 by theorem 5.21

= O
(k2

ε
lg
k

ε

)k−h
≤ O

(k
ε

)3(k−h)
.

(5.4)

The last inequality is slightly loose to get a simpler expression.

Of course we can also sparsify for k = 2, h = 1, in which case, we can use the second to
last expression in (5.4) to bound the sparsification constant by O(1

ε lg 1
ε). Summarizing,

Theorem 5.15 (Sparsification). ∃ algorithm A ∀k ≥ 2, ε ∈ (0, 1], φ ∈ k-CNF with n variables,
Ak,ε(φ) outputs a sequence φ1, . . . , φs ∈ k-CNF with nO(k) delay such that

1. s ≤ 2εn

2. sol(φ) =
⋃
i sol(φi)

3. ∀i ∈ [s] each disjunction of h literals occurs ≤ O(kε)
3(k−h) times in φi, which also implies

(a) each literal occurs ≤ O(kε)
3k times, or ≤ O(1

ε lg 1
ε) times for k = 2, in φi (this is our

new sparsification constant)

(b) |φi| ≤ O(kε)
3kn.

It is sometimes more useful to have a randomized algorithm B with runtime nO(k) and
with probability ≥ 2−εn of outputting any particular φi. We now describe a generic procedure
for transforming a backtracking algorithm such as A into an equivalent randomized algorithm B

39

with an essentially optimal tradeoff between speed and success probability. This is a special case
of a more general technique that applies to any backtracking algorithm whose running time is
bounded by a recurrence relation.

Consider the following algorithm that returns a leaf of a full binary tree given a starting
node.

B(node x, n ∈ N, r ∈ N)
while x is not a leaf
p← |Br(0n−1)|

|Br(0n)|

(x, n, r)←

{
(x.left, n− 1, r) with probability p
(x.right, n− 1, r − 1) with probability 1− p.

return x

Theorem 5.16. Let T be a full binary tree with root R such that each root-to-leaf path has length
≤ n and ≤ r right edges. Then for each leaf l of T ,

Pr(B(R,n, r) = l) ≥ 1
|Br(0n)|

, (5.5)

and this bound is tight in the sense that ∀n, r ∃T satisfying the hypothesis so that ∀ leaf l of T ,
(5.5) is an equality.

Proof. We prove (5.5) by induction on n. If n = 0 or r = 0 or l = R, the conclusion is immediate,
so suppose n, r ≥ 1, l 6= R. The identity

(
n
k

)
=

(
n−1
k

)
+

(
n−1
k−1

)
can be used to prove

|Br(0n)| = |Br(0n−1)|+ |Br−1(0n−1)|,

which implies that if p = |Br(0n−1)|
|Br(0n)| , then 1− p = |Br−1(0

n−1)|
|Br(0n)| .

B maintains the invariant that for the subtree rooted at x, each root-to-leaf path has
length ≤ n and ≤ r right edges, so the induction hypothesis tells us that the conditional prob-
ability that B outputs l given that the first move is left (right) is ≥ 1

|Br(0n−1)| (≥ 1
|Br−1(0n−1)|).

So if l is in the left subtree of R, then

Pr(B(R,n, r) = l) = p · Pr(B(R,n, r) = l | first move is left)

≥ |Br(0
n−1)|

|Br(0n)|
· 1
|Br(0n−1)|

=
1

|Br(0n)|
,

and if l is in the right subtree of R, then

Pr(B(R,n, r) = l) = (1− p) · Pr(B(R,n, r) = l | first move is right)

≥ |Br−1(0n−1)|
|Br(0n)|

· 1
|Br−1(0n−1)|

=
1

|Br(0n)|
.

To prove tightness, take T to be any decision tree representing Br(0n).

So we can transform A as follows: we add variables d, r to keep track of the number of
branches and right branches, and instead of taking both left and right branches, we branch left
with probability p and right with probability 1− p. The new algorithm is in figure 5.2.

Putting together lemmas 5.11, 5.12, theorem 5.5, and the proof of lemma 5.13, the
probability that Bk,ε(φ) outputs a particular output of Ak,ε(φ) is ≥ 2−εn. Summarizing,

40

Bk,ε(φ ∈ k-CNF)
(d, r)← (βk−1n, bk−1

α nc)
φ← red(φ)
while ∃(c, h) φc,h 6= ∅

select the lexicographically first (c, h)
(meaning smallest c, then largest h) such that φc,h 6= ∅
select an arbitrary H ∈ φc,h
P ← {C −H | H ⊆ C ∈ φc}
p← |Br(0d−1)|

|Br(0d)|

(φ, d, r)←

{
(red(φ ∪ {H}), d− 1, r) w/prob p
(red(φ ∪ P), d− 1, r − 1) w/prob 1− p

return φ

Figure 5.2: randomized sparsification algorithm

Theorem 5.17 (Randomized sparsification). ∃ randomized algorithm B ∀k ≥ 2, ε ∈ (0, 1], φ ∈
k-CNF with n variables, ∃φ1, . . . , φs ∈ k-CNF that are sparsified in the same sense as in theorem
5.15, Bk,ε(φ) outputs some φi in time nO(k), and ∀i ∈ [s] Pr(Bk,ε(φ) = φi) ≥ 2−εn.

5.5 Open problems

Can we reduce the sparsification constant to (O(1
ε))

k? Is it possible to eliminate the
dependence of the sparsification constant on ε?

5.6 Rate of growth of the θi

Recursively define the sequence

c0 =
1
4

cn =
n−1∑
j=0

cn−1−jcj

(5.6)

The purpose of this section is to bound cn, but attacking directly with induction is difficult. We
will instead exploit the relationship between convolution and polynomial multiplication and use
some heavy theorems from analysis.

Define the power series

f(z) =
∞∑
n=0

cnz
n.

Lemma 5.18.

f(z)2z +
1
4

= f(z). (5.7)

Notice that at this point we only claim equality of formal power series, not that f(z) converges
for any particular z.

41

Proof.

f(z)2z +
1
4

=
∞∑
j=0

cjz
j
∞∑
k=0

ckz
kz +

1
4

=
∞∑
n=0

n∑
j=0

cn−jcjz
n+1 +

1
4

=
∞∑
n=1

n−1∑
j=0

cn−1−jcjz
n +

1
4

=
∞∑
n=0

cnz
n = f(z).

The implicit function theorem shows that there is a unique function g satisfying (5.7)
on an open disk D about 0 and with range in an open disk E about 1

4 , and that g is continuous
on D. The quadratic formula gives 2 functions satisfying (5.7):

g1(z) =

{
1−

√
1−z

2z if z 6= 0
1
4 if z = 0

g2(z) =

{
1+
√

1−z
2z if z 6= 0

1
4 if z = 0

Wlog suppose that the radius of D is ≤ 1 and that the radius of E is ≤ 1
4 . Since ∀z ∈ D −

{0} g2(z) /∈ E, we conclude that g = g1.
Up to now, we have only provided motivation for studying g; now we will actually

analyze it.
In analogy with the binomial theorem, we have that for functions a, b that are n times

differentiable at z,

(ab)(n) =
n∑
j=0

(
n

j

)
a(j)b(n−j). (5.8)

This is easily proved by induction.
We can compute the nth derivative of g at z = 0 for n ≥ 1 by applying (5.8) twice to

g = g2z + 1
4 :

g(n) =
(
g2z +

1
4

)(n)

= (g2)(n)z + n(g2)(n−1)

=
n∑
j=0

(
n

j

)
g(j)g(n−j)z + n

n−1∑
j=0

(
n− 1
j

)
g(j)g(n−1−j).

(5.9)

Notice that g(n) appears on both the LHS and the RHS. So this implicitly defines g(n)(z) provided
1− 2g(z)z 6= 0, and this happens iff z 6= 1. We conclude that g is analytic on C− {1}.

Using (5.9), we have

g(n)(0) = n
n−1∑
j=0

(
n− 1
j

)
g(j)(0)g(n−1−j)(0).

42

Dividing by n! gives

g(n)(0)
n!

=
n−1∑
j=0

g(j)(0)
j!

g(n−1−j)(0)
(n− 1− j)!

,

which shows that g(n)(0)
n! solves the recurrence (5.6). So f is the power series representation of g

about the point 0 and the radius of convergence is 1. (see e.g. theorem 10.16 of [Rud87]) Notice
that g does not have a derivative at 1, although g is continuous on all of C.

To prove convergence of f at the radius of convergence, we first prove a technical lemma.

Lemma 5.19. Let sn : (a, b] → R be a sequence of functions, each continuous at b, and such
that sn(x) is nondecreasing in both x and n. Also let g : (a, b]→ R be continuous at b. Suppose
that

∀x ∈ (a, b) lim
n→∞

sn(x) = g(x).

Then

lim
n→∞

sn(b) = g(b).

Proof. (≤) Suppose indirectly that limn→∞ sn(b) > g(b) or that the LHS does not converge.
Since sn(x) is nondecreasing in n, the LHS converges to a number > g(b) or properly diverges to
∞. So ∃ε > 0, n0 sn0(b) ≥ g(b) + ε.

Since sn0 and g are continuous at b, ∃b′ ∈ (a, b) (sn0(b
′) ≥ sn0(b)− ε

4 ∧g(b
′) ≤ g(b)+ ε

4).
So

g(b) ≥ g(b′)− ε

4
= lim
n→∞

sn(b′)−
ε

4
≥ sn0(b

′)− ε

4
since sn(x) is nondecreasing in n

≥ sn0(b)−
ε

2
≥ g(b) +

ε

2
,

a contradiction.
(≥) Suppose indirectly that limn→∞ sn(b) < g(b). We already showed that the LHS

converges. So ∃ε > 0 limn→∞ sn(b) + ε ≤ g(b).
Since g is continuous at b, ∃b′ ∈ (a, b) g(b′) ≥ g(b)− ε

2 . So

g(b) ≥ lim
n→∞

sn(b) + ε

≥ lim
n→∞

sn(b′) + ε since sn(x) is nondecreasing in x

= g(b′) + ε

≥ g(b) +
ε

2
,

a contradiction.

Lemma 5.20.

1.
∑∞
n=0 cn = 1

2

43

2. cn ∈ o(1)

3. ∀α < 1 cn /∈ O(αn).

Proof. We apply lemma 5.19 with sn(x) =
∑n
j=0 cjx

j and a = 0, b = 1 to conclude that f(1)
converges to g(1) = 1

2 . This also implies that the nth term of the power series converges to 0 as
n→∞. So cn ∈ o(1).

Next, suppose indirectly that ∃α < 1 cn ∈ O(αn). Then cn

αn ∈ O(1). So ∀β ∈ (α, 1) f(1
β)

converges, but this contradicts that the radius of convergence of f is 1.

Theorem 5.21. Fix a, b > 0 and define dn recursively by

d0 = a

dn =
n−1∑
j=0

bdn−1−jdj .

Then

1. ∀n ≥ 0
∑n
j=0 dn ≤ 2a(4ab)n

2. dn ∈ o((4ab)n)

3. ∀α < 4ab dn /∈ O(αn).

Proof. It is easily seen by induction on n that dn = (4a)(4ab)ncn. Now apply lemma 5.20.

Acknowledgements

Material here is joint work with Russell Impagliazzo and Ramamohan Paturi and ap-
peared in [CIP06].

Chapter 6

k-SAT upper bounds

There are many algorithms for k-SAT, most falling into one of several classes, depend-
ing on what problem they are designed to solve, how they work, what they guarantee. For
example, some algorithms are designed to work best on instances drawn randomly from a par-
ticular distribution, while others are tuned to a particular ’real world’ problem domain, such
as bounded model checking, circuit fault analysis, or planning. Also, some algorithms employ
heuristics not proven to have a particular performance benefit, but which incorporate features of
other algorithms with rigorously proven upper bounds (e.g. zChaff, UnitWalk, WalkSAT, survey
propagation). See [Cal04] for a high level discussion of such algorithms.

In this chapter we will concern ourselves only with algorithms that (1) attempt to
find some solution to a k-CNF, as opposed to, say, counting or enumerating all of them, or
discovering some other property of the solution space; and (2) have rigorously proven worst-case
upper bounds and (3) are the current best, given some requirement, such as that the algorithm
be deterministic. They fall into 2 categories.

• Incremental assignment algorithms maintain a partial solution at each step, initially
empty. At each step, they choose a variable and deduce its value or branch on it, until
a contradiction is reached or no more variables are left. Branching can take the form of
randomized decision making or backtracking. The rules used to make deductions, choose
the next variable, and backtrack all greatly impact performance.

• Local search algorithms maintain a full solution at each step, initially some guess. At
each step, if not at a solution, they change the solution to some neighbor assignment (in
the Hamming cube) based on some rule. They may restart occasionally if they guess that
they started too far from a solution.

There is a way to see these 2 as minor variants of the same idea: consider an incremental
assignment algorithm that, under some condition, guesses the value of a variable xi randomly.
If we consider this randomness to come from the ith bit of an initially random string y, then
the algorithm is actually performing a local search with y as its initial guess. We will take this
perspective when describing the PPSZ algorithm later.

6.1 DPLL method

The original DPLL incremental assignment method
(Davis, Putnam, Logemann, Loveland) [DP60, DLL62] uses the following 2 rules of inference to
decrease the amount of backtracking needed:

44

45

• unit clause rule: A unit clause C ∈ F is a clause of size 1. If such a clause is discovered,
we set its literal to 1 and simplify the formula by eliminating true clauses and false literals.

• pure literal rule: A literal l is pure in F iff l̄ does not appear in F . In this case, F is
satisfiable iff F |l is satisfiable, so we set l to 1 and simplify F . Notice that we are not forced
to set l to 1: F |l̄ may also be satisfiable. So, e.g., application of this rule is a bad idea if
one wanted to enumerate all solutions.

Applying either of these rules may generate more unit clauses or pure literals, and so the effects
can be propagated. Applying these rules repeatedly to a formula reaches a unique fixed point
independent of the order in which the rules were applied. At that point, if the formula is ∅,
it is satisfiable; if it is {∅}, it is unsatisfiable. But otherwise, it contains at least one variable
and no unit clauses nor pure literals, and there is no longer a free lunch. The algorithm then
chooses a literal on which to branch. This branching causes the well-known exponential worst-
case performance, as the other operations all take polynomial time.

The DPLL method leaves open how to choose the next branching variable, and so is not
a complete algorithm, much as the Ford-Fulkerson method for network flow is only a family of
algorithms since it does not specify how to choose an augmenting path. Also, it should be noted
that the terms DPLL, DLL, DP are sometimes used to represent the entire class of incremental
assignment methods, especially those that use either unit clause or pure literal rules.

6.2 PPZ algorithm

[PPZ99] give the DPLL algorithm of figure 6.1 to decide the satisfiability of F ∈ k-CNF.

PPZ main(F ∈ k-CNF)
let {x1, . . . , xn} = var(F)
choose a random permutation σ of [n]
for i← 1, . . . , n

if xσ(i) is in a unit clause C ∈ F // xσ(i) is forced
set xσ(i) so as to satisfy C

else set xσ(i) uniformly at random
simplify F by eliminating true clauses and false literals

if F = ∅, return (x1, . . . , xn) // solution found
else return “probably not satisfiable”

Figure 6.1: PPZ algorithm solving k-SAT

PPZ main assigns variables one at a time in the order determined by σ, applying the
unit clause rule iff the current variable xσ(i) is in a unit clause, (in which case we say xσ(i) is
forced) and simplifying F as it goes. Since |F | ≤ poly(n), the algorithm takes time poly(n). By
the end, F is either ∅, in the case that the assignment found is a solution, otherwise F = {∅}.
So it has 0 soundness error. Later we will show that the completeness error is ≤ 1 − 2−ckn for
some ck < 1, and so we can reduce the completeness error to e−1 by calling PPZ main 2ckn times
and taking the maximum answer. This iterated use of PPZ main we will refer to as the PPZ
algorithm.

The PPZ algorithm differs from the original DPLL method in that (1) it is randomized
and iterative rather than backtracking, (2) does not bother to exploit a unit clause unless its
variable is next in the permutation σ, and (3) it does not exploit pure literals at all. Of course,
adding features (2), (3) would not hurt, but we don’t know how to prove that they strictly
help. Also, the randomness can be reduced, as we will show in §6.2.1. If there is an isolated

46

solution a, so that ∀i ∈ V a ⊕ i is not a solution, then the randomness can be completely
removed while increasing the upper bound on the running time by only a polynomial factor.
Also, the randomness can be completely removed if we are willing to settle for a running time of
poly(n)2(1−α

k)n where α = 1
2 −

1
Θ(
√
k)

.
We now explain the intuition behind the PPZ algorithm. Let F ∈ k-CNF, V =

var(F), S = sol(F). For a, b ∈ 2V , the Hamming distance between a, b is

d(a, b) = |{i ∈ V | a(i) 6= b(i)}|,

and the |V |-dimensional Boolean cube is the graph

G = (2V , {{a, b} | d(a, b) = 1}).

Let GS be the subgraph of G induced by S and deg(a) be the degree of a in GS . The degree of
isolation I(a) = n − deg(a) of a node a ∈ S is the number of non-solution neighbors of a in G,
i.e. there are I(a) variables i, each called a direction of isolation, such that a ⊕ i /∈ S. Since a
is a solution of F but a ⊕ i is not, there must be a clause C ∈ F whose only true literal at a
involves variable i. Such a clause is said to be critical at a, and i is its critical variable. So at a,
there are I(a) critical variables i, each with its own critical clause C. Critical clauses will help
to expose a to the algorithm, the more the merrier.

Let fσ(a) be the number of forced variables on a run of PPZ main that uses the per-
mutation σ and where the random assignments are made in agreement with a. The probability
that PPZ main finds a ∈ S is then

Eσ(2−(n−fσ(a)))

≥2−n+Eσ(fσ(a)) from Jensen’s inequality.
(6.1)

To relate Eσ(fσ(a)) to I(a), suppose i is the critical variable of a critical clause C at a. Given that
the random assignments made by the algorithm agree with a, if i comes last in the permutation
σ among var(C) then i will be forced. Since F ∈ k-CNF, the probability of this is ≥ 1

k , and so
by linearity of expectation, Eσ(fσ(a)) ≥ I(a)

k . So the probability that PPZ main finds a solution
is

psucc ≥
∑
a∈S

2−n+
I(a)

k = 2−(1− 1
k)n

∑
a∈S

2−
deg(a)

k . (6.2)

[PPZ99] argued that if S 6= ∅, then∑
a∈S

2−
deg(a)

k ≥
∑
a∈S

2− deg(a) ≥ 1. (6.3)

(The last inequality is not so obvious, but even the first inequality gives away more than necessary,
as we will see shortly.) This implies that psucc ≥ 2−(1− 1

k)n.
The isolation of a solution a helps to reveal a to the algorithm, but many solutions

can be arranged so as to be neighbors of each other, reducing their degrees of isolation. On the
other hand, the presence of many solutions reduces the chance of guessing the value of a variable
incorrectly. (6.3) helps to sort out these opposing forces, implying that they at least balance out
in our favor. [CIKP08] went further, showing that more solutions strictly help (the analysis, at
least).

Let’s pick up the analysis where [PPZ99] left off. From Jensen’s inequality,∑
a∈S

2−
deg(a)

k ≥ |S|2−
1

k|S|
P

a∈S deg(a). (6.4)

47

∑
a∈S deg(a) = |E(S, S)| is the number of directed edges in G from S to S. To develop some

intuition about how big E(S, S) might be, note that each of the n edges in G connected to a
node in S either goes into S or S̄. So

n|S| = |E(S, S)|+ |E(S, S̄)|. (6.5)

We would like to lower bound |E(S, S̄)| as a function of |S|. Informally speaking, |E(S, S̄)| is a
measure of the surface area of the volume S, and the configuration that minimizes surface area
for a given volume ought to be a ball.

Suppose that S = Bpn(0n) is the ball of radius pn ∈ N where p ∈ (0, 1
4) is a constant

and n is large. The boundary ∂S of S is those assignments with Hamming weight exactly pn.
An edge (a, b) ∈ E(S, S̄) iff a ∈ ∂S and b is (a but with some 0 bit flipped). So there are (1−p)n
edges in E(S, S̄) for each element of ∂S. So

|E(S, S̄)|
|S|

= (1− p)n |∂S|
|S|

.

∀i ∈ [0, pn], (
n
i−1

)(
n
i

) =
i

n− i+ 1
≤ p

1− p
.

So

|∂S|
|S|

=

(
n
pn

)∑pn
i=0

(
n
i

)
≥ 1∑pn

i=0

(
p

1−p
)i

≥ 1− p

1− p
=

1− 2p
1− p

.

So

|E(S, S̄)|
|S|

≥ (1− 2p)n.

From theorems 2.3, 2.2, and since p < 1
4 , we have lg |S| ≥ h(p)n− o(n) ≥ p lg 1

pn− o(n) ≥ 2pn,
for sufficiently large n. So

|E(S, S̄)|
|S|

≥ n− lg |S|.

From (6.5),

|E(S, S)|
|S|

≤ lg |S|. (6.6)

Substituting this back into (6.4) we get∑
a∈S

2−
deg(a)

k ≥ |S|1− 1
k .

Substituting this back into (6.2) gives psucc ≥
(
|S|
2n

)1− 1
k

.
Of course, everything strictly between (6.5) and (6.6) was not general, but just an

intuition builder. To be general, we use Harper’s edge isoperimetric inequality [Har67] which
says that (6.6) holds for any nonempty set S of nodes of G. (So we don’t need to assume that S
is a ball, nor that p is a constant < 1

4 , nor that n is large.) Summing up,

48

Theorem 6.1 ([CIKP08]). Given F ∈ k-SAT, S = sol(F), The probability that PPZ main finds
a solution is

psucc ≥
(|S|

2n
)1− 1

k

.

This is very satisfying because it so closely matches our intuition: the time it takes PPZ
to find the unique solution in a space of size a is ≤ a1− 1

k , but if there are s solutions, then the
run time is the same as if it were searching for the unique solution in a space of size a

s .

6.2.1 Derandomization of PPZ

We show 2 ways to derandomize PPZ. Both will make use of the fact that we only need
the permutation σ to be approximately k-wise independent, in the sense that the ordering it
induces on each subset of ≤ k variables is approximately uniformly random. The 1st way will
solve k-SAT with the promise that the input has a fully isolated solution and will give the same
performance as randomized PPZ, up to a factor of nO(k). The 2nd way will solve k-SAT in
general, but the exponential complexity will increase from 1− 1

k to 1− p
k where p = 1

2 −
1

Θ(
√
k)

.
We’ll give a presentation slightly different from that of [PPZ99]. Let F ∈ k-CNF, n =

| var(F)|. Suppose N ∈ N is a power of 2 and N ≥ n. From theorem 2.8, there is a probability
space S of size Nk on which we can define k-wise independent random variables X1, . . . , Xn, each
uniform over N . We would like to construct a k-wise independent permutation from the Xi. If
k ≥ 2, then the probability that

∃i, j ∈ [n], i 6= j Xi = Xj (6.7)

is ≤
(
n
2

)
1
N . So we can usually get a permutation σ from the Xi by defining σ(i) = |{j ∈ [n] |

Xj ≤ Xi}|, provided N �
(
n
2

)
. The problem is that conditioning on the event that (6.7) does

not occur may disturb the k-wise independence.
We get around this by relaxing the requirement that the ordering induced on each subset

of ≤ k variables be perfectly uniform. The Xi will determine an ordering that may have ties.
Break the ties arbitrarily, say, by having the variable with the smallest index come first, and call
this permutation σ. Then the probability that a particular variable in a set {xi1 , . . . , xik′} of size
k′ ≤ k comes last is

≥ 1
k′
Pr(Xi1 , . . . , Xik′ are distinct) ≥ 1

k

(
1− k2

N

)
. (6.8)

Let a ∈ sol(F) be j-isolated so that I(a) = j. By linearity of expectation, Eσ(fσ(a)) ≥ j
k (1 −

k2

N) def= j′. So there must exist a good permutation, one for which fσ(a) ≥ j′. If σ is good, then
we can find a as follows: for each string r of n− j′ bits, run PPZ main using σ and using r for
randomness when guessing how to set variables. We are effectively decoding a from r (hence the
title of [PPZ99]: “Satisfiability Coding Lemma”).

Letting N be the smallest power of 2 that is ≥ n2, this procedure will find all j-isolated
solutions of F by iterating over all (σ, r), of which there are ≤ (2n2)k2n−

j
k +1. Decoding each

(σ, r) takes time O(n|F |), so we have the following.

Theorem 6.2. Let F ∈ k-CNF, n = | var(F)|. The j-isolated solutions of F can be determinis-
tically enumerated in time O(|F |n2k+12n−

j
k).

In particular, if F has a fully isolated solution, it can be found deterministically in time
poly(n)2(1− 1

k)n. We can also use this idea to fully derandomize PPZ, but instead of saving 1
variable in k over the running time of brute force, we save only about 1 variable in 2k.

49

Theorem 6.3. k-SAT can be solved deterministically in time O(|F |n2k+12(1− p
k)n) where p =

1
2 −

1
Θ(
√
k)

.

Proof. Let F ∈ k-CNF, V = var(F), n = |V |, S = sol(F). For a constant p < 1
2 depending only

on k to be chosen later, let B = Bpn(c) be the ball of radius pn about an arbitrary center c ∈ 2V .
By theorem 2.3, |B| ≤ 2h(p)n. Either F has a solution in B, in which case we can find it by
exhaustively searching B, or it does not, in which case, let a be a solution closest to c. Then for
each variable i where a disagrees with c, we have a ⊕ i /∈ S. So I(a) > pn. By theorem 6.2, we
can find a deterministically in time O(|F |n2k+12(1− p

k)n).
To minimize the time taken by this combined algorithm, we choose p to be the unique

solution < 1
2 of h(p) = 1− p

k . Since h is increasing and 1− p
k is decreasing on [0, 1

2] we can upper
bound p by any p1 <

1
2 that satisfies h(p1) ≥ 1− p1

k and lower bound p by any p0 <
1
2 that satisfies

h(p0) ≤ 1− p0
k (see figure 2.1). By theorem 2.2, ∀q < 1

2 h(q) ∈ [1− 4(q − 1
2)2, 1− 2(q − 1

2)2]. So
if p1 satisfies 1− 4(p1 − 1

2)2 = 1− p1
k , then h(p1) ≥ 1− p1

k . p1 = 1
2 −

1√
8k+1+1

suffices. Similarly,
if p0 satisfies 1 − 2(p0 − 1

2)2 = 1 − p0
k , then h(p0) ≤ 1 − p0

k . p0 = 1
2 −

1√
4k+1+1

suffices. So
p ∈ [p0, p1].

As a potentially interesting application of theorem 6.2, consider the problem Conn-k-
SAT of deciding whether the solution space of a k-CNF is connected [GKMP09]. Suppose that
for some p depending only on k, the solution space of F ∈ k-CNF is connected iff the pn-isolated
solutions S of F are connected. (Just to make this seem more plausible, consider that the pn-
isolated solutions are in some sense the surface of the solution space, and the connectivity of
a set of subsets of Rn each homeomorphic to a ball and none containing another is equivalent
to the connectivity of their surfaces.) We could use theorem 6.2 to find S. If the number of
edges between nodes in S is small and they can be efficiently enumerated, then we could test
connectivity by using DFS. This would show that Conn-k-SAT has upper bounds of the same
form as k-SAT currently has, and so in some sense isn’t too much harder, despite the fact that
k-SAT is in NP while Conn-k-SAT is PSPACE-complete. (To be clear, this is just conjecture,
but worthy of some future investigation.)

6.3 PPSZ

[PPSZ05] improved upon the PPZ algorithm by performing a limited amount of resolu-
tion as a preprocessing step and then invoking PPZ. This improves the exponential complexity
from 1− 1

k to 1− µk

k−1 where µk =
∑∞
j=1

1
j(j+ 1

k−1)
, at least, for k ≥ 5 or (k ≥ 3 and the input is

promised to be uniquely satisfiable, i.e. has ≤ 1 solution). For k ∈ {3, 4} in the general case, the
expressions for the exponential complexities are more complex: approximately .5207 for k = 3,
and .5625 for k = 4.

To make it easier to compare these with other results, we make a few remarks about µk:
µk is an increasing function of k, µ3 = 4− 4 ln 2 > 1.226, µ4 ≈ 1.3354, limk→∞ µk = π2

6 > 1.644,
to approximate µk to within 1

l it is sufficient to add the first l terms of the sum since the tail∑∞
j=l+1

1
j(j+ 1

k−1)
≤

∑∞
j=l+1

1
j2 ≤

∫∞
l

1
x2 dx = 1

l .
We now describe the intuition behind PPSZ, although in far less detail than for PPZ.

Let F ∈ k-CNF, V = var(F), S = sol(F), and suppose that PPZ main(F) guesses each variable
in agreement with some a ∈ S. Each variable v ∈ V is forced iff there is some clause C ∈ F which
is critical for v at a and such that v occurs last in the permutation σ among var(C). The analysis
of [PPZ99] only assumed that there was a single critical clause for each direction of isolation of
a. [PPSZ05] observed that we can increase the number of critical clauses for v substantially if
we add the following assumptions: (1) F is closed under a certain limited form of resolution, and
(2) a is isolated in the sense that no other solution has small Hamming distance from a.

50

To be more precise, say clauses A,B are s-bounded resolvable iff |A|, |B|,
|resolve(A,B)| ≤ s. s-bounded resolution is the process of adding clauses to a formula until it is
closed under such resolution. Also, say a ∈ S is distance d isolated iff the Hamming ball Bd(a)
intersects S only at a. [PPSZ05] show that given F ∈ k-CNF, if we first perform s-bounded
resolution and let a be a distance d isolated solution, then the probability that each variable is
forced in PPZ main is p ≥ µk

k−1−o(1) (where o(1) represents a function of n) provided d = blogk sc
and s ≤ o(lg n). From (6.1), the probability that PPZ finds a is then ≥ 2−(1− µk

k−1+o(1))n. Since
s grows so slowly, the time required to perform s-bounded resolution is only 2o(n), and so the
exponential complexity of PPSZ is 1− µk

k−1 .
The key idea to proving this lower bound on the forcing probability is a structure called

a critical clause tree. The details of this structure are not so important for this discussion, but
to each variable v we associate a set of ≤ s variables, and provided that the ordering on these
≤ s variables is uniformly random, then the probability that v is forced is ≥ p.

6.3.1 Derandomization of PPSZ, unique solution case

We can derandomize PPSZ exactly as we did for PPZ by using exactly the same distribu-
tion to generate σ as we used when derandomizing PPZ, only now we need s-wise independence.
I.e. let N be a power of 2 with N ≥ n2 and use theorem 2.8 to generate a sequence of s-wise in-
dependent random variables X1, . . . , Xn each uniform over N . Let the order of the Xi determine
a permutation σ, breaking ties arbitrarily. The sample space of this distribution has size 2o(n)

and the forcing probability is no longer exactly p, but is ≥ p(1 − s2

N) = p − o(n−1) (using the
same reasoning as for (6.8)), which is good enough to give the same exponential complexity as
the randomized PPSZ. The only rub here is that we needed to assume that there was a distance
d isolated solution. Certainly this happens if F is uniquely satisfiable, so we have the following.

Theorem 6.4. dcUnique-k-SAT ≤ 1− µk

k−1 where µk =
∑∞
j=1

1
j(j+ 1

k−1)
.

[Rol05a] used a similar (albeit slightly more complex) idea to derandomize PPSZ for
the uniquely satisfiable case as well.

To upper bound the run time of PPSZ without the assumption that there is a distance d
isolated solution requires substantially more complex logic, which we only sketch here. A subcube
B ⊆ 2V of the Boolean cube is the set of all extensions to V of some partial assignment a ∈ 2DB

where DB ⊆ V (and clearly a will be unique). DB and NB = V − DB are called the defining
and nondefining variables of B. Let F ∈ k-CNF be the input formula, assumed to be closed
under s-bounded resolution, and let S = sol(F) 6= ∅. A simple induction on |V | shows that S
can be partitioned into a set of subcubes B of the Boolean cube such that each subcube B ∈ B
contains exactly 1 solution zB ∈ S. zB is distance |NB | isolated since it is the only solution in
B. [PPSZ05] show that by conditioning on the event that the variables of DB come “early” in
the permutation σ, then the probability that each of the variables in NB is forced is at least that
for the unique solution case.

Of course we must pay a price for assuming that the variables of DB come early, but
it turns out that this is more than made up for by the fact that the defining variables in some
sense cannot be guessed wrong. To be a little more formal, let y ∈u 2V and suppose that when
guessing variable i ∈ V , PPZ main uses yi for randomness. Then

Pr(PPZ main(F) ∈ S) =
∑
B∈B

Pr(PPZ main(F) = zB | y ∈ B)Pr(y ∈ B)

≥ min
B∈B

Pr(PPZ main(F) = zB | y ∈ B).
(6.9)

So it suffices to lower bound the probability of successfully finding a solution zB given that the
defining variables for B are set correctly.

51

To actually lower bound this expression requires a great deal of work and is beyond
our scope, but one can already see from the high level logic the problems with derandomizing
PPSZ for the general case. First, the analysis lower bounds the RHS of (6.9) by conditioning
on the defining variables, of which there could be Ω(n), “coming early”. If we replaced σ by a
distribution with only limited independence, then such a conditioning could disturb the limited
independence for the ordering of the remaining variables. But even if that could somehow be
overcome and we could significantly reduce the size of the sample space from which σ is drawn,
already more than (1− µk

k−1)n many random bits from y were used in what little of the analysis
we’ve shown here. Another way of seeing this is that the algorithm has no idea which are the
defining variables for the solution it’s heading towards (even though the analysis can make use
of this information), so it cannot preferentially use full randomness when a nondefining variable
comes up and use less otherwise.

At the moment, there is no known efficient derandomization of PPSZ for the general
case.

6.4 Local search

Schöning [Sch99] gave a radically different idea for solving k-SAT, but with performance
guarantees similar to that of PPZ. In fact, this algorithm easily generalizes to (k, d)-CSP-SAT.

On input F ∈ k-CNF, the algorithm begins by choosing an initial assignment a at
random. If this is a solution, we are done. Otherwise, there is a false clause C, we flip some
variable in C, and check again. This continues for 3n steps, where n = | var(F)| (see figure
6.2). This is similar to walking in the woods with a compass whose reliability is poor, but far
better than nothing. It is interesting to note that, as far as the analysis in [Sch99] is concerned,
continuing searching after O(n) steps becomes less profitable than simply restarting.

LocalSearch main(F ∈ k-CNF)
if ∅ ∈ F , return “not satisfiable”
V ← var(F)
n← |V |
choose a ∈u 2V

if F (a) = 1, return a
do 3n times

choose C ∈ {C ∈ F | C(a) = 0} arbitrarily
choose i ∈u var(C)
a← a⊕ i
if F (a) = 1, return a

return “probably not satisfiable”

Figure 6.2: Schöning’s local search algorithm

[Sch99] lower bounds the probability that LocalSearch main finds some solution when
F ∈ SAT by some psucc, and so we can boost this probability to ≥ e−1 by repeating p−1

succ

times, which is sometimes called local search with restarts - we will just call it LocalSearch. The
argument proceeds as follows. Let b ∈ sol(F) be arbitrary and at be the value of a at step t. Then
a0, . . . , a3n is a Markov chain, but one that carries too much irrelevant information. Letting dt
be the Hamming distance between at and b, we want to lower bound the probability psucc that
for some t ≤ 3n, dt = 0. The sequence d0, . . . , d3n is no longer necessarily a Markov chain, but
we notice that (1) d0 is binomial (n, 1

2) and (2) if dt > 0 and t < 3n, then Pr(dt+1 = dt−1) ≥ 1
k ,

so we can lower bound psucc in the following way.

52

Say x0, x1, . . . is a (d, p) random walk iff x0 = d and each xt = x0 +
∑t
i=1Xi where

X1, X2, . . . are independent and identically distributed random variables with Pr(Xi = −1) =
p, Pr(Xi = 1) = 1− p. Define

psucc,d,p = Pr(∃t ≤ 3n xt = 0)

where x0, x1, . . . is a (d, p) random walk. Then psucc ≥ Ed(psucc,d, 1k
) where d is a (n, 1

2) binomial
random variable.

We now lower bound psucc,d, 1k
. Notice that, trivially, we have psucc,d, 1k

≥ k−d; but
by using the reflection principle (a general technique also capable of proving Bertrand’s ballot
theorem) we have the following improvement.

Lemma 6.5. ∀k ≥ 3, d ≥ 0 psucc,d, 1k
≥ Ω(n−

3
2)(k − 1)−d.

Proof. The lemma holds if d = 0, so assume d > 0. Consider the digraph G = (Z2, {((t, j), (t +
1, j′)) | |j − j′| = 1}) of points on the integer lattice in the plane with edges from each (t, j) to
(t + 1, j ± 1). (t, j) represents the walk being in state j at time t. Each “down” (“up”) edge is
labeled with p = 1

k (or 1− p) and the weight of a path is the product of its edge labels. We want
the total weight of all paths of length ≤ 3n starting from (0, d) that touch the x-axis. Note that
a path starting at (0, d), containing i “up” edges, and ending on the x-axis at time t satisfies
t = 2i+ d.

N
def= (the number of paths from (0, d) to (2i+ d, 0) that touch the x-axis only at time

2i+ d) = (the number of paths from (0, d) to (2i+ d− 1, 1) that do not touch the x-axis) = (the
number of paths from (0, d) to (2i+d−1, 1)) − (the number of paths from (0, d) to (2i+d−1, 1)
that touch the x-axis). The paths from (0, d) to (2i + d − 1, 1) that touch the x-axis are in
bijective correspondence with the paths from (0,−d) to (2i+ d− 1, 1) via reflection of (the part
of the path from (0, d) to the first place it touches the x-axis) about the x-axis, as the following
picture shows.

53

So

N =(the number of paths from (0, d) to (2i+ d− 1, 1))
− (the number of paths from (0,−d) to (2i+ d− 1, 1)

=
(

2i+ d− 1
i

)
−

(
2i+ d− 1
i− 1

)
=

(i+ d

2i+ d
− i

2i+ d

)(
2i+ d

i

)
=

d

2i+ d

(
2i+ d

i

)
.

So

psucc,d, 1k
=

b 3n−d
2 c∑
i=0

d

2i+ d

(
2i+ d

i

)(1
k

)i+d(
1− 1

k

)i
.

We would like to lower bound the sum by the single term where i = αd, α = 1
k−2 . The

only problem is that this might not be an integer. To get around that, we will assume d is a
multiple of k − 2, which may require increasing d by as much as k − 3. Now psucc,d, 1k

is an
increasing function of d and increasing d by k − 3 only decreases psucc,d, 1k

by at most a factor of
k−(k−3) (which, in fact, is 1 if k = 3) since this is the probability that the first k − 3 steps all
move towards 0. Assuming that d is a multiple of k − 2 and using theorem 2.3 we have

psucc,d, 1k
≥ 1

3n

(
(1 + 2α)d

αd

)(1
k

)(1+α)d(
1− 1

k

)αd
≥ 1

6n
3
2
2(h(α

1+2α)(1+2α)−(1+α) lg k+α lg k−1
k)d.

The exponent divided by d is

h
(1
k

) k

k − 2
− k − 1
k − 2

lg k +
1

k − 2
lg
k − 1
k

=
(1
k

lg k +
k − 1
k

lg
k

k − 1

) k

k − 2
− k − 1
k − 2

lg k +
1

k − 2
lg
k − 1
k

=− lg(k − 1).

So psucc,d, 1k
≥ (6n

3
2)−1(k − 1)−d. If we drop the assumption that d is divisible by k − 2, then

psucc,d, 1k
≥ (6n

3
2 kk−3)−1(k − 1)−d.

Corollary 6.6. ∀k ≥ 3 psucc ≥ Ω(n−
3
2)(1

2 (1 + 1
k−1))n.

Proof. If d is binomial (n, 1
2), then

psucc ≥ Ed(psucc,d, 1k
)

≥ Ω(n−
3
2)

n∑
d=0

(
n

d

)
(k − 1)−d2−n

= Ω(n−
3
2)

(1
2

(
1 +

1
k − 1

))n
.

54

Theorem 6.7. The exponential complexity of LocalSearch is

cLocalSearch ≤ 1− 1
(ln 2)k

.

Proof. From corollary 6.6, we can achieve a completeness error of ≤ e−1 with a run time of ≤
poly(n)(2(1− 1

k))n. From theorem 2.1 and (2.1), we thus have that cLocalSearch ∈ [1− 1
(ln 2)(k−1) , 1−

1
(ln 2)k].

Note carefully that although the analysis fixed b ∈ sol(F) and used it to define a
random walk, psucc is not a lower bound on the probability that LocalSearch main(F) = b since
the random walk that the algorithm takes may stop before reaching state 0 if the algorithm hits
a solution other than b. Here is another way to see this. If a random variable X takes values in
some set S and ∀b ∈ S Pr(X = b) ≥ psucc, then

1 = Pr(X ∈ S) =
∑
b∈S

Pr(X = b) ≥ |S|psucc,

which implies that |S| ≤ 1
psucc

. The k-CNF formula

F = {{x1, . . . , xk−1, xi} | i ∈ [k, n]}

has (2k−1−1)2n−(k−1) +1 ≥ (1−2−(k−1))2n ≥ Ω(2n) solutions. So LocalSearch main(F) cannot
possibly find each b ∈ S with probability ≥ psucc ≥ ω(2−n).

6.4.1 Derandomization of LocalSearch

[DGH+02] derandomize LocalSearch by using covering codes and treating the local
search decisions as deterministic k-way branches. A (n, r, s) covering code (of length n, radius r,
size s) is a subset C of the Boolean cube A = 2var(F) (where | var(F)| = n) such that

⋃
c∈C Br(c) =

A and |C| ≤ s. A radius-r deterministic local search starting at a ∈ A is where we simulate
LocalSearch main on all possible sequences of r-steps starting at a – this finds all solutions in
Br(a) that are closest to a, and possibly others. Instead of initially choosing a ∈ A at random,
for each c ∈ C, we perform a radius-r deterministic local search starting at c. The analysis of
this algorithm is easy enough that we will repeat it here.

Theorem 6.8. Let p ∈ [0, 1
2], n ≥ 1, r = pn ∈ N.

1. There is no (n, r, s) covering code with s < 2(1−h(p))n.

2. There is a (n, r, s) covering code with s ≤ d2n 3
2 2(1−h(p))ne.

Proof. From theorem 2.3, the number of spheres of radius r = pn required to cover A = 2n is
≥ 2n

|Br(0n)| ≥ 2(1−h(p))n. The probabilistic method can be used to show that we can achieve this
bound up to a polynomial factor: let C be a set of s points of A chosen uniformly at random,
independently, and with replacement. Then

Pr(C is not a covering code of radius r)
=Pr(∃a ∈ A ∀c ∈ C a /∈ Br(c))

≤2n
(
1− |Br(0

n)|
2n

)s
from the union bound and independence

≤2n
(
1− 1

2
√
n

2−(1−h(p))n
)s

from theorem 2.3

≤
(2
e

)n
choosing s = d2n 3

2 2(1−h(p))ne,

and so there is a (n, r, s) covering code.

55

The lth power Cl of a (n, r, s) covering code C is the set of all concatenations of l
codewords of C, and Cl is a (ln, lr, sl) covering code. For an n′ ≤ o(n) to be determined later, the
time required to exhaustively search for a (n′, pn′, 2(1−h(p))n′+o(n′)) covering code C ′, guaranteed
to exist by theorem 6.8, is crudely upper bounded by 22n′+1

. By taking the d nn′ eth power of C ′

(and trimming the last n mod n′ bits from each codeword), we get a (n, pn+pn′, 2(1−h(p))n+o(n))
covering code C.

The time it takes to perform a radius-r deterministic local search on a k-CNF with
m clauses is ≤ poly(n,m)kr, where the polynomial does not depend on k, and so the whole
algorithm takes time

time to construct C + |C| · time for a local search

≤ 22n′+1
+ 2(1−h(p))n+o(n)+(pn+pn′) lg k.

If n′ ≤ 1
2 lg n, then the first term above is 2o(n), and so the run time is

≤ 2(1−h(p)+p lg k)n+o(n)+pn′ lg k

≤ 2(1−lg(1+ 1
k))n+o(n) setting p =

1
k + 1

.

(Note that the hidden constant in the little-Oh does not depend on k. We will use this fact in
chapter 10.) So the exponential complexity of the algorithm is at most

c = 1− lg
(
1 +

1
k

)
. (6.10)

The complete algorithm is in figure 6.3. Note that for all k, by theorem 2.1, c ≤ 1 − 1
k , which

makes deterministic local search superior to randomized PPZ; and for large k, c ≈ 1− 1
k , which

is inferior to PPSZ. Note also that the space used is ≤ poly(n).

6.5 Combine PPSZ with LocalSearch, k ∈ {3, 4}
For k ∈ {3, 4}, [IT04] showed that PPSZ and LocalSearch could be combined to yield

an algorithm superior to both. The key idea is that the analysis of PPSZ seems to get worse as
the number of solutions increases while for LocalSearch it seems to improve, so the 2 algorithms
cannot achieve their worst-case performances simultaneously.

Suppose F ∈ k-CNF, A = 2var(F), S = sol(F) 6= ∅, n = | var(F)|. PPSZ main(F) uses a
guess a ∈u A as a source of randomness, so that when it needs to guess the value of variable i, it
uses ai. LocalSearch main(F) starts at a random location a ∈ A. The Iwama-Tamaki algorithm
simply uses the same a for both algorithms.

To analyze this, recall from the discussion of PPSZ that A can be partitioned into a
set of subcubes B so that each B ∈ B contains exactly 1 solution zB ∈ S, and that DB denotes
the defining variables for B, i.e. the set of variables whose values are all in agreement within B.
Normalize this to ∆B = |DB |

n . (6.9) actually applies to any algorithm, not just PPSZ main, so

Pr(alg(F) ∈ S) ≥ min
B∈B

Pr(alg(F) ∈ S | a ∈ B), (6.11)

where alg ∈ {PPSZ main,LocalSearch main}. [PPSZ05], corollary 14, shows that

1
n

lgPr(PPSZ main(F) ∈ S | a ∈ B)

≥ −
(
1− µk

k − 1

)
+

(
1− µk

k − 1
− lg

k − 1
k − 2

)
∆B − o(1),

(6.12)

56

LocalSearch det(F ∈ k-CNF)
if ∅ ∈ F , return “not satisfiable”
(p, n, r)← (1

k+1 , | var(F)|, dpne) // wlog assume var(F) = n

(n′, r′, s′, l)← (b
1
2 lgn

k+1 c(k + 1), pn′, d2n′ 32 2(1−h(p))n′ e, d nn′ e)
for each C ′ ⊆ 2n

′

if is covering code(C ′, n′, r′, s′), break
let C ′ = {c1, . . . , cs} where s ≤ s′
for each (i1, . . . , il) ∈ [s]l

a← first n bits of ci1 · · · cil
b← LocalSearch det rec(F, r, a)
if b 6= ⊥, return b

return “not satisfiable”

is covering code(C, n, r, s)
if |C| > s, return 0
for each a ∈ 2n

d←∞
for each b ∈ C
d← min{d,dist(a, b)}

// d = dist(a,C)
if d > r, return 0

return 1

LocalSearch det rec(F, r, a)
if F (a) = 1, return a
if r = 0, return ⊥
let C ∈ {C ∈ F | C(a) = 0} be arbitrary // e.g. the first element
for each i ∈ var(C)
b← LocalSearch det rec(F, r − 1, a⊕ i)
if b 6= ⊥, return b

return ⊥

Figure 6.3: deterministic local search

where µk was defined in §6.3 (recall that µ3 = 4− 4 ln 2, µ4 ≈ 1.3354).
Notice that if a ∈ B, then d = dist(a, zB) is binomial ((1−∆B)n, 1

2). Lemma 6.5 shows
that Pr(LocalSearch main(F) ∈ S | dist(a, zB) = d) ≥ (k − 1)−d−o(n). Using this to generalize
corollary 6.6, we have that

1
n

lgPr(LocalSeach main(F) ∈ S | a ∈ B)

≥ −(1−∆B) lg
2(k − 1)

k
− o(1).

(6.13)

Ignoring the o(1) terms, the minimum over all ∆B ∈ [0, 1] of the maximum of (6.12),(6.13) occurs
where

∆B =
µk

k−1 + lg k−1
k

µk

k−1 + lg k−1
k + lg k−1

k−2

,

which is 3−2 ln 2−lg 3
4−2 ln 2−lg 3 ≈ .02794 for k = 3, and

µ4
3 +lg 3−2

µ4
3 +2 lg 3−3

≈ .04896 for k = 4. Inserting this into

57

(6.13), we have that the following.

Theorem 6.9. The exponential complexity of the Iwama-Tamaki algorithm is 1

cIwama-Tamaki ≤
(1 + lg k−1

k) lg k−1
k−2

µk

k−1 + lg k−1
k + lg k−1

k−2

,

which is 2−lg 3
4−lg 3−2 ln 2 ≈ .4034 for k = 3 and ≈ .5563 for k = 4.

We can now see why combining PPSZ and LocalSearch only gives improved running
times when k ∈ {3, 4}: when k ≥ 5, (6.12) becomes an increasing function of ∆B , and so the
PPSZ analysis achieves its worst case when ∆B = 0, i.e. there is no additional advantage to
running LocalSearch. This is the same reason why the PPSZ analysis gives the same exponential
complexity for the uniquely satisfiable case and the general case for k ≥ 5.

[IT04] claim that simply running PPSZ and LocalSearch independently and in parallel
does not seem to work, but that they must use the same value of a on each iteration. This,
however, is not true, as the following elementary analysis shows. Let A1, . . . , Al be events on
a sample space S, and A′1, . . . , A

′
l be independent events with the same probabilities: ∀i ∈

[l] Pr(A′i) = Pr(Ai). Then

Pr(A′1 ∪ · · · ∪A′l) ≥
1
l

(
lmax
i∈[l]

Pr(Ai)
)

≥ 1
l
P r(A1 ∪ · · · ∪Al) from the union bound.

(6.14)

For us, l = 2, Ai is the event that the ith algorithm finds a solution, the RHS of (6.14) is the
probability that some algorithm finds a solution given that they all use the same value of a, and
the LHS is the probability that some algorithm succeeds given that they use independent values
of a. So the probability that independent calls to PPSZ and LocalSearch succeed is at worst 1

2
that of dependent calls. In all of our analyses, we ignore poly(n)−1 factors, so independent calls,
and therefore running the algorithms in parallel, actually yields the same exponential complexity.

6.6 Minor improvements

6.6.1 Deterministic local search, k = 3

[DGH+02] improve the exponential complexity of deterministic local search to ≈ .5666
for the case that k = 3 by using unit clauses to slightly reduce the branching factor in Lo-
calSearch det rec. The logic is fairly complex, so we do not repeat it here, but it makes one
wonder whether deeper deductive logic could be used to get further speedups. E.g. consider
how a unit clause C = {l} is generally used: at some point we spot C and decide to set l = 1
because we know that regardless of how we proceed, at some point in the future, we know we
must set l = 1; so why branch now, especially when setting l = 1 greedily now may open up
opportunities to apply more branch-reducing logic? Could limited resolution increase this ability
to ’look ahead’ as it did with PPSZ?

6.6.2 Improved analysis for Iwama-Tamaki, k = 3

For k = 3, [Rol05b] showed that the bound (6.12) could be tweaked for small ∆B and so
reduce cIwama-Tamaki from .4034 to .4029, which is currently the best worst-case upper bound for

1[Rol05b] points out that these constant are slightly better than those of [IT04] because they use an older
version of (6.12).

58

Table 6.1: performance of k-SAT algorithms
algorithm type promise k exp complexity reference
PPZ ran none ≥ 3 1− 1

k [PPZ99]
s solutions (1− 1

k)(1− lg s
n) [CIKP08]

det none 1− (1
2 −

1
Θ(
√
k)

) 1
k [PPZ99]

fully isolated solution 1− 1
k

PPSZ ran none 3 .5207 [PPSZ05]
4 .5626
≥ 5 1− µk

k−1

det unique solution ≥ 3 1− µk

k−1 [Rol05a]
LocalSearch ran none ≥ 3 1− 1

(ln 2)k [Sch99]
det 1− lg(1 + 1

k) [DGH+02]
3 .5666
4 .6781

IT ran none 3 .4034 [IT04]
.4029 [Rol05b]

4 .5563 [IT04]

3-SAT. The analysis is long and technical, but it suggests 2 ways of gaining future improvement:
either tighten the analysis of 1 algorithm around the critical region for ∆B , or find some new
algorithm that outperforms those in your suite around the critical region and add it to the mix.

Of course the improvement in [Rol05b] is so small and comes at such a high cost of
intellectual labor that one could also argue that it may be more fruitful to seek alternative
algorithmic paradigms. An even more important reason to do this is to gain better insight into
the structure of the problem, which likely has more applications than merely better run times.
For example, although PPZ is not the fastest k-SAT algorithm, theorem 6.2 gives a powerful
structural property, which was used by [PPZ99] to give a tight lower bound on the size of depth
3 circuits computing parity.

6.7 Summary and open problems

In table 6.1 we summarize most of the performance results from the chapter. Any blank
entry inherits the value from the entry above.

Is it possible to use unit clauses to speed up randomized local search? It is possible
to use resolution, together with PPSZ-like logic, to speed up randomized or deterministic local
search? Does the exponential complexity of PPSZ for the k ∈ {3, 4} case actually increase with
increasing numbers of solutions, or is this just a weakness of the analysis? (This author has spent
considerable time wrangling with this question. It would have a big payoff since, if false, it would
yield the best 3-SAT algorithm by far.) Are there algorithms that outperform the Iwama-Tamaki
algorithm around the critical region for ∆B?

Notice that each algorithm discussed that works for all k has exponential complexity
converging to 1 as k → ∞, and in fact they all do so at the same asymptotic rate. We do not
know of any randomized algorithm that solves k-SAT in time O(2cn) for some c < 1 independent
of k. To formalize this a bit, define

sk = ck-SAT s∞ = lim
k→∞

sk. (6.15)

In analogy to the Exponential Time Hypothesis (ETH, namely s3 > 0), [IP01, Sch05] conjecture
the following, which we will call the Strong Exponential Time Hypothesis.

Conjecture 6.10 (SETH). s∞ = 1.

59

Acknowledgements

Theorem 6.1 is joint work with Russell Impagliazzo, Ramamohan Paturi, and Valentine
Kabanets and appeared in [CIKP08].

Chapter 7

Quantified k-SAT

In this chapter, we consider the complexity of evaluating a quantified k-CNF. For k = 2,
this is in linear time [APT79], but for k ≥ 3, this is PSPACE-complete. Note that the exponential
complexity of evaluating arbitrary quantified circuits, which is at least as hard, is ≤ 1: evaluation
of a circuit can be carried out in time polynomial in its size, and backtracking need explore ≤ 2n

paths, each of length ≤ n, where n is the number of variables of the input (and this only requires
polynomial space as well). So we will declare that an algorithm is nontrivial iff its exponential
complexity is < 1.

As with CNF-SAT, we will consider various syntactic restrictions of quantified k-SAT
to give ourselves some chance of finding nontrivial algorithms – merely bounding k does not seem
to be enough. Our main restriction is to bound the number of alternations of quantifier type.
Define Πi k-SAT (Σi k-SAT) as the problem of evaluating a quantified k-CNF Q1x1 · · ·Qixi φ
where φ ∈ k-CNF, each xj is a tuple of Boolean variables, and each Qj ∈ {∀,∃} is ∀ iff j is odd
(even). Πi k-SAT (Σi k-SAT), for k ≥ 3, is a canonical complete problem for the the ith level of
the polynomial hierarchy, i.e. for ΠP

i (ΣP
i).

We will show that s∞ ≤ cΠ2 3-SAT. Thus the Strong Exponential Time Hypothesis
(SETH, conjecture 6.10) would imply that for Π2 3-SAT, virtually no improvement over the 2n

exhaustive search algorithm is possible. Since Πi k-SAT is at least as hard when i ≥ 2, k ≥ 3, the
complexity of problems in the polynomial hierarchy would seem to top off rather early. Of course,
SETH is a very strong assumption, so this evidence should be considered weak. Conversely, a
single nontrivial algorithm for Π2 3-SAT would provide a k-SAT solver better than all current
algorithms for sufficiently large k.

We also show several syntactic restrictions of Π2 3-SAT that have nontrivial algorithms,
giving strong evidence that the hardest cases of Π2 3-SAT must have a mixture of clauses of 2
types: 1 universal literal and 2 existential literals, or only existential literals. Algorithmic design
may benefit by concentrating on the hard cases, in much the same way that much of the progress
in k-SAT solvers has been driven by focusing on the hard cases – when there are a linear number
of clauses, only one solution, expanding variable-dependence graph, etc.

Lastly, we relate the exponential complexities of Πi k-SAT (Σi k-SAT) for various i, k
when the clause density is not too high, although it may well be that these are all simply 1.

[Wil02] explored similar problems, namely exponential upper bounds for solving quanti-
fied constraint satisfaction problems (QCSP) with domain size d and cn constraints, each of width
≤ k. When d = 2 and the formula is in k-CNF, we’ll call this k-QCNF. [Wil02] solves QCSP for
d = 3 in time O(2.669cn), QCNF in O(2.536cn) time and space, 3-QCNF in time O(2.610cn), and
the special case of 3-QCNF with c = 1 in time O(2.482n). Each of these techniques outperforms
exhaustive search only when c is very small, certainly no more than 2. This is probably not
an accident: our results suggest that finding a substantially improved algorithm for moderate c,

60

61

even for low quantifier depth, is unlikely.
The results here are currently unpublished joint work with the author, Russell Impagli-

azzo, and Ramamohan Paturi.

7.1 Π2 3-SAT lower bound

Our proof uses a construction similar to [Che05], proposition 3.2, that allows us to
reduce the clause width of a k-CNF using a small number of new quantified variables. For this,
we need a kind of minimally unsatisfiable k-CNF with a large number of clauses. Our construction
differs from [Che05] primarily in its efficiency, since we are more concerned with exact complexity
rather than hardness for a class closed under polynomial time reductions, such as NP or coNP.

Say a pair (F,G) of formulas in CNF is minimally unsatisfiable iff ∀F ′ ⊆ F ((F ′ ∧G) /∈
SAT↔ F ′ = F). Say that φ ∈ CNF is combinable with (F,G) iff |φ| ≤ |F | and var(φ) ∩ var(F ∧
G) = ∅. In this case, letting f : φ→ F be an arbitrary injection, we define

combine(φ, F,G) = G ∪ {{l̄} ∪ f(C) | l ∈ C ∈ φ} ∪ (F − ran f),

i.e., starting with G, for each clause C of φ and literal l of C, we add a clause meaning “l implies
the clause of F corresponding to C”; and any clauses of F that are left over get added as-is,
without adjoining a literal.

Lemma 7.1. Let φ be combinable with minimally unsatisfiable (F,G) and φ′ = combine(φ, F,G).
Then ∀a ∈ 2var(φ) (φ(a) = 1↔ φ′|a /∈ SAT).

Proof. This is simply because in φ′, after assigning to var(φ), each clause f(C) survives iff some
literal l ∈ C is assigned true. Note that this does not depend on the specific injection f : φ→ F
chosen.

Lemma 7.2. ∀k ≥ 3, given m ∈ N, one can construct in time poly(m), F ∈ (k − 1)-CNF and
G ∈ k-CNF such that

• (F,G) is minimally unsatisfiable

• |F | ≥ m

• | var(F ∧G)| ≤ (k−1)2

k−2 dm
1

k−1 e.

Proof. Let l = dm
1

k−1 e. Consider a (k − 1) × l matrix A of Boolean variables xi,j and the
contradictory statements

1. “every row of A contains a 1”,

2. “every choice of one entry from each row contains a 0”.

We can express 1. by using ≤ k−1
k−2 l new variables yi,j and k-clauses G as follows. For each i,

partition xi,1, . . . , xi,l into b = d l
k−2e blocks of size ≤ k − 2. Add to G k-clauses expressing that

yi,1 is the OR of the variables of the first block; yi,j is the OR of yi,j−1 and the variables of the
jth block, for j ∈ [2, b− 1]; and that the OR of yi,b−1 and the variables of the bth block is true.
We can express 2. by using lk−1 ≥ m (k−1)-clauses F , which are disjunctions of the negations of
the variables in the matrix where each disjunction contains exactly one variable from each row.
F and G have the desired properties.

Corollary 7.3. ∀k, k′ ≥ 3, given φ ∈ k-CNF with n variables x and m clauses, one can construct
in time poly(n), φ′ ∈ k′-CNF with n variables x and (k′−1)2

k′−2 dm
1

k′−1 e variables y such that ∀a ∈
2var(φ) (φ(a) = 1↔ φ′|a /∈ SAT). In particular, φ ∈ SAT iff ψ = ∀x∃y φ′ is false.

62

Proof. Use lemma 7.2 to construct minimally unsatisfiable (F,G) with F ∈ (k′ − 1)-CNF, G ∈
k′-CNF, |F | = m, | var(F ∧ G)| ≤ (k′−1)2

k′−2 dm
1

k′−1 e, and var(φ) ∩ var(F ∧ G) = ∅. Let φ′ =
combine(φ, F,G) and apply lemma 7.1.

Theorem 7.4. s∞ ≤ cΠ2 3-SAT.

Proof. Fix k and ε > 0. We will show that sk ≤ cΠ2 3-SAT + 4ε. Let φ be a k-CNF with n
variables. Use theorem 5.15 to sparsify φ into at most 2εn many subformulas φi so that each has
≤ m = b εn4 c

2 clauses for all sufficiently large n. By corollary 7.3, with k′ = 3, for each φi, we
can construct in time poly(n) a ψi ∈ Π2 3-CNF with (1 + ε)n variables such that φi ∈ SAT iff
ψi is false. So φ ∈ SAT iff ψi is false for some i. Evaluating each ψi with some Π2 3-SAT solver
with exponential complexity ≤ cΠ2 3-SAT + ε, we see that

sk ≤ (cΠ2 3-SAT + ε)(1 + ε) + ε ≤ cΠ2 3-SAT + 4ε.

The previous result puts us in an interesting situation. [IP01] showed that ETH, namely
that s3 > 0, implies sk increases infinitely often as a function of k. Consider the following much
weaker analogue.

Conjecture 7.5. ETH⇒ cΠi k-SAT increases for some i or k ≥ 3.

Conjecture 7.5, together with theorem 7.4, would imply that s∞ < 1.

7.2 Algorithms for 2 special cases

In this section, we show that Quantified CNF-SAT has a poly time algorithm if each
clause has ≤ 1 existential literal and that Π2 3-SAT has a nontrivial algorithm if each clause has
≥ 1 universal literal. The purpose of such theorems is to find where the hard cases of Πi k-SAT
lie.

We begin with a simple classification theorem. Recall from chapter 4 that 2 clauses A,B
disagree on variable x iff one of A,B contains x and the other contains x̄. A,B are resolvable
iff they differ in exactly 1 variable x, and the resolvent is resolve(A,B) = A ∪ B − {x, x̄},
which is logically implied by A ∧ B. Given a CNF φ, the result of one round of resolution is
φ∪ {resolve(A,B) | A,B ∈ φ are resolvable}. Repeatedly applying resolution eventually yields a
CNF φ′ that is closed under resolution.

A resolution tree for φ is a binary tree where each leaf is labeled with a clause of φ, and
each interior node is labeled with the resolvent of the labels of its children. We can view such a
tree as a proof of the label of the root, and the resolution proof system is sound and complete
in the sense that a clause C is logically implied by φ iff some C ′ ⊆ C has a resolution tree proof
iff some C ′ ⊆ C is in the closure of φ under resolution. E.g. φ /∈ SAT iff ∅ is derivable via
resolution. We can extend this logic to Π2 CNFs.

Lemma 7.6. Let φ ∈ CNF. (¬∀x ∃y φ) iff some purely universal clause can be derived from φ
via resolution.

Proof. (⇐) Obvious.
(⇒) Suppose ∃x0 ∀y ¬φ. Let ψ = φ|(x = x0), so that ∀y ¬ψ. Then ∅ is derivable from

ψ via resolution. Add the universal literals back into the nodes of a resolution tree for ∅. By
induction, working from the leaves of the tree back to the root, one can see that each such literal
must be false at x0. So each pair that was resolvable in the original tree still is resolvable.

Theorem 7.7. Let ψ = ∀x1 ∃x2 · · · ∀xn φ be a quantified Boolean formula where each clause of
φ ∈ CNF has ≤ 1 existential literal. Then ψ can be evaluated in poly time.

63

Proof. A variable xi is quantified before xj iff i < j. Let C be a clause containing an existential
literal z and let x (y) be the set of universal literals in C that are quantified before (after) z
is quantified. If each literal in x is assigned false, then player ’exists’ must assign z to true,
otherwise player ’forall’ could assign each literal in y to false, making C false. If some literal in
x is assigned true, then C is eliminated. Either way, y can be removed from C without changing
the truth value of ψ. So wlog we assume the universal literals of each clause are quantified before
the existential literal, if there is one.

Perform 1 round of resolution on φ and call the result φ′. If there is some pure universal
clause in φ′, then ψ is false, so reject. Else we claim ψ is true. To see this, consider the following
strategy for player ’exists’: For each existential literal z that must be assigned this turn, if there
is some clause C ∈ φ containing z and only false universal literals, then assign z to 1. At the
end, assign leftover existential variables arbitrarily.

Obviously this satisfies φ provided it is a consistent assignment. If we try to assign
existential literals z, z̄ both to 1, then there must be a clause C ∈ φ containing only z and false
universal literals and a clause D ∈ φ containing only z̄ and false universal literals. But then C,D
are resolvable and φ′ would contain a pure universal clause. So the assignment is consistent.

Theorem 7.8. Let ψ = ∀x ∃y φ, where φ ∈ 3-CNF. If each clause of φ has ≥ 1 universal literal,
then ψ can be evaluated in time 2cn for some c < 1.

Proof. Let G = (V,E) where

V ={existential literals of φ}
E ={(a, b) labeled with c | (ā ∨ b ∨ c̄) is a clause of φ

and a, b are existential and c is universal}.
A consistent path in G is a path such that no 2 edge labels disagree, a consistent cycle is a
consistent path that is a cycle. Then ψ is false iff there is an existential variable z s.t. there is a
consistent cycle in G containing z, z̄.

Notice that a simple cycle containing z, z̄ cannot use more edge labels than 4εn, where
εn is the number of existential variables. So we can test whether there is a consistent cycle in G
containing z, z̄ in time poly(|ψ|) times ≤

(
2n
4εn

)
≤ 22h(2ε)n.

If ε is large, we can exhaustively search over all settings of the universal variables and
then use a 3-SAT algorithm on the rest. If our 3-SAT algorithm runs in time 2s3n, then the
combined algorithm runs in time at most min{2(1−ε)n+εs3n, 22h(2ε)n}, which is maximized at
about ε = .05 for s3 = .403 and yields a run time of at most 2.97n. If s3 is smaller, this value
would be even smaller. Also, there is already an algorithm for 3-SAT with s3 ≤ .403 [Rol05b].

It is unlikely that we can find a poly time algorithm for the variant where each clause
has at least one universal literal because of the following.

Theorem 7.9. The language of true Π2 3-CNF formulas where each clause has ≥ 1 universal
literal is coNP-complete.

Proof. The language is in coNP because a witness for falsehood is a consistent cycle containing
some existential variable z and its negation z̄. To show coNP-hardness, we reduce from 3-UNSAT.
Let φ ∈ 3-CNF have n variables x and m clauses. Assume wlog that m is even, otherwise, just
repeat some clause twice. Let n′ = m

2 , y = (y1, . . . , yn′) be new variables, and consider the
following contradictory 2-CNF:

F = {(yi → yi+1), (yi+1 → yi) | i ∈ [n′ − 1]} ∪ {(yn′ → ȳ1), (ȳ1 → yn′)}.

Then (F, ∅) is minimally unsatisfiable and |F | = m. By lemma 7.1, ψ = ∀x∃y combine(φ, F, ∅) is
a Π2 3-CNF with ≥ 1 universal variable in each clause and such that φ ∈ SAT iff ψ is false.

The coNP-hardness of theorem 7.9 also follows from [Che05], proposition 3.2, if one
observes that the number of universal variables in each constraint constructed there is 1.

64

7.3 Reduction to a canonical form

Theorems 7.4 and 7.8 together suggest that pure existential clauses (those with only
existentially quantified literals) and clauses with a mixture of universal and existential literals
are both essential to make an instance of Π2 3-SAT hard. Below we present further evidence of
this.

Let Π2 3-SAT′ be the special case of Π2 3-SAT where each clause is one of just two
types:

(1) one universal literal and two existential literals

(2) pure existential.

Theorem 7.10. cΠ2 3-SAT′ < 1⇒ cΠ2 3-SAT < 1.

Proof. Let A be an algorithm with run time ≤ O(2cn) with c < 1 for Π2 3-SAT′. Given a Π2

3-CNF, do this: while there is a clause other than types (1) or (2), i.e., a clause C with at
least one universal variable and at most one existential variable, reject if there is no existential
variable in C, but otherwise branch on the universal variables. One of the branches will force the
existential variable. Each formula at a leaf has only clauses of type (1) or (2), so apply algorithm
A. This solves the general case in time at most O(2dn) where d = max{c, lg 7

3 } < 1.

We may also assume, wlog, that in a Π2 k-CNF the number of existential variables is
o(n), since otherwise we could branch on every possible setting of the universal variables and
then invoke a k-SAT solver to obtain a nontrivial algorithm.

7.4 Parameter trade-off at higher levels of the hierarchy

In the next theorem, we show that when confronted with a Πi k-SAT instance, one may
be able to reduce k to k′ < k if one is willing to increase i by 1, and the input clause density
is not too high. If m is a function, let Σi k-SATm (Πi k-SATm) be Σi k-SAT (Πi k-SAT) but
where the number of clauses is promised to be at most m(n).

Theorem 7.11. Let k, k′ ≥ 3,m ∈ o(nk′−1). ∀ odd i ≥ 1,

cΣi k-SATm ≤ cΠi+1 k
′-SAT

cΠi k-SATm
≤ cΣi k

′-SAT

(which is uninteresting for i = 1 since Π1 k-SAT is in P). ∀ even i ≥ 2,

cΣi k-SATm ≤ cΠi k
′-SAT

cΠi k-SATm ≤ cΣi+1 k
′-SAT.

Proof. Consider a quantified formula Q1x1 · · ·Qixi φ where each Qj is a quantifier, each xj is
a tuple of Boolean variables, and φ is a k-CNF with n variables x and ≤ m(n) clauses. Using
corollary 7.3, ∀ε > 0 and for sufficiently large n, we can construct in poly time a k′-CNF φ′ such
that

• φ′ has (1 + ε)n vars: x and εn new ones y

• for each assignment a to x, φ(a) = 1 iff φ′|a /∈ SAT.

65

So

Q1x1 · · ·Qixi φ
⇔Q1x1 · · ·Qixi ¬∃y φ′

⇔¬Q′1x1 · · ·Q′i∃y φ′

where Q′j is existential iff Qj is universal.

It would be nice to eliminate the requirement that φ have at most o(nk
′−1) clauses.

One might try to do this by first sparsifying φ, but the possibly complex quantification of the
variables prevents this.

Acknowledgements

Material here is unpublished joint work with Russell Impagliazzo and Ramamohan
Paturi.

Chapter 8

Circuit-SAT upper bound

In this chapter, we consider the exponential complexity of the satisfiability problem
for circuits of limited size and depth, which, as in the last chapter, seems significantly harder
than k-SAT. ∀d, c > 0, we give a randomized algorithm solving the satisfiability problem for
depth d circuits with n variables and ≤ cn gates with exponential complexity 1 − α where
α ≥ 1/O(c2

d−2−1 lg3·2d−2−2 c), and the constant in the big-Oh depends only on d. The algorithm
can be adjusted for use with Grover’s algorithm to achieve an exponential complexity of 1−α

2 on
a quantum computer.

For d = 2, our algorithm becomes deterministic and matches the current best bound
([CIP06] and here in §10.2), since our algorithm and analysis are generalizations of the ones there.
However, a randomization procedure similar to that used in theorem 5.16 also yields the best
quantum algorithm for this case, with exponential complexity 1−1/O(lg c)

2 . For d = 3, this gives
α ≥ 1/O(c lg4 c), which, as far as the author knows, is the first nontrivial algorithm shown for
this problem, or any other AC0 type problem with d > 2. (There is some work that improves the
performance of circuit-SAT algorithms in terms of the circuit size parameter, but these algorithms
are no better than exhaustive search once the circuit size gets larger than around 4n or so.)

The results here are joint work with the author, Russell Impagliazzo, and Ramamohan
Paturi, to appear in IWPEC 2009.

8.1 Motivation

There are a few motivations to consider linear-size, constant depth circuits. One is
the question of ideal block cipher design. Block ciphers are carefully constructed to maximize
efficiency for a given level of security. Particularly, since we want ciphers to be usable by low-
power devices, and to be implemented at the network level, it is often very important to have
efficient hardware implementations that make maximum use of parallelism. A typical cipher
computes for a small number of “rounds”, where in each round, very simple operations are
performed (e.g., substitutions from a look-up table called an S box, permutations of the bit
positions, or bit-wise ⊕ operations). These operations are almost always AC0 type or even
simpler. It is also considered vital to have key sizes that are as small as possible, and an
algorithm that breaks the cryptosystem in significantly less time than exhaustive search over
keys is considered worrisome. So this raises the question: Can we have an ideal block cipher
family (one per key size), i.e. so that the number of rounds remains constant, each round
being implementable in constant depth with a linear number of gates, and security is almost
that of exhaustive search over keys? The results here rule out such ideal block ciphers, and so
give a partial explanation for why the number of rounds and/or key size needs to increase in

66

67

new generations of block ciphers. (Block ciphers require average-case security, not worst-case,
but worst-case algorithms obviously also rule out average-case security. Our values of α are
vanishingly small for the sizes and depths of real cryptosystems, so our results cannot be used
for cryptanalysis of existing block ciphers.)

Another motivation is that linear-size, constant depth circuits are perhaps the most
general class of circuits for which we can expect to show nontrivial upper bounds. Since one
can embed k-CNFs for any k into circuits of any super-linear size (in particular, super-constant
density CNF; see[CIP06], also to be discussed later) nontrivial upper bounds for the satisfiability
problem for nonlinear-size circuits would imply s∞ < 1, contradicting SETH.

Yet another motivation is that improved algorithms for SAT for a circuit model C may
reveal structural properties of the solution space of circuits in C. These structural properties may
in turn be helpful in proving stronger lower bounds on the size of circuits which are disjunctions
of circuits in C. In fact, [PSZ00, PPZ99, PPSZ05, IPZ01] exploit this connection to provide
the best known lower bounds, of the form 2∆(k)n/k where ∆(k) > 1, for depth-3, unbounded
fan-in circuits with bottom fan-in ≤ k. This connection between the hardness of the satisfiability
problem for a circuit model and lower bounds of a related circuit model is not surprising since,
as a more general circuit can compute more complicated functions, it may be more difficult to
invert, i.e. check the satisfiability of, these functions.

8.2 The algorithm

We only describe a version of the algorithm that takes poly time but has exponentially
small success probability. To convert this into a backtracking algorithm, simply try both branches
deterministically.

The analysis for the backtracking version of the algorithm is somewhat more compli-
cated, mostly due to a complex interaction between passed parameters and actual guarantees on
the input. Also, the subroutine find restriction would still use randomness, so the extra effort
would not even compensate us by yielding a fully deterministic algorithm, although the author
strongly suspects that this problem could be overcome. Nonetheless, for completeness, we in-
clude the backtracking version (without analysis, which would be essentially the same, just more
verbose) at the end of the chapter in figure 8.2.

8.2.1 Definitions

The inputs (outputs) of a dag are those nodes with indegree 0 (outdegree 0). A circuit F
is a dag where each input is labeled with a literal, each non-input (called a gate) is labeled AND
or OR, and there is exactly 1 output. A subgate of size k of a gate g is a gate h (not necessarily
in F) with the same label as g and with k of g’s inputs. The depth d of F is the number of edges
in a longest path in F . The ith level of F is the set of gates a distance of i from the output, e.g.
the output is at level 0 and the bottom gates are at level d− 1.

8.2.2 High level description

Let F be a circuit of depth d, var(F) ⊆ V where |V | = n, and the size of F in gates is
|F | ≤ cn. We use V to keep track of a particular superset of the remaining variables var(F). In
particular, each time we assign a group of k variables, we will remove them from V . Subsequently
simplifying the circuit may result in the removal of other variables from F so that var(F) ⊆ V
may become a proper containment. Because of these simplifying steps, |V | is a measure of the
algorithm’s progress that will be easier to keep track of than | var(F)|.

To test the satisfiability of F , we first reduce the fan-in of each bottom gate to some k
by repeatedly selecting a k-subset h of the edges coming into any bottom gate g with fan-in > k

68

and setting h to either true or false. One of these settings will eliminate k variables from V and
the other will eliminate a gate. The one that eliminates k variables we choose with probability
q and the other with probability 1− q.

We continue guessing until either we’ve halved the original number of variables, in which
case we simply guess an assignment to the remaining variables, or each bottom gate has fan-in
≤ k, in which case we choose a random restriction to all but pn variables of V for some p. This
may leave some bottom level gates with > 1 free variable. We clean up these gates by randomly
setting all the variables in them. By choosing k, p appropriately, with probability ≥ 1

2 there will
still be ≥ 1

2pn free variables in V , but the bottom level gates will each have ≤ 1 free variable. So
we can collapse the circuit to depth d− 1 and recurse.

This procedure takes polynomial time and has exponentially small probability s of
finding a satisfying assignment given that there is one. By iterating s−1 times, we increase the
probability of success to a constant.

8.2.3 Detailed description

We describe our algorithm in several subroutines:

• Ad,c(F, V) seeks a solution of F when F has depth d, var(F) ⊆ V , |V | = n, and |F | ≤ cn.
Although initially |F |

n ≤ c, the algorithm may set variables, increasing the ratio. If it ever
exceeds 2c, Ad,c will simply guess an assignment to the remaining variables since this means
at least half of the variables must have been set.

• Ad,c,k(F, V) seeks a solution of F when F has depth d, var(F) ⊆ V, |V | = n, |F | ≤ cn, and
F has bottom fan-in ≤ k.

• find restriction(F, V, p) finds, with probability ≥ 1
2 , a set of variables W ⊆ V whose com-

plement has size in the interval [12pn, pn] and such that if the variables of W are assigned,
then each bottom level gate has ≤ 1 free variable.

• PPZ main is 1 iteration of the k-SAT solver (which is the same as a depth 2 circuit solver)
from figure 6.1 – i.e., PPZ main takes poly time and has success probability ≥ 2−(1− 1

k)n.
Note that this algorithm solves depth 1 circuits in poly time and with success probability
1.

Our algorithm description is not the most succinct, compromises were made to simplify the
proof. For example, it is easy to construct an equivalent algorithm containing only 1 subroutine
by eliminating tail recursion, but the analysis would be obtuse. Below, the choices of k, p, q, c′

are unspecified, and are left for the analysis section.
If h is an AND of literals, then F |(h = 1) sets those literals to true and simplifies the

circuit by removing true children of AND gates, false children of OR gates, replacing empty
AND gates by true, replacing empty OR gates by false; unless h contains contradictory literals,
in which case F |(h = 1) is simply false. If h is an OR of literals, F |(h = 1) removes any gate
of which h is a subgate and then performs a similar simplification. Also if h is an AND (OR)
of literals, then F |(h = 0) can be treated as F |(h′ = 1) where h′ is the OR (AND) of the
negations of those literals. The purpose of all these definitions is so that below, in Ad,c, the line
F ← F |(h = b XOR b′) sets h in the way that eliminates k variables with probability q and the
other way with probability 1− q. See figure 8.1.

8.3 Run time analysis

Suppose Ad,c, Ad,c,k succeed with probability ≥ 2−(1−ad,c)n, 2−(1−ad,c,k)n, respectively,
given that find restriction succeeds on each call to it – we will eliminate this assumption later.
We assume c ≥ 2 and ∀d ≥ 2, k ≥ 4 ad,c, ad,c,k ≤ 1

4 .

69

Ad,c(F, V) // F has depth d, var(F) ⊆ V, |V | = n, |F | ≤ cn
choose k, q // as some function of d, c
while ∃ bottom gate g in F of fan-in > k

let h be a subgate of g of size k

b←

{
1 with probability 1− q
0 with probability q

b′ ←

{
1 if h is an AND gate
0 if h is an OR gate

F ← F |(h = b XOR b′)
if b = 0, V ← V − var(h)
if |F | > 2c|V | // guess assignment

choose a ∈u 2var(F)

if F (a) = 1, return a
return “probably not satisfiable”

return Ad,2c,k(F, V)

Ad,c,k(F, V) // F also has bottom fan-in ≤ k
if d ≤ 2, return PPZ main(F)
choose p, c′ // as functions of d, c, k
W ← find restriction(F, V, p)
choose a ∈u 2W

// the bottom level gates of F |a are trivial
F ′ ← F |a but collapsing the bottom level
return Ad−1,c′(F ′, V −W)

find restriction(F, V, p) // |V | = n
B ← {bottom gates of F}
U ← random subset of V of size (1− p)n
G← {g ∈ B | |var(g)− U | > 1}
U ′ ← var(G)
if |U ′| ≤ 1

2pn, return U ∪ U ′
else die // algorithm fails

Figure 8.1: linear size, constant depth circuit solver

Lemma 8.1. ∀d, c ≥ 2 if k ≥ 4 lg 4c
ad,2c,k

, then ad,c ≥ 1
2ad,2c,k.

Proof. Each iteration of the while loop of Ad,c(F, V) eliminates (1) a gate or (2) k variables. (1)
occurs ≤ cn times and (2) occurs r ≤ n

k times. Let a be a solution to F . Exactly one sequence of
random choices, say with r choices of type (2), can lead Ad,c(F, V) to find a. So the probability
that Ad,c(F, V) finds a solution given that each call to find restriction succeeds, is

≥ qr(1− q)cn min{2−(1−ad,2c,k)(n−kr), 2−
n
2 }.

(Note carefully that we are not asserting that with at least this probability a is found. This is
because PPZ main may return another solution.)

To lower bound qr(1− q)cn2−(1−ad,2c,k)(n−kr), take the logarithm, divide by n, and set

70

r′ = r
n ∈ [0, 1

k] to get

r′ lg q + c lg(1− q)− (1− ad,2c,k) + (1− ad,2c,k)kr′

=− (1− ad,2c,k) + c lg(1− q) + r′(lg q + (1− ad,2c,k)k)
≥− (1− ad,2c,k)− 2cq + r′(lg q + (1− ad,2c,k)k) by theorem 2.1 with n = 4

≥− (1− ad,2c,k)− 2cq + r′
(

lg q +
1
2
k
)

since ad,2c,k ≤
1
2
,

which is ≥ −(1− 1
2ad,2c,k) if we set q = ad,2c,k

4c , k ≥ −2 lg q.
To lower bound qr(1− q)cn2−n

2 , note that if we choose k ≥ −4 lg q, then

r′ lg q + c lg(1− q)− 1
2

≥1
k

lg q − 2cq − 1
2

≥− 1
4
− 1

2
ad,2c,k −

1
2

≥−
(
1− 1

2
ad,2c,k

)
since ad,2c,k ≤

1
4
.

Lemma 8.2. If |V | = n, |F | ≤ cn, F has bottom fan-in ≤ k, and we choose p = 1
2ck3 , then the

probability that find restriction(F, V, p) dies is ≤ 1
2 .

Proof. Let g ∈ B and X = |var(g)− U |. g has a fan-in k′ ≤ k and so X is hypergeometric with
parameters n, k′, pn. We claim that Pr(g ∈ G) = Pr(X ≥ 2) ≤

(
k′

2

)
p2. To see this, note that the

sample points where X ≥ 2 can be partitioned according to the positions among the k′ variables
of g of the first 2 free variables (i.e., not in U), and the probability of any of these

(
k′

2

)
events is

≤ p2. So

E(|U ′|) ≤ E(|G|)k ≤
(
k

2

)
p2|B|k ≤ 1

2
k3p2cn ≤ 1

4
pn.

By Markov’s inequality,

Pr
(
|U ′| > 1

2
pn

)
≤ E(|U ′|)

1
2pn

≤ 1
2
.

So the probability that find restriction(F, V, p) dies is ≤ 1
2 .

Lemma 8.3. If we set p = 1
2ck3 , c

′ = 4c2k3, then ad,c,k ≥ 1
4ck3 ad−1,4c2k3 .

Proof. Ad,c,k(F, V) leaves f ∈ [12pn, pn] variables of V free and sets the rest. So |F ′|
|V−W | ≤

cn
1
2pn

=

4c2k3 = c′. (The proof of this lemma would have been confounded if we had used var(F) to keep
track of variables instead of V .) The probability that Ad,c,k(F, V) finds a solution, assuming
each call to find restriction succeeds, is then

2−(n−f+(1−ad−1,c′)f) = 2−(n−ad−1,c′f) ≥ 2−(1− 1
2pad−1,c′)n,

and the lemma follows.

Lemma 8.4. ∀d, c ≥ 2,

ad,c ≥ 1/O(c2
d−2−1 lg3·2d−2−2 c),

where the constant in the big-Oh depends only on d.

71

Proof. We use induction to show that for each d, k can be chosen to be O(lg c) so as to satisfy the
hypothesis of lemma 8.1 and ad,c ≥ 1/O(cf(d) lgg(d) c) for some functions f, g where the constants
in the big-Ohs depend only on d.

a2,c,k = 1
k . From lemma 8.1, we need to choose k such that k ≥ O(lg c

a2,2c,k
) = O(lg c+

lg k). So k = O(lg c) suffices, and we conclude that a2,c ≥ 1/O(lg c). So f(2) = 0, g(2) = 1. This
completes the base case.

From the inductive hypothesis and lemma 8.3,

ad,c,k ≥ 1/O(ck3(c2k3)f(d−1) lgg(d−1)(c2k3))

= 1/O(c2f(d−1)+1k3f(d−1)+3 lgg(d−1)(ck)).

To use lemma 8.1, we need to choose k such that

k ≥ O(lg(c2f(d−1)+2k3f(d−1)+3 lgg(d−1)(ck)))
= O(lg c+ lg k).

So k = O(lg c) suffices, and we conclude that

ad,c ≥ 1/O(c2f(d−1)+1 lg3f(d−1)+3+g(d−1) c).

So we have the recurrence

f(d) = 2f(d− 1) + 1 f(2) = 0
g(d) = g(d− 1) + 3f(d− 1) + 3 g(2) = 1

which has solution f(d) = 2d−2 − 1, g(d) = 3 · 2d−2 − 2.

Theorem 8.5. ∀d, c ≥ 2, the probability that Ad,c(F, V) finds some solution is ≥ 2−(1−α)n where

α ≥ 1/O(c2
d−2−1 lg3·2d−2−2 c),

where the constant in the big-Oh depends only on d.

Proof. This is a corollary from the previous lemma together with the following: find restriction
is called ≤ d times, each with success probability ≥ 1

2 , so the probability that in every call it
succeeds is ≥ 2−d, a penalty that can be absorbed into the big-Oh in the theorem statement.

Again, we are not asserting that every solution is found with this probability, just that
some is, and this asymmetric property is inherited from the PPZ algorithm.

8.4 Open problems

Can find restriction be derandomized without too much performance penalty? Can we
find a nontrivial algorithm for the case where d grows very slowly with n?

Acknowledgements

Material here is joint work with Russell Impagliazzo and Ramamohan Paturi and will
appear in [CPI09].

72

Ad,c(F, V)
if |F | ≥ 2c|V | // solve by brute force

for each a ∈ 2var(F)

if F (a), return 1
return 0

choose k // as some function of d, c
if ∃ bottom gate g in F of fan-in > k // branch

let h be a subgate of g of size k

(V0, V1)←

{
(V, V − var(h)) if h is an AND gate
(V − var(h), V) if h is an OR gate

if Ad,c(F |(h = 1), V1), return 1
if Ad,c(F |(h = 0), V0), return 1
return 0

return Ad,2c,k(F, V)

Ad,c,k(F, V)
if d ≤ 2, return PPZ(F)
choose p, c′ // as functions of d, c, k
W ← find restriction(F, V, p) // same subroutine as in figure 8.1
for each a ∈ 2W

// the bottom level gates of F |a are trivial
F ′ ← F |a but collapsing the bottom level
if Ad−1,c′(F ′, V −W), return 1

return 0

Figure 8.2: linear size, constant depth circuit solver, backtracking version

Chapter 9

Unique satisfiability

We saw that the algorithms PPZ and PPSZ could exploit a lack of solutions: PPZ found
a solution with higher probability when it had many directions of isolation, and PPSZ found a
solution with higher probability when it was very far from any other solutions. This makes it
seem like the fewer solutions, the more exposed they are and the faster we can find them. But
contradictorily, LocalSearch seemed to benefit from more solutions, and we showed in theorem
6.1 that PPZ actually does benefit from more solutions. All of this leaves us in a lurch: do
more solutions help or not? It is hard to believe that the answer could possibly be ’no’, that all
algorithms will, for some strange configuration of solutions, get stuck between equally attractive
ones, and yet that there are so few solutions that the algorithm cannot be sped up by random
guessing.

We suspect that the hardest case for k-SAT is when an algorithm is presented with a
needle in a haystack, i.e. there is ≤ 1 solution and therefore that the solution space has essentially
no structure at all.

To prove such a statement, the most obvious method of attack is to efficiently reduce
from the general case to the unique solution case by restricting the solution space. As we do not
have deep insight into the structure of the problem, we will form such restrictions blindly. The
next section explains the first powerful such technique, the Valiant-Vazirani reduction. In §9.2,
we extend this idea to get stronger results for k-SAT.

9.1 Valiant-Vazirani reduction

B-Formula-SAT (Circuit-SAT) is the problem of deciding whether a Boolean formula
(circuit) constructed over the basis B, not required to be in CNF, has a satisfying assignment. If
B is not specified, it is assumed to be {∧,∨,¬}. Valiant and Vazirani in [VV86] gave a randomized
reduction from Formula-SAT to Unique-Formula-SAT, the promise version, restricted to inputs
that have ≤ 1 solution. We make this more formal below in corollaries 9.4, 9.5.

The main tool we will need is the following notion, introduced by [CW77]. A family of
hash functions H ⊆ BA is 2-universal iff ∀x, y ∈ A, x 6= y

Prh∈uH(h(x) = h(y)) ≤ 1
|B|

.

Although the definition allows it, it is not possible to make this worst-case collision probability
too much smaller than 1

|B| when |A| � |B|.

73

74

Lemma 9.1. Let H ⊆ BA be a family of hash functions. Then

max
x6=y

Prh∈uH(h(x) = h(y)) ≥ 1
|B|
− 1
|A|

.

Proof. Let h ∈ H and xi = |{x ∈ A | h(x) = i}|. Then
∑
i∈B xi = |A| and

∑
i∈B

(
xi

2

)
/
(|A|

2

)
is

the probability of a collision between random distinct x, y. The method of Lagrange multipliers
can be used to show that this is minimized (over RB) when each xi = |A|

|B| . So if h ∈u H, then

max
x6=y

Prh(h(x) = h(y)) ≥ Ex6=yPrh(h(x) = h(y))

= EhPrx6=y(h(x) = h(y))

≥
|B|

(|A|
|B|
2

)(|A|
2

) ≥ 1
|B|
− 1
|A|

.

H is strongly 2-universal iff ∀x1, x2 ∈ A, x1 ≤ x2 and y1, y2 ∈ B,

Prh∈uH(h(x1) = y1 ∧ h(x2) = y2) =
1
|B|2

.

Of course, H is strongly 2-universal implies H is 2-universal, but not conversely.

Theorem 9.2 (Valiant-Vazirani). For each n,m ∈ N, let Hn,m be a 2-universal family of hash
functions mapping 2n → 2m. By selecting m ∈u [2, n + 1], h ∈u Hn,m, b ∈u 2m, we have that
∀∅ 6= S ⊆ 2n,

Prh,b(|{x ∈ S | h(x) = b}| = 1) ≥ 1
O(n)

.

Proof. We will first guess the size of S to within a factor of 2, which can be done with probability
about 1

n , and then reduce the size of S down to just 1 with probability ≥ Ω(1) by hashing down
to m ≈ lg |S| bits. Details follow.

Since we choose m ∈u [2, n+ 1], with probability ≥ 1
n ,

1
4
≤ |S|2−m ≤ 1

2
. (9.1)

From now on in this proof, all probabilities and expectations will be implicitly conditioned on
(9.1) occurring.

Let B = {b′ ∈ 2m | ∃!x ∈ S h(x) = b′}. Then

E(|B|) =
∑
x∈S

Pr(∀y ∈ S − {x} h(x) 6= h(y)) by linearity of expectation

=
∑
x∈S

(
1− Pr(∃y ∈ S − {x} h(x) = h(y))

)
≥ |S|(1− |S|2−m) by the union bound and 2-universality.

So

Pr(b ∈ B) = EB(Prb(b ∈ B))

= 2−mE(|B|)
≥ |S|2−m(1− |S|2−m).

75

Letting δ = |S|2−m, we want to maximize δ(1− δ) subject to δ > 0. This happens when δ = 1
2 .

We may not be able to choose δ to be exactly 1
2 , but by (9.1),

Pr(b ∈ B) = δ(1− δ) ≥ 1
4

(
1− 1

4

)
=

3
16
.

If we have a family Hn,m mapping 2n → 2m for each n,m ∈ N, say that the entire
family is computationally efficient iff there are algorithms S,E such that on input n,m, S can
sample h ∈u Hn,m in time poly(n,m) and on input h, x, E can evaluate h(x) in time poly(n,m).

To apply theorem 9.2 we need to construct a computationally efficient 2-universal hash
family Hn,m. Interpreting Ax as a matrix product over Z2,

Hn,m = {(x 7→ Ax) | A ∈ 2m×n} (9.2)

is computationally efficient and 2-universal since ∀x, y ∈ 2n, x 6= y,

Pr(Ax = Ay) = Pr(A(x− y) = 0) = 2−m.

Theorem 9.2 selects m ∈u [2, n + 1], so this choice of hash family requires Ω(n2) random bits,
much more than necessary, as we show below. In exchange, it is conceptually simple.

Another reasonable choice is the convolution (over Z2) with a random bit vector of
length n+m− 1. That is, if x = (x0, . . . , xn−1), a = (a0, . . . , an+m−2) and
a⊗ x = (

∑n−1
j=0 ai+n−1−jxj)m−1

i=0 , then we claim the following.

Theorem 9.3. The following hash family is computationally efficient and 2-universal.

Hn,m = {(x 7→ a⊗ x) | a ∈ 2n+m−1} (9.3)

Proof. To see 2-universality, note that convolution is linear, so it is sufficient to show that ∀x 6=
0 Pr(a⊗x = 0) = 2−m. Fixing x 6= 0, we show by induction on m that the bits (b0, . . . , bm−1) =
a⊗ x are uniform and independent. The first m− 1 bits (b0, . . . , bm−2) is the convolution of the
first n+m−2 bits of a with x and so, by the induction hypothesis, are uniform and independent.
The last bit bm−1 =

∑n−1
j=0 an+m−2−jxj . Let j0 = min{j | xj = 1}. Then an−m−2−j0 is uniform

and independent of (b0, . . . , bm−2), and so bm−1 is uniform and independent of (b0, . . . , bm−2).

Corollary 9.4. Unique-3-SAT ∈ Promise-BPP⇒ NP = RP.

Proof. (⊇) Follows by definition of NP,RP.
(⊆) Let U solve Unique-3-SAT in time poly(n) with 2-sided error ≤ 1

3 . By using self-
reducibility and repetition, we may assume wlog that U has 0 soundness error (even when the
promise is violated) and completeness error ≤ 1

2 .
Upon input F with n = | var(F)|, generate m ∈u [2, n + 1], b ∈u 2m. Let Hn,m be a

computationally efficient hash family mapping 2n → 2m, e.g. (9.2). Computational efficiency
allows us to sample and evaluate h ∈u Hn,m in time poly(n). Using Cook’s computation tableau
reduction, we can represent h(x) = b by a 3-CNF G with poly(n) extra variables such that
F ∧ h(x) = b is uniquely satisfiable iff F ∧G is. By theorem 9.2, if F is satisfiable, then F ∧G is
uniquely satisfiable with probability ≥ 1

O(n) ; and so if F is satisfiable, then U(F ∧ G) = 1 with
probability ≥ 1

O(n) . By repeating O(n) times, we can decrease the completeness error to O(1).
The total running time is poly(n). So 3-SAT ∈ RP. Since 3-SAT is NP-complete, we have the
result.

Corollary 9.5. Let B = {∧,∨,¬,⊕}. Then

cCircuit-SAT = cUnique-Circuit-SAT

cB-Formula-SAT = cB-Unique-Formula-SAT.

76

Proof. (≥) Obvious.
(≤) Let U solve Unique-Circuit-SAT in time poly(|G|)2cn on input G. By using self-

reducibility and repetition, we may assume wlog that U has 0 soundness error (even when the
promise is violated) and exponentially small completeness error. Upon input F with n = | var(F)|,
generate m ∈u [2, n + 1]. Let Hn,m be a computationally efficient 2-universal hash family,
h ∈u Hn,m, b ∈u 2m. Represent F ∧ h(x) = b by a formula G, and return U(G). The soundness
error is 0 and by repeating O(n) times, we can decrease the completeness error to O(1). Since
we can represent h(x) = b with a poly sized circuit with no new variables, the total running time
is ≤ poly(|F |)2cn.

The same proof works for the second statement if we choose Hn,m to specifically be one
of the two 2-universal hash families (9.2),(9.3). In either case, we can represent h(x) = b with a
poly sized formula over the basis {∧,∨,¬,⊕} with no new variables.

9.1.1 Hash function representation

Let P be a Boolean satisfiability problem and Q be a predicate on Boolean variables
X. We can say that instance F of P represents Q iff F has variables X ∪ Y (the Y can be
thought of as auxiliary) and ∀a ∈ 2X (Q(a) iff a can be extended to a solution of F). (This is
similar to saying that Q is first-order definable, but we only allow a single existential quantifier
and expressiveness of the “formula” is limited by P .) We can make this notion a bit stricter: say
F parsimoniously represents Q iff F represents Q and ∀a ∈ 2X | sol(F |a)| ≤ 1. The efficiency of
the representation can be measured by how small Y is and how quickly we can compute F given
some other representation of Q.

In the proof of corollary 9.5, we were able to use theorem 9.2 to relate cCircuit-SAT,
cUnique-Circuit-SAT because we could efficiently represent as a circuit constraints of the form h(x) =
b, where h ∈ Hn,m and Hn,m is some 2-universal hash family. ’Efficient’ here meant that the
representation was of size poly(n) and there were no new variables.

Corollary 9.4 used a much weaker notion of efficiency, only requiring that the repre-
sentation take poly(n) time to compute. But this notion of efficiency tells us little about the
relationship between c3-SAT and cUnique-3-SAT.

If P is a Boolean satisfiability problem, in order to establish a result like

cP ≤ (1 + α)cUnique-P (9.4)

using theorem 9.2, we would need to be able to take an arbitrary instance F of P with n variables
and parsimoniously represent F ∧h(x) = b as an instance G of P , using ≤ αn auxiliary variables,
and taking only 2o(n) time to compute G. If we could make α arbitrarily close to 0, we could
establish cP = cUnique-P . Other tradeoffs between auxiliary variables and time to compute the
representation that could still lead to (9.4) are possible; e.g. if we used a P or Unique-P solver
in our construction of the representation itself.

In this section, we discuss some of the difficulties in constructing such a representation
for problems more restrictive than those in corollary 9.5. Later, in §9.3, we will give a more
compelling reason to abandon such strategies: (1) we will show that for P = k-SAT, α cannot
be made any smaller than 1

80k using any oblivious isolation technique, i.e. one that attempts
to isolate a solution while ignoring the input formula except to compute the number of input
variables; and (2) [Tra08] comes within O(lg k) of this lower bound anyway.

One way to represent the hash function (9.2) Ax = b by a 3-CNF is by introducing O(n2)
new variables yi,j , i ∈ [m], j ∈ [2, n] and representing the following constraints with 3-clauses:

yi,2 = Ai,1x1 ⊕Ai,2x2

yi,j = yi,j−1 ⊕Ai,jxj
yi,n = bi for i ∈ [m], j ∈ [3, n].

77

The resulting formula G is uniquely satisfiable iff F is, but since we needed Ω(n2) new variables,
we cannot conclude (9.4) for P = 3-SAT for any constant factor α.

The convolution hash family (9.3) can be computed using a Fast Fourier Transform
circuit of size O(n lg3 n), (To see this, suppose wlog n is a power of 2. The circuit can hardcode
a generator of the multiplicative group F×n , and use this to carry out FFT in O(n lg n) field
operations, each of which can be done with O(lg2 n) bit operations. Recursion can reduce the
complexity somewhat, but not below O(n lg2 n).) which implies that it can be represented by
a 3-CNF with only O(n lg3 n) extra variables. Although better than before, we still cannot
conclude (9.4) for any constant α. In fact, we know of no even approximately 2-universal hash
family mapping 2n → 2m with m ≈ n representable by a CNF of size 2o(n) and with only O(n)
variables.

We now give a sequence of lower bounds on the complexity of hash function representa-
tion with increasingly sophisticated arguments, beginning with a trivial exponential lower bound
on the size of a CNF F that (not necessarily parsimoniously) represents that the parity of the
first n variables is b ∈ 2.

Lemma 9.6 ([FSS84]). ∀b ∈ 2, there is a unique n variable CNF F that represents that the
parity of the variables is b using no auxiliary variables, and it contains exactly 2n−1 clauses.

Proof. To show the existence of F , for each assignment to the variables that makes the parity
1−b, create a clause that forbids this assignment. To show uniqueness, suppose that the solutions
to some G ∈ CNF are the assignments with parity b and let C be a clause in G. Choose any
assignment a that makes C false. Since flipping any variable makes C true, C must contain every
variable, and so it excludes exactly 1 solution. This shows that G = F .

Corollary 9.7. If F ∈ CNF represents that the parity of x1, . . . , xn is b ∈ 2 and uses auxiliary
variables y1, . . . , yl, then |F | ≥ 2

n−1
2l .

Proof. We can eliminate the yi from F by applying resolution repeatedly: define

F0 =F
Fi =Fi−1 − {C | yi ∈ var(C)} ∪ {resolve(C,D) | yi ∈ C, ȳi ∈ D

and C,D ∈ F are resolvable} for i ∈ [l].

Then var(Fi) = {x1, . . . , xn, yi+1, . . . , yl}, |Fi| ≤ |Fi−1|2, and a is a solution to Fi iff a can be
extended to a solution to Fi−1. Letting m = |F | = |F0|, we have |Fl| ≤ m2l

. By lemma 9.6,
m ≥ |Fl|

1
2l ≥ 2

n−1
2l .

If we attempt to represent Ax = b as the conjunction F of independent CNF represen-
tations of each of its m linear equations, i.e. each equation representation as a CNF will use
its own separate set of auxiliary variables, and we use only O(n) auxiliary variables in total,
then some equation must be represented with only O(1) auxiliary variables. Since A is dense, by
corollary 9.7, |F | ≥ 2Ω(n).

Of course, we are not limited to representing Ax = b as the conjunction of independent
representations of each of its m equations. If, for example, there were a permutation of the rows
of A such that the Hamming distance between adjacent rows were O(1), then we could represent
Ax = b using only O(n) extra variables. The Chernoff bound (theorem 2.7) can be used to show,
however, that it is exponentially unlikely for any 2 rows to be closer than n

4 .
It should also be noted that we may not need to compute Ax at all with a CNF, since

we are only trying to verify that Ax = b. By compute a function h with CNFs, we mean that for
each output bit hi of h, there is a CNF Fi representing hi(x) = 1. However, there are functions
whose output may indeed be easier to verify than compute, e.g. if h(x) is the factorization of x,
treated as an integer. And so the lower bound in corollary 9.10 below makes one wonder whether

78

there might not be a hash function h with high sensitivity (defined below) so that for each x, b,
h(x) = b is efficiently representable as a small CNF with few auxiliary variables even though h
itself cannot be computed by small CNFs with few auxiliary variables.

We can use the notion of function sensitivity to get a stronger lower bound than corollary
9.7 provides. Let f : 2n → 2. For x ∈ 2n, i ∈ n, let x ⊕ i denote x but with bit i flipped. Let
δ(f, x, i) denote the predicate f(x⊕ i) 6= f(x). The sensitivity of f at x ∈ 2n is

s(f, x) = |{i ∈ n | δ(f, x, i)}|,

and the sensitivity of f is

s(f) = Ex∈u2n(s(f, x)). (9.5)

There are several other characterizations of sensitivity, some highly nontrivial (e.g. [LMN93]).
We can define the sensitivity of a function h : 2n → 2m with multiple output bits as

s(h) = maxi∈m s(hi) where hi is the ith output bit of h. Note that if h is strongly 2-universal,
then each hi is strongly 2-universal as well.

Lemma 9.8 ([MNT93]). Let H be a strongly 2-universal family of functions mapping 2n → 2m.
Then ∃h ∈ H so that ≥ m

3 of its output bits have sensitivity ≥ n
4 . In particular, s(h) ≥ n

4 .

Proof. Choosing h ∈u H,x ∈u 2n, j ∈u m, we have that ∀i ∈ m,

Eh(s(hi)) = Eh,x(nPrj(δ(hi, x,j)))

= nEx,j(Prh(δ(hi, x, j))) =
n

2
.

So

Prh

(
s(hi) ≥

1
4
n
)

= 1− Prh
(
n− s(hi) >

3
4
n
)

≥ 1− 2
3

by Markov’s inequality

=
1
3
.

So Eh(Pri(s(hi) ≥ n
4)) = Ei(Prh(s(hi) ≥ n

4)) ≥ 1
3 . Some h ∈ H achieves this average, and for

this h, Pri(s(hi) ≥ n
4) ≥ 1

3 .

Results from [LMN93] show that a depth d circuit computing f : 2n → 2 requires
2Ω(s(f)1/d) gates. [MNT93] use this and lemma 9.8 to conclude that if H is a strongly 2-universal
family mapping 2n → 2m, then ∃h ∈ H so that a depth d circuit computing h requires 2Ω(n1/d)

gates. [LMN93] uses a very complex argument involving Fourier transforms of Boolean functions,
and this only gives a lower bound of Ω(n1/3) on the number of auxiliary variables required to
compute h by a k-CNF. Though large, this is still sublinear, and therefore not very useful to us.
We can use the following much sharper theorem of Boppana to increase this to Ω(nk).

Theorem 9.9 ([Bop97]). If f : 2n → 2 is computable by a circuit of depth d, width w, and
bottom fan-in k, then s(f) ≤ 2k(10 lg(4w))d−2.

Corollary 9.10. If H is a family of strongly 2-universal hash functions mapping 2n → 2m, and
every h ∈ H is computable by k-CNFs with ≤ l auxiliary variables, then l ≥ n

80k −O(k lg n).

Proof. By lemma 9.8, ∃h ∈ H, i ∈ m s(hi) ≥ n
4 . By assumption, there is a k-CNF φ representing

hi using ≤ l auxiliary variables Y . Let C =
∨
a∈2Y φ|a. Then C is a circuit of depth 3, width

w ≤ 2lnO(k), and bottom fan-in k computing hi. By theorem 9.9, n4 ≤ s(hi) ≤ 20k lg(4w), which
implies n

80k ≤ lg(4w) ≤ l +O(k lg n).

79

However, we are not satisfied because when using CNFs in the Valiant-Vazirani reduc-
tion,

• the hash family need not be strongly 2-universal, maybe it is only approximately so. We
only need small collision probability, not perfection. Approximately strongly 2-universal
does not seem to provide any useful lower bound on the sensitivity of the output bits of
some member of the family.

• as we have already noted, the CNF need not compute the hi, it only needs to verify that
h(x) = b.

• the reduction does not necessarily fail just because one hash function in the family fails to
be efficiently representable. Maybe the reduction can detect such a condition and simply
fail in those cases.

It is interesting to note that theorem 9.9 is proven with a simple switching lemma argument. By
using a more direct such argument, in §9.3 we will get essentially the same bound as corollary
9.10 gives, but overcome all the deficiencies stated above.

9.1.2 Derandomization of the Valiant Vazirani reduction for 2o(n) solu-
tions

If we restrict to Boolean satisfiability problems promised to have only 2o(n) solutions,
then we can derandomize the Valiant-Vazirani reduction in the following sense. Suppose P is
a Boolean satisfiability promise problem where instances with n variables are promised to have
≤ 2o(n) solutions. Also assume that P allows efficient parsimonious representation (defined in
§9.1.1) of F ∧ h(x) = b where F is an instance of I and h is an arbitrary O(n) × n linear hash
function, so that the representation is computable in time 2o(n) and has only o(n) auxiliary
variables. Then

dcP = dcUnique-P .

In reality we need not require being able to represent an arbitrary linear hash func-
tion, since we will choose ones from a particular distribution, but anyway these hypotheses are
sufficient.

We will make use of a hash function, constructed from the techniques of [NN93], that
is almost 2-universal, in that the collision probability is ≤ ε, and that uses only O(lg n + lg 1

ε)
random bits. We will briefly sketch how such a construction is possible.

Suppose for simplicity that n = 2i is a power of 2. Using theorem 2.8, we can construct
l random variables that are (1) k-wise independent and (2) each uniform on n (these 2 conditions
together we call k-universal), by using O(k(lg n + lg l)) random bits. The construction there
chooses a random polynomial in Fn′ [x] of degree < k, where n′ = 2i

′
, i′ = max{i, dlg le}, evaluates

it on l distinct points, then divides each random variable (over Z, not Fn′) by n′

n and takes the
floor to get the correct range. This can be accomplished with a bit shift. Other constructions
are possible, e.g. [CG89].

We use the (admittedly obscure) algorithm in figure 9.1, adapted from [NN93], to gen-
erate a vector r ∈ 2n. This requires O(n) operations (such as multiplication in Fn) on words
of size O(lg n) and using only O(lg n) random bits. [NN93] show that this r has the following
property: ∀x 6= 0 Pr(r · x = 0) ≤ 1

8 . For any constant α ∈ (0, 1), by gathering O(1) independent
copies of such vectors, we can construct a O(1) × n random matrix A still using only O(lg n)
random bits such that ∀x 6= 0 Pr(Ax = 0) ≤ α.

Since A is linear, maxx6=0 Pr(Ax = 0) ≤ α is the collision probability if we used A as
a hash function. We would like to reduce this collision probability further to only exponentially

80

choose random variables
z1, . . . , zn ∈ [n] to be 2-universal
u1, . . . , un ∈ 2 to be 7-universal
c1, . . . , clgn ∈ 2 to be fully independent

for j ← 1, . . . , n
ij ← min{i ≥ 1 | zj ≤ 2i}
rj ← ujcij

return r = (r1, . . . , rn)

Figure 9.1: generating r

small in some parameter l. But using independent copies of the above construction would be
wasteful, requiring Ω(l lg n) random bits. Instead, letting S be the sample space in the construc-
tion of A above (so that |S| ≤ poly(n)), [NN93] construct a O(1)-regular expander G with node
set S and let a random walk of length l = O(lg 1

ε) on G define a sequence of samples from S.
These are used to construct (dependent) O(1)×n matrices A1, . . . , Al. Stacking the Ai vertically
gives a new matrix A with the following properties.

Theorem 9.11. Let n ∈ N, ε ∈ (0, 1). We can construct a matrix A ∈ 2m×n such that

• ∀x 6= 0 Pr(Ax = 0) ≤ ε

• m = O(lg 1
ε)

• A can be constructed using O(n lg 1
ε) operations on words of size O(lg n) (or in time

n lg 1
εpoly(lg n) using O(1)-bit operations; see [GK06], §4.1, for details on the computa-

tional complexity of expander graph constructions) and using O(lg n+ lg 1
ε) random bits.

For a Boolean satisfiability problem P and function f : N → N, let Pf sols be the
promise version where instances with n variables are promised to have ≤ f(n) solutions. So, e.g.,
Unique-P = P1 sols.

Theorem 9.12 (Derandomization of Valiant-Vazirani). Let B = {∧,∨,¬,⊕}. For any f ∈
2o(n), f ≥ 1, computable in time 2o(n),

dcCircuit-SATf sols = dcUnique-Circuit-SAT

dcB-Formula-SATf sols = dcUnique-B-Formula-SAT.

Proof. (≥) Obvious.
(≤) Let F be a circuit with S = sol(F), |S| ≤ f(n), n = | var(F)|. For an ε to be

determined later, construct m× n matrix A as in theorem 9.11. Let

B = {b′ ∈ 2m | ∃!x ∈ S Ax = b′}.

Then

E(|B|) =
∑
x∈S

Pr(∀y ∈ S − {x} Ax 6= Ay)

=
∑
x∈S

(
1− Pr(∃y ∈ S − {x} Ax = Ay)

)
≥ |S|(1− |S|ε).

81

Choosing ε = 1
2f(n) , we have

Prb∈u2m(b ∈ B) ≥ 2−mE(|B|) > 0,

and so the probability that F ∧Ax = b is uniquely satisfiable is > 0. The number of random bits
needed to construct A, b is O(lg n+ lg f(n)) = o(n). We complete the proof by calling an oracle
for Unique-Circuit-SAT for every possible setting of these random bits. The second statement
follows in the same way since we can efficiently parsimoniously represent linear hash functions
with B-Formulas.

Using an idea from Russell Impagliazzo, one can show that it is not possible to reduce
the randomness used in the Valiant-Vazirani reduction to < n bits in the general case. In the
most abstract setting, the Valiant-Vazirani reduction uses r random bits somehow to select a set
T ⊆ 2n and then provides a lower bound p > 0 on Pr(|S ∩ T | = 1) independent of ∅ 6= S ⊆ 2n.

Theorem 9.13. Suppose T ⊆ 2n is chosen according to some distribution on a sample space of
size Q and ∀∅ 6= S ⊆ 2n Pr(|S ∩ T | = 1) > 0. Then Q ≥ 2n.

Proof. Considering S and T to be vectors in the vector space 22n

over the field F2, the hypothesis
implies ∀S 6= 0 Pr(S ·T = 1) > 0. Suppose indirectly that Q < 2n and let T be set of all possible
values of T . Then |T | ≤ Q, which implies that dim span(T) ≤ Q. So dim span(T)⊥ > 0 and so
has an element S 6= 0. But then Pr(S · T = 1) = 0, a contradiction.

9.2 Lower bound on the complexity of Unique-k-SAT

Recall our definition from (5.1):

sk = ck-SAT s∞ = lim
k→∞

sk

σk = cUnique-k-SAT σ∞ = lim
k→∞

σk.

We suspect that Unique-k-SAT is as hard as k-SAT, namely ∀k ≥ 3 sk = σk. At the moment
we do not know how to show this, but we can show that it is approximately true for large k.
In particular, in this section we show that s∞ = σ∞ (theorem 9.16). We will also show that
the exponential time hypothesis (ETH), namely s3 > 0, is equivalent to the exponential time
hypothesis for Unique-k-SAT, namely σ3 > 0 (theorem 9.17). Both results appeared in [CIKP08].

The Valiant-Vazirani reduction relied upon a hash function with low collision probabil-
ity, and in §9.1.1, we noted the challenges of representing such a hash function with a k-CNF.
We get around this by greatly relaxing our requirements on how low the collision probability
needs to be. Instead of using the dense linear hash function (9.2), we will use a sparse linear
hash function and show that with at least subexponential probability, this reduces the solution
space to a ball of small radius. Randomly assigning a small number of variables further reduces
this to just 1 solution with subexponential success probability. Whereas the Valiant-Vazirani
reduction successfully isolates a solution with inverse linear probability, we will succeed with
only subexponentially small probability, but this will be good enough for our purposes.

Unfortunately, this technique requires encoding the hash function as a k′-CNF for some
k′ somewhat larger than k, so we do not quite achieve sk = σk. In §9.3, we will see that this is
no accident, but a necessity of any technique that attempts to isolate solutions obliviously.

Lemma 9.14 (Isolation Lemma). ∀k ∈ N, ε ∈ (0, 1
16] ∃ a randomized poly time algorithm Ik,ε

that, given an n-variable k-CNF φ, outputs an n-variable k′-CNF φ′, with k′ = max{k, d 1ε ln 1
ε e},

such that

1. sol(φ′) ⊆ sol(φ), and

82

2. Pr(| sol(φ′)| ≤ 1) ≥ 1
32n2−4ε lg 1

εn.

Proof. φ′ will be the conjunction of φ and other clauses, so it is sufficient to prove the second
claim in the case that φ is satisfiable.

First, we describe how to choose our hash function that concentrates solutions into a
ball. Let {x1, . . . , xn} = V = var(φ), S = sol(φ) 6= ∅. With probability ≥ 1

n , we can guess an
integer s ∈ [lg |S|, lg |S|+ 1]. For the rest of this proof, we assume that our guess is correct. For
m to be determined later, construct the sparse m× n linear system Ax = b over the field F2 as
follows.

for i ∈ [m]
choose Vi ⊆ V of size k′ uniformly at random
choose bi ∈u 2
for j ∈ Vi, choose Ai,j ∈u 2
for j ∈ V − Vi, Ai,j ← 0

Note that Ax = b can easily be encoded as a k′-CNF. While A is unlikely to distinguish two
vectors x, y ∈ 2V that are close to each other, it has a reasonable chance if they are distance
dist(x, y) ≥ r def= dεne apart:

Lemma 9.15. ∀x, y ∈ 2V with dist(x, y) ≥ r,

PrA(Ax = Ay) ≤
(eε

2

)m
.

Proof. For each i ∈ [m],

Pr((Ax)i 6= (Ay)i) =Pr((A(x− y))i 6= 0)
=Pr((A(x− y))i 6= 0 | (x− y)Vi

6= 0)
· Pr((x− y)Vi 6= 0)

=
1
2
Pr((x− y)Vi 6= 0),

(9.6)

where (x− y)Vi
is the vector x− y restricted to the coordinates from Vi.

Pr((x− y)Vi
= 0) ≤

(
n−r
k′

)(
n
k′

) =
k′−1∏
j=0

n− r − j
n− j

=
k′−1∏
j=0

(
1− r

n− j

)
≤

(
1− r

n

)k′
≤ e− r

nk
′
≤ e−ε 1

ε ln 1
ε = ε.

(9.7)

Combining (9.6), (9.7),

Pr((Ax)i = (Ay)i) ≤ 1− 1
2
(1− ε)

=
1
2
(1 + ε) ≤ eε

2
,

and so Pr(Ax = Ay) ≤ (e
ε

2)m.

Define the set of semi-isolated solutions as

SI = {x ∈ S | ∀y ∈ S with dist(x, y) ≥ r Ax 6= Ay}.

83

Then for each x ∈ S,

Pr(x /∈ SI) ≤
∑

y∈S,dist(x,y)≥r

Pr(Ax = Ay) from the union bound

≤ |S|
(eε

2

)m
by lemma 9.15

≤ 2s−m(1− ε
ln 2)

≤ 1
2

choosing m = s+ d2εse+ 2.

(9.8)

So
Prx∈uS,A,b(x ∈ SI ∧Ax = b)

=Ex∈uS

(
PrA,b(Ax = b|x ∈ SI)PrA(x ∈ SI)

)
≥2−m−1 by (9.8) and independence of b.

(9.9)

On the other hand, for fixed A, b, the number of semi-isolated solutions x such that
Ax = b is ≤ |Bεn(0n)| since every pair of such solutions is distance < r apart. So X def= |{x ∈
SI | Ax = b}| ≤ 2h(ε)n, by theorem 2.3. For any random variable X with an upper bound B,
E(X) ≤ B · Pr(X > 0), so

Prx∈uS,A,b(x ∈ SI ∧Ax = b)

=
E(X)
|S|

≤ 2h(ε)n

|S|
P (X > 0)

≤2h(ε)n−s+1Pr(X > 0).

(9.10)

Combining (9.9), (9.10),

Pr(∃x ∈ SI Ax = b) = Pr(X > 0)

≥ 2s−h(ε)n−m−2

≥ 2−(h(ε)+2ε)n−5 by our choice of m.

(9.11)

At this point, we have shown that with reasonable probability, we can concentrate the
solutions into a ball of radius < r without eliminating all of them. So suppose now that φ∧Ax = b
is satisfiable and its solutions are in a ball of radius < r, and therefore diameter d ≤ 2bεnc.

For assignments uv to disjoint sets of variables, let uv denote the union of these assign-
ments. Let uv, uv̄ be distinct solutions to φ ∧ Ax = b that are furthest apart, and let C be the
set of variables on which they differ, so that |C| ≤ d.

If we can guess a superset D of C and guess the partial assignment αD = (uv)D, then
we claim that uv is the unique solution to φ ∧ Ax = b ∧ xD = αD. To see this, suppose wv is
another. Then dist(wv, uv̄) > dist(uv, uv̄), a contradiction. The probability of correctly guessing
a set D of size d that contains C and correctly guessing αD is

≥ 1(
n
d

)
2d
≥ 2−(h(2ε)+2ε)n. (9.12)

Combining (9.11), (9.12), we conclude that the probability p of correctly guessing s,A, b,D, αD
so that φ′ def= φ ∧Ax = b ∧ αD is uniquely satisfiable is ≥ 1

n2−(h(ε)+h(2ε)+4ε)n−5. Now

h(ε) + h(2ε) + 4ε ≤ ε lg 4
ε

+ 2ε lg
2
ε

+ 4ε by theorem 2.2

= 2ε lg
1
ε

+ 8ε

≤ 4ε lg
1
ε

since ε ≤ 2−4,

84

so p ≥ 1
32n2−4ε lg 1

ε , as claimed.

We now use the isolation lemma to prove the 2 main results of this section.

Theorem 9.16. sk ≤ σk +O(ln2 k
k), and so s∞ = σ∞.

Proof. Let ε = ln k
k . Then k ≥ 1

ε ln 1
ε . For each k, γ > 0, there is a randomized algorithm Uk,γ

for Unique-k-SAT with error ≤ 1
3 and exponential complexity ≤ σk + γ. By the isolation lemma,

there is a poly time randomized algorithm Ik,ε that can reduce a φ ∈ k-CNF to a uniquely
satisfiable φ′ ∈ k-CNF with success probability p ≥ 2−O(ε lg 1

ε)n. By running Uk,γ ◦ Ik,ε O(p−1)
times, we get a randomized algorithm for k-SAT with error ≤ 1

3 and exponential complexity
≤ σk + γ +O(ε lg 1

ε) ≤ σk + γ +O(ln2 k
k). Since γ was arbitrary, sk ≤ σk +O(ln2 k

k).

It should be noted that theorem 9.16 is only an asymptotic result, we do not get anything
useful for small k.

Theorem 9.17. The following are all equivalent to the exponential time hypothesis (ETH):

1. s3 > 0

2. σ3 > 0

3. s∞ > 0

4. σ∞ > 0.

Proof. (¬1 ⇒ ¬2) σ3 ≤ s3 = 0.
(¬2 ⇒ ¬3) It is sufficient to show that ∀k sk = 0. We will use a simple clause-width

reducing algorithm R3 which takes as input a k-CNF φ in n variables and m clauses and returns
a 3-CNF ψ in n+ (k − 3)m variables and m(4(k − 3) + 1) clauses such that sol(ψ) has a trivial
bijective correspondence with sol(φ). R3 does the following: for each clause {l1, . . . , lk} of φ,
introduce k − 3 new variables y2, . . . , yk−2 and add to ψ 3-clauses representing

(l1 ∨ l2)↔ y2

(y2 ∨ l3)↔ y3

...
(yk−3 ∨ lk−2)↔ yk−2

(yk−2∨lk−1 ∨ lk).

For each solution x of φ, there is exactly one solution y of ψ, and we can compute x from y
simply by discarding the new variables.

For any set of parameters p and function f , let Op(f) denote the big-Oh class for f
where the parameters in p are considered constant. The randomized sparsification theorem 5.17
showed that ∀k, ε > 0 ∃ a poly(n) time algorithm Sk,ε that, given an n-variable k-CNF φ, returns
an n-variable k-CNF ψ with ≤ Ok,ε(n) clauses such that sol(ψ) ⊆ sol(φ) and if φ is satisfiable,
then so is ψ, with probability ≥ 2−εn.

We combine sparsification, isolation, and clause-width reduction. Suppose that ∀ε > 0 ∃
a randomized algorithm U3,ε solving Unique-3-SAT with error ≤ 1

3 with exponential complexity
≤ ε.

Let ε ∈ (0, 1
16] and consider the action of the algorithm T = R3◦Ik,ε◦Sk,ε on φ ∈ k-CNF.

If φ is not satisfiable, then neither is the output, but otherwise we trace the properties of formulas
at intermediate steps in the following table.

85

formula clause width vars clauses sols success prob
φ k n ≥ 1 1

Sk,ε(φ) k n Ok,ε(n) ≥ 1 2−εn

Ik,ε ◦ Sk,ε(φ) Ok,ε(1) n Ok,ε(n) 1 2−Ok(h(ε)n)

T (φ) 3 Ok,ε(n) Ok,ε(n) 1 2−Ok(h(ε)n)

So U3,ε ◦ T is a randomized algorithm for k-SAT with exponential complexity ≤ ε and success
probability p ≥ 2−Ok(h(ε)n). Running this O(p−1) times decreases the error to ≤ 1

3 and increases
the exponential complexity to Ok(h(ε)), which converges to 0 as ε→ 0. So sk = 0.

(¬3 ⇒ ¬4) σ∞ ≤ s∞ = 0.
(¬4 ⇒ ¬1) σ3 ≤ σ∞ = 0⇒ s3 ≤ s∞ = 0.

9.3 Limitations of oblivious isolation

Define the unique k-SAT gap as

δk = ck-SAT − cUnique-k-SAT. (9.13)

Of course δk ≥ 0. Our inability to prove δk = 0 using some variant of the the Valiant-Vazirani
reduction is not due to choosing too stringent a notion of ’good’ hash family, nor a lack of
imagination in constructing and representing one as a k-CNF, but is impossible simply because
these techniques attempt to isolate a solution obliviously – they ignore the input formula F except
for computing the number of variables n and passing F along to the oracle.

In this section, based on an idea of Russell Impagliazzo, we use H̊astad’s switching
lemma to show that

δk <
1

80k
cUnique-k-SAT (9.14)

cannot be shown using any oblivious technique. In theorem 9.16 ([CIKP08]), we showed that
δk ≤ O(lg2 k

k). This was later improved by [Tra08], corollary 3, to

δk ≤ O
(lg k
k

)
, (9.15)

which is within a factor of lg k of optimal for oblivious techniques, which both results use.
(9.14) gives a method to quickly refute a claimed proof that δk = 0. E.g. [Gho06] claims

that δk = 0, but only uses oblivious methods (and without separately disproving the exponential
time hypothesis (ETH)), so this gives a quick way to verify that the proof is incorrect without
going into the details. The subsequent revision still uses oblivious methods and so is also incorrect.
But more importantly, (9.14) shows that we must focus future efforts on finding non-oblivious
methods of isolating solutions.

Our proof proceeds as follows. Consider an oblivious technique that, on an input F ∈
k-CNF with V = var(F), chooses a formula G ∈ k-CNF with V ∪ U = var(G), from some
distribution depending only on V , in the hopes that F restricted by G has a unique solution
with noticeable probability. Let n = |V | and suppose that the number of auxiliary variables |U |
is ≤ αn.

First a word of caution: in §9.1.1 it was shown that O(n2) auxiliary variables are
sufficient to represent functions from a 2-universal hash family on n variables as a 3-CNF, which
would allow oblivious isolation with probability ≥ poly(n)−1 via the Valiant-Vazirani reduction
(theorem 9.2). So to show that (9.14) cannot be proven with oblivious techniques, we must pay
attention to α.

86

To thwart the oblivious technique, let us give it as an input formula a random restriction
F , that simply fixes a random subset of V . (A random restriction is easily encoded as a k-CNF.)
H̊astad’s switching lemma implies that w.h.p. G restricted by F will have a representation by a
low-width DNF and so cannot have a unique solution. Notice that previously we were thinking of
G as restricting F , but now we are taking the opposite perspective, thinking of F as a restriction
of G; formally, both are just F ∧G. How restrictive F needs to be, how high the probability is,
and how wide the DNF is will be worked out in the following theorem.

Theorem 9.18. Let k ≥ 2, α = 1
80k , V be a set of variables, n = |V |, G be a distribution on

k-CNF formulas on variables V ∪ U, |U | ≤ αn. Then ∃F ∈ k-SAT with var(F) = V s.t.

PrG∈G(| sol(F ∧G)| = 1) ≤ 2−αn+1.

Proof. This will be fairly technical and depend on precise definitions, so let’s review a few. For a
formula F , var(F) is the set of variables that actually appear in F , not an implicit superset of it.
sol(F) = {a ∈ 2var(F) | F (a) = 1}; thus, the unit clause {x} that neglects to talk about some other
variable y that we may have in mind is not deemed to have ≥ 2 solutions – it has 1. A clause is
proper iff no 2 of its literals disagree. A CNF is a set of proper clauses. A k-CNF is a set of proper
clauses each of size ≤ k. For a CNF G and restriction ρ : var(G) → {0, 1, ∗}, G � ρ is the CNF
obtained from G by eliminating true clauses and false literals. Thus var(G � ρ) ⊆ var(G)∩ρ−1(∗)
and the subset may be proper. All this fussiness is necessary: to increase the relevance of the
theorem, we want to give a Turing reduction from k-SAT to Unique-k-SAT the benefit of the
doubt by having the loosest possible notion of the uniqueness promise and the tightest possible
restrictions on the input F .

Let G ∈ G, p = 1
10k . Let ρ ∈ D′V ∪U,p be a random p-restriction (defined in §2.6).

Also, let ρV = ρ|V . We represent ρV as F ∈ 2-CNF with var(F) = V by creating clauses
{x = ρV (x), y}, {x = ρV (x), ȳ} for each x ∈ V − ρ−1

V (∗), y ∈ ρ−1
V (∗). (We could represent ρV as

a 1-CNF, but then it would not have n variables. We could fix that problem by adding extra
variables in the form of tautologies such as x∨ x̄, but then one could question whether the result
holds when such degenerate clauses are forbidden. Notice that the result does not hold when
k = 1 since a 1-CNF always has ≤ 1 solution, and so we could choose G to always be the empty
1-CNF.)

Let k′ = βpn for some β ∈ (0, 1) to be chosen later. Then

Pr(| sol(F ∧G)| = 1)

=Pr(| sol(F ∧G)| = 1 ∧ |ρ−1
V (∗)| < k′)

+Pr(| sol(F ∧G)| = 1 ∧ |ρ−1
V (∗)| ≥ k′).

(9.16)

X = |ρ−1
V (∗)| is binomial with parameters (n, p), so the first term on the RHS of (9.16) is

≤ Pr(X < βpn)

≤
(e−(1−β)

ββ

)pn
from the Chernoff bound (theorem 2.7)

≤ 2−(1−β+β lg β)pn

= 2−βpn choosing β =
1
4
.

(9.17)

To lower bound the second term on the RHS of (9.16) will be harder. Suppose that

sol(F ∧G) = {a} and a|U agrees with ρ|U. (9.18)

In other words, F ∧G has a unique solution a and ∀x ∈ dom(a) ∩ U − ρ−1(∗) a(x) = ρ(x). We
claim that there is a unique DNF representation H of G � ρ, and it has exactly 1 term T and

87

var(T) = var(G � ρ). To see this, note that H must contain at least 1 term since a satisfies it.
For each term T ∈ H, a satisfies T . If x ∈ var(G � ρ) − var(T), then a, a ⊕ x ∈ sol(F ∧ G), a
contradiction. So var(T) = var(G � ρ). But since a satisfies T , there can be only 1 such T .

So (9.18) implies DNF(G � ρ) = | var(G � ρ)|. Similarly, assuming (9.18), if x ∈
ρ−1
V (∗) − var(G � ρ), then we have the contradiction a, a ⊕ x ∈ sol(F ∧ G) and x ∈ var(F ∧ G),

and so ρ−1
V (∗) ⊆ var(G � ρ). So

(9.18)⇒ DNF(G � ρ) ≥ |ρ−1
V (∗)|. (9.19)

Since |U | ≤ αn, we have ∀V ′ ⊆ V ∪ U, a ∈ 2V
′
,

Pr(a|U agrees with ρ|U) ≥ 2−αn. (9.20)

So

Pr(| sol(F ∧G)| = 1 ∧ |ρ−1
V (∗)| ≥ k′)2−αn

=
∑
a

Pr(sol(F ∧G) = {a} ∧ |ρ−1
V (∗)| ≥ k′)2−αn

≤
∑
a

Pr(sol(F ∧G) = {a} ∧ |ρ−1
V (∗)| ≥ k′)

· Pr(a|U agrees with ρ|U) by (9.20)

=
∑
a

Pr(sol(F ∧G) = {a} ∧ |ρ−1
V (∗)| ≥ k′

∧ a|U agrees with ρ|U) by independence

=Pr(| sol(F ∧G)| = 1 ∧ |ρ−1
V (∗)| ≥ k′

∧ unique solution of (F ∧G) agrees with ρ|U)
≤Pr(DNF(G � ρ) ≥ k′) by (9.19)

≤(5pk)k
′

by theorems 2.13, 2.14, 2.17

=2−βpn.

(9.21)

Combining (9.16), (9.17), (9.21) gives

Pr(| sol(F ∧G)| = 1) ≤ 2−βpn + 2(α−βp)n ≤ 2−(α−βp)n+1.

Choosing α = 1
2βp = 1

80k shows

Pr(| sol(F ∧G)| = 1) ≤ 2−αn+1.

F was chosen randomly, so this inequality must also hold for some fixed F .

Of course an oblivious randomized Turing reduction f from k-SAT to Unique-k-SAT
with Ω(1) success probability could call the oracle on a formula with more than αn auxiliary
variables, but then it cannot be guaranteed to take time < 2cUnique-k-SAT(1+α)n when a blackbox
Unique-k-SAT solver is substituted for the oracle. So regardless of the number of auxiliary
variables used, f cannot show ck-SAT < (1 + α)cUnique-k-SAT.

This also shows that for each collection {Hn,m | m ∈ [2, n+ 1]} of families of (not nec-
essarily strongly) 2-universal hash functions mapping n bits to m bits, we cannot parsimoniously
represent in k-CNF (an arbitrary equation h(x) = b where h is drawn from one of the Hn,m) in
time 2o(n) and using ≤ α′n auxiliary variables where α′ < α = 1

80k . This is a fairly powerful
application of theorem 9.18. To prove a linear lower bound on the required number of auxiliary
variables directly would be extremely difficult.

88

9.3.1 Conclusions

We actually showed slightly more than we set out for. It is not possible to obliviously
isolate the solutions to any family of formulas (of any kind, CNF or not) that contain arbitrary
restrictions if the isolators are k-CNFs using ≤ α′n auxiliary variables where α′ < 1

80k . E.g. it is
not possible, with ≤ α′n auxiliary variables and 2−o(n) probability, to isolate the solutions to an
arbitrary system of linear equations over Z2 by intersection with an obliviously chosen k-CNF.

9.4 Deciding unique satisfiability

So far we have only investigated k-SAT given the promise that there is ≤ 1 solution,
and although we suspect that the unique satisfiability gap from (9.13) is 0, we had to settle for
only bounding it by O(lg k

k). Here we consider the problem of deciding whether a given k-CNF
has exactly 1 solution, obtaining much stronger results.

In this section, we resolve an open question by [GB97]: the exponential complexity of
deciding whether a k-CNF has a solution is the same as that of deciding whether it has exactly
one solution, both when it is promised and when it is not promised that the input formula has
a solution. We also show that this has the same exponential complexity as deciding whether a
given variable is backbone (i.e. forced to a particular value), given the promise that there is a
solution. We show similar results for True Quantified Boolean Formulas in k-CNF, k-Hitting Set
(and therefore Vertex Cover), k-Hypergraph Independent Set (and therefore Independent Set),
Max-k-SAT, Min-k-SAT, and 0-1 Integer Programming with inequalities and k-wide constraints.
All these results will appear in [CP09].

Let us state the results more precisely. Recall that for a problem L = {x | ∃y R(x, y)}
where R is some relation, we define the solutions of x as sol(x) = {y | R(x, y)}. Define Decision-
Unique-L (or DU-L) to be the problem of deciding whether the input x has | sol(x)| = 1; Unique-L
(or U-L) to be DU-L but with the promise that | sol(x)| ≤ 1; and Satisfiable-Unique-L (or SU-L)
to be DU-L but with the promise that | sol(x)| ≥ 1.

Note that these definitions depend onR being understood from context, since alternative
formulations of a problem could lead to alternative definitions of DU-L, U-L, SU-L, but this will
rarely cause ambiguity. E.g. DU-k-SAT will be the problem of deciding whether a given k-CNF
has a unique satisfying assignment and DU-IS will the the problem of deciding whether a given
graph has a unique independent set of size at most a given integer.

While ck-SAT ≤ cDU-(k + 1)-SAT is obvious (add a new variable z to each clause and n
new clauses (z → xi) for each i), the inequality is probably not tight since, assuming ETH,
ck-SAT increases infinitely often as a function of k ([IP01], and here in theorem 10.4), and it
would be surprising if it did not increase with each k. [GB97] conjectured that the deterministic
exponential complexity of k-SAT and DU-k-SAT are the same, i.e. that

dck-SAT = dcDU-k-SAT. (9.22)

We prove (9.22) by giving a deterministic poly time Turing reduction from k-SAT to SU-k-SAT
such that on an input with n variables, the oracle is called only on formulas with ≤ n + O(1)
variables. Since dcSU-k-SAT ≤ dcDU-k-SAT, and self-reducibility implies dcDU-k-SAT ≤ dck-SAT, we
have

dck-SAT = dcSU-k-SAT = dcDU-k-SAT .

Via standard error reduction techniques (lemma 9.19), such a reduction also shows

ck-SAT = cSU-k-SAT = cDU-k-SAT . (9.23)

We use the same technique to show similar results for a variety of other problems.

89

It is not known whether ck-SAT = dck-SAT, but it seems like the answer is ’no’. E.g.
[IT04] gives a nice table contrasting the history of the development of deterministic vs. ran-
domized k-SAT algorithms, with the more recent randomized algorithms with significantly less
exponential complexity than their deterministic counterparts. (The table in §6.7 corroborates
this.)

The main contribution here is the following technique for efficiently reducing a problem
P to SU-P : view an instance φ of P as a set of constraints C1, . . . , Cm over a set of variables
x1, . . . , xn. Starting with the empty set of constraints, add one constraint of φ at a time to a list
and maintain the invariant that we know a solution to the conjunction of the constraints in the
list. To add a new constraint Ci to the list, construct some gadget that conditionally turns on
Ci in the case that the variables are assigned differently than the solution already known for the
i − 1 case. Then, using this gadget, call the oracle repeatedly to learn a solution for the i case.
Knowing a solution to the i−1 case allows us to encode such gadgets significantly more efficiently
than we would otherwise know how to do. Although this idea is the basis for each reduction we
consider, there are significant problem-specific details that prevent us from factoring out large
common parts of the proofs.

9.4.1 Previous work

[GB97] show that dck(r)-SAT ≤ dcDU-k-SAT where k(r)-SAT is k-SAT but where the
input is restricted to have ≤ r false clauses at one or both of the assignments 1n, 0n. Since there
is nothing special about these 2 assignments, we might as well think of this variant as requiring
that the input include some assignment at which the formula has ≤ r false clauses - i.e. that
not only does the formula have a small satisfiability gap, but that the input include a witness to
such a small gap.

But it’s not immediately clear whether k(r)-SAT is a very important restriction of SAT.
On the one hand, the standard Cook reduction from an arbitrary problem in NP to SAT via
computation tableaux generates a k-CNF with a gap of 1, and one can even generate a witness
for this gap in poly time. This is because the formula generated essentially encodes, “There
is a y such that after computing the predicate R(x, y), the result is true,” and only a single
clause actually encodes the part that says “the result is true”. So k(1)-SAT is NP-complete,
but the number of variables needed in a reduction to k(r)-SAT seems to be large, even when
reducing from k-SAT, and so it doesn’t seem to be very useful for upper bounding the exponential
complexity of k-SAT.

On the other hand, the expected fraction of clauses satisfied in a k-CNF under a random
assignment is 1−2−k, and so an assignment satisfying at least that many clauses can be found in
poly time with high probability. But H̊astad showed, using a proof based on PCPs [H̊as01], that
with no extra restriction on the input formula, no larger a fraction can be guaranteed, unless
P = NP. This leaves unclear just how much smaller is the exponential complexity of k(r)-SAT
than that of k-SAT. We will show that they are equal.

9.4.2 Efficient reductions

The following notion will simplify the theorems in this section considerably. Let us
say that a parameterized problem A efficiently reduces to parameterized problem B, and write
A � B, iff ∃ a poly time Turing reduction f from A to B so that for each instance x of A of
parameter n and oracle call y that fB(x) makes, the parameter of y is ≤ n + O(1). Obviously,
� is reflexive and transitive. We will also write A ' B iff A � B and B � A.

Lemma 9.19. If A � B then dcA ≤ dcB and cA ≤ cB.

Proof. The first inequality is obvious. For the second, let MB be a randomized poly(|x|)2cn-time
algorithm solving B with error ≤ 1

16 = p (this can be constructed by one with error ≤ 1
3 by taking

90

the majority answer from 21 independent calls). Suppose fB(x) runs in time ≤ t. DefineMA as f ,
but replacing each call to the oracle by r = 2 lg t calls to MB and take the majority answer. From
the union bound, the probability thatMA errs is ≤ t times the probability that a binomial random
variable with parameters (r, p) is ≥ 1

2r, and this is ≤
∑r
i=d r

2 e
(
r
i

)
pi(1− p)r−i ≤ p

r
2 2r = 2−r. So

MA solves A, takes time ≤ poly(|x|)2t lg t2c(n+O(1)), and errs with probability ≤ t2−r = 1
t .

Note that lemma 9.19 would hold even if we significantly loosened the notion of an
efficient reduction by allowing subexponential time, randomness with one-sided error, and oracle
calls to problems with parameter as much as n(1 + o(1)), but we will actually be demonstrating
this stronger notion here. Also it should be noted that this form of reduction is more strict than
the similar SERF reductions of [IPZ01], which allow a linear increase in the complexity parameter
since they want the loosest possible notion of reduction under which SUBEXP is closed.

9.4.3 Constraint satisfaction problems

k-SAT

Theorem 9.20.

k-SAT ' SU-k-SAT ' DU-k-SAT .

(9.22) and (9.23) then follow from lemma 9.19. Note that all problems discussed in this
section with a parameter k are solvable in poly time for k < 2, so we will assume throughout
that k ≥ 2. For each problem P , SU-P � DU-P via the identity map, so we won’t bother to
state this in the proofs. Also, for each problem P that we consider in this section, DU-P � P
by using self-reducibility to find a solution and then making n more queries to decide whether
there is another, so we won’t bother to formally state this in the proofs to follow either.

For example, if P = k-SAT and the input formula is φ, we can set a variable xi, then
ask the oracle whether the formula is still satisfiable to discover a correct setting of xi, then set
xi correctly and continue similarly with the remaining variables to get a complete solution a.
Then for each variable xi, ask the oracle whether F |xi 6= ai is satisfiable.

Proof. (k-SAT � SU-k-SAT) Let A be an oracle for SU-k-SAT. Also, let any predicate on ≤ k
Boolean variables represent the k-clauses logically equivalent to them; e.g. (x → y = 0) will
stand for the clause {x̄, ȳ}.

Let φ = {C1, . . . , Cm} with variables x1, . . . , xn be our input formula and let z be a new
variable. For i going from 1 tom, we will find a solution a to the first i clauses φi = {C1, . . . , Ci}, if
there is one. Finding an a that satisfies 0 clauses is trivial. Suppose that we have an a that satisfies
φi−1. For each literal l in Ci, we ask A whether φi−1 ∪ {(z → xj = aj) | j ∈ [n]} ∪ {(z̄ → l)}
(which is satisfiable: set x = a, z = 1) is uniquely satisfiable. It answers yes iff there is no solution
to φi with l = 1. If each of the |Ci| ≤ k queries gives an answer of yes, then φi, and hence φ,
is not satisfiable. If the jth query answers no, then we can safely set the first j − 1 literals of
Ci to 0 and the jth literal to 1 in a partial assignment b. At this point, we know that b can be
extended to a solution to φi, and we want to use similar calls to the oracle to find assignments
to the remaining variables to get a new assignment that satisfies φi.

More specifically, suppose we have a partial assignment b′ that we know can be extended
to a solution to φi. Let b be a partial assignment that extends b′ by setting a new variable xr to
an arbitrary value br. Then we use A and the following lemma to discover whether b can also be
extended to a solution of φi, and if not, we simply flip br. We continue in this way until we have
a full solution to φi.

Lemma 9.21. Let a ∈ sol(φi−1), b be a partial assignment, and ψ = φi−1∪{(z → xr = ar) | r ∈
[n]} ∪ {(z̄ → xr = br) | r ∈ domain of b}. Then ψ has a solution, and it is unique iff b cannot be
extended to a solution to φi−1.

91

Proof. a together with assigning z to 1 is a solution to ψ. There is no other solution to ψ with
z = 1, and ψ |z=0 forces the partial assignment b.

The reduction uses poly(n) time and makes ≤ mn oracle calls, each with ≤ n + 1
variables, so it is efficient.

Integer programming

Let k-BIP be the problem of deciding whether there is a solution to a given system of
m linear inequalities in n Boolean variables, where each inequality involves ≤ k variables.

Corollary 9.22.

k-BIP ' SU-k-BIP ' DU-k-BIP .

Proof. Since the construction is almost exactly the same as for k-SAT in theorem 9.20, we only
give an outline. To express α → β in the construction, use the inequality α ≤ β. To express a
negated variable x̄, use 1− x. When adding a new constraint Ci, ask the oracle ≤ 2k questions,
one for each setting c of the ≤ k variables in Ci that satisfies Ci: is it possible to extend b∪c to a
solution of the first i−1 constraints? This gives a poly time reduction that makes ≤ m(2k−k+n)
queries, each with ≤ n+ 1 variables.

Backbone variables

Backbone variables are a tool from statistical physics for understanding the nature of
random k-SAT instances - see e.g. [MZK+99]. Dubois and Dequen [DD01] use such variables in
a heuristic to refute large unsatisfiable hard random 3-SAT instances.

Given a nonempty set system S ⊆ P(U), i ∈ U is a backbone variable iff ∀a ∈ S i ∈
a ∨ ∀a ∈ S i /∈ a. xi is a backbone variable of formula φ iff xi is a backbone variable of sol(φ).
Define the k backbone variable promise problem (k-BB) to be to decide whether a given variable
is backbone in a given k-CNF φ with the promise that φ is satisfiable.

Corollary 9.23.

k-SAT ' k-BB.

Proof. Immediate from theorem 9.20 since a satisfiable k-CNF has exactly 1 solution iff each of
its variables is backbone.

9.4.4 Extending the result up the PH

Define (d, k)-TQBF to be those true quantified Boolean formulas of the form
Q1
−→w 1 · · · Qd−→w d φ where each−→w i is a (possibly empty) tuple of Boolean variables, each quantifier

Qi ∈ {∃,∀} is ∃ iff i is odd, each variable of φ ∈ k-CNF is quantified, and the whole formula is true
in the standard sense. The solutions are those assignments to −→w 1 that make Q2

−→w 2 · · ·Qd−→w d φ
true. Then DU-(d, k)-TQBF is essentially those (d, k)-TQBFs where the first quantifier is ∃!
(“there is a unique”) instead of ∃. If we parameterize on the total number of variables n, then
we have the following.

Theorem 9.24.

(d, k)-TQBF ' SU-(d, k)-TQBF ' DU-(d, k)-TQBF.

92

Proof. ((d, k)-TQBF � SU-(d, k)-TQBF) It was shown in [APT79] that TQBF restricted to
quantified 2-CNF formulas is in linear time, so we may assume wlog that k ≥ 3. Let A be
an oracle for SU-(d, k)-TQBF and F = Q1

−→w 1 · · ·Qd−→w d φ with variables x1, . . . , xn and clauses
φ = {C1, . . . , Cm} be our input formula. Let x1, . . . , xq be the variables in −→w 1, and y, z be
variables not in F . If some clause has only ∀ quantified literals, then player ∀ can easily win
and we reject. Otherwise, for i going from 1 to m, we will find a solution a, if there is one,
to Fi = Q1

−→w 1 · · ·Qd−→w dφi where φi = {C1, . . . , Ci}. Finding an a that satisfies F0 is trivial.
Suppose we have an a that satisfies Fi−1. We use A and the following lemma (with b = ∅) to
decide whether Fi is satisfiable.

Lemma 9.25. Let a ∈ sol(Fi−1), b be a partial assignment to −→w 1. Suppose lk ∈ Ci is ∃ quantified
under Qj. Let ψ = φi−1 ∪ {(z → xr = ar) | r ∈ [q]} ∪ {(z̄ → xr = br) | r ∈ domain of b} ∪ {(z →
y), {l1, . . . , lk−1, y}, {ȳ, lk, z}}, and G = Q1z,

−→w 1 · · ·Qjy,−→w j · · ·Qd−→w d ψ. Then G has a solution,
and it is unique iff b cannot be extended to a solution to Fi.

Proof. a together with assigning z (and y, if j = 1) to 1 is a solution to G. There is no other
solution to G with z = 1, and G |z=0 forces the partial assignment b. A winning strategy for
player ∃ for G |z=0 is also a winning strategy for Fi: just ignore y. Conversely, a winning strategy
for Fi is a winning strategy for G |z=0 if, in addition, we set y = lk, which is possible since they
are both quantified under Qj .

If Fi is satisfiable, we find a solution b to Fi by starting with the empty partial as-
signment. Suppose we have a partial assignment b′ that we know can be extended to a solution
to Fi. Let b be a partial assignment that extends b′ by setting a new variable xr in −→w 1 to an
arbitrary value br. We use A and lemma 9.25 to discover whether b can be extended to a solution
to Fi, and if not, we flip br. We continue in this way until we have a full solution to Fi. The
reduction uses poly(n) time and makes ≤ m(q + 1) oracle calls, each with ≤ n+ 2 variables, so
it is efficient.

The same result also holds for (∞, k)-TQBF, i.e. without restricting the number of
levels of alternation, but it is less exciting since it is obvious: just add 2 empty quantifiers at the
beginning.

One could also ask whether the exponential complexity changes when !s are placed on
some subset of existential quantifiers other than just the first one. But the above proof technique
does not seem to generalize. One problem that arises when trying to prove that the exponential
complexity of the unique case (where the ! is on a ∃ other than the first) is no more than that
of the non-unique case is that, while before it was easy to store a solution (the a variable) in a
polynomial amount of space, given a formula such as ∃x ∀y ∃z φ, it now seems like we have to
store a whole function that maps each y to an appropriate z. It is not obvious how to store such a
function in a subexponential amount of space. But another problem arises when trying to prove
even the reverse inequality: it was easy to show that a problem of the form ∃!x φ Turing reduces
to problems of the form ∃x φ with only o(n) more variables and in a subexponential amount of
time, but how can one even Turing reduce a problem of the form ∀x ∃!y φ to problems of the
form ∀x ∃y φ with only o(n) more variables and in a subexponential amount of time, let alone
other, more complex formulas with more quantifiers?

9.4.5 Solution optimization problems

The following problems involve optimizing the size of the solution.

93

k-hitting set

Define the k-Hitting Set problem (k-HS) as given a k-set system and an integer l, decide
whether there is a hitting set of size≤ l; i.e. given (U, S, l) such that S ⊆ P(U) and ∀s ∈ S |s| ≤ k,
if we define the hitting sets as {h ⊆ U | ∀s ∈ S h ∩ s 6= ∅}, decide whether there is a hitting set
of size ≤ l.

Theorem 9.26.

k-HS ' SU-k-HS ' DU-k-HS .

In particular, taking k = 2 gives the result for vertex cover:

VC ' SU-VC ' DU-VC .

Proof. (k-HS � SU-k-HS) Let A be an oracle for SU-k-HS and let (U, S, l) with nodes U =
{x1, . . . , xn} and sets S = {C1, . . . , Cm} be our input instance. Let z, z̄ be 2 nodes not in U . For
i going from 1 to m, we will find a smallest hitting set a of Si = {C1, . . . , Ci}. Initially, a = ∅ is
a smallest hitting set of S0. Suppose that we have a smallest hitting set a of Si−1.

Let L = (l1, . . . , ln) be an ordering of U with the nodes of Ci first. Let sets b, c be
initially empty. For j going from 1 to n, we will maintain the invariant that at step j, if Si has a
hitting set of size ≤ |a|, then the lexicographically largest such (according to the order L, where
l1 is the most significant) contains all of b and none of c, and b ∪ c = {l1, . . . , lj}. Suppose the
invariant holds for j − 1. We use A and the following lemma (with b′ = b ∪ {lj}) to discover
whether b ∪ {lj} is contained in a hitting set of Si of size ≤ |a|.

Lemma 9.27. Let a be a smallest hitting set of Si−1, b′ ⊆ U , and T = Si−1∪{{z, z̄}}∪{{z̄, x} |
x ∈ a} ∪ {{z, x} | x ∈ b′}. Then T has a hitting set of size ≤ |a|+ 1, and it is unique iff Si does
not have a hitting set of size ≤ |a| that contains b′.

Proof. a ∪ {z} is a hitting set of T of size ≤ |a| + 1. There is no other containing z, and any
without z contains b′.

If the answer is yes (which corresponds to an oracle answer of no), we add lj to b,
otherwise to c. If c ever contains all of Ci then Si has no hitting set of size ≤ |a|, in which
case, letting l be an arbitrary element of Ci, a ∪ {l} is a smallest hitting set of Si. Otherwise,
we continue applying the lemma, adding elements to either b or c, until we have a hitting set
of Si of size ≤ |a|. Once we have a smallest hitting set a for Sm, we simply compare |a| to l.
The reduction uses poly(n) time and makes ≤ mn oracle calls, each with ≤ n+ 2 nodes, so it is
efficient.

k-hypergraph independent set

The k-Hypergraph Independent Set problem (k-HIS) is, given a k-hypergraph (i.e. where
each edge contains ≤ k vertices) and an integer l, decide whether there is a set I of vertices of
size ≥ l such that no edge is contained in I.

Corollary 9.28.

k-HIS ' SU-k-HIS ' DU-k-HIS .

In particular, taking k = 2 gives the result for independent set:

IS ' SU-IS ' DU-IS .

Proof. Follows immediately from theorem 9.26 by observing that a set of vertices is independent
and of size ≥ l iff its complement is a hitting set of the edges and of size ≤ n− l.

94

Limitations

Although Hitting-Set (HS) and Set-Cover (SC) are duals of one another, it is not as
obvious how the exponential complexities of k-HS and k-SC are related. The technique used to
show theorem 9.26 does not seem to work for SC since constraints are represented by the universe
elements and not the sets, so adding linearly many constraints to construct the oracle queries
increases the parameter from n to cn for some c > 1, causing the reduction to be inefficient.

The situation for k-Coloring is similar. 1 Though we can easily construct an oracle
query with the right logical properties, using only the techniques here will cause it to have
linearly many more vertices, and thus only show that ck-Coloring ≤ O(cDU-k-Coloring), where the
constant factor in the big-Oh does not depend on k.

9.4.6 Constraint optimization problems

The following problems involve optimizing the number of constraints that are satisfied.
Max-k-SAT (Min-k-SAT) is the problem of deciding whether a given k-CNF with an

integer weight for each clause has an assignment that satisfies at least (at most) some given
weight l.

Theorem 9.29.

Max-k-SAT ' SU-Max-k-SAT ' DU-Max-k-SAT .

Proof. (Max-k-SAT � SU-Max-k-SAT) Let A be an oracle for SU-Max-k-SAT and φ ∈ k-CNF,
l ∈ Z be our input where φ has variables x1, . . . , xn and clauses C1, . . . , Cm with (wlog) nonzero
weights w1, . . . , wm. Let z be a variable not in φ. For i going from 1 to m, we will find the
maximum weight l′ that can be satisfied in φi = {C1, . . . , Cm} and an assignment a that satisfies
that weight. Initially, l′ = 0 and a is arbitrary. Suppose we know the maximum weight l′ that
can be satisfied in φi−1 and a satisfies it. We want to find the maximum weight l′′ that can be
satisfied in φi. We consider 2 cases: wi > 0 and wi < 0.

If wi > 0, then l′′ ∈ [l′, l′ + wi]. For each literal l ∈ Ci and t′ ∈ (l′, l′ + wi], we can use
A and the following lemma (with b the partial assignment that sets l = 1, and t = t′ − wi) to
discover whether some assignment with l = 1 satisfies weight ≥ t′ in φi.

Lemma 9.30. Let l′ be the largest weight that can be satisfied in φi−1 and let a satisfy that weight.
Let |wi| > 0 and l′−|wi| < t ≤ l′. Let b be a partial assignment and ψ = φi−1 ∪{|wi| · (z → xr =
ar) | r ∈ [n]} ∪ {|wi| · (z̄ → xr = br) | r ∈ domain of b}. Then ψ has an assignment that satisfies
weight ≥ t+(n+ |b|)|wi|, and it is unique iff b cannot be extended to an assignment that satisfies
weight ≥ t in φi−1.

Proof. a together with z = 1 satisfies weight ≥ l′ + (n+ |b|)|wi| ≥ t+ (n+ |b|)|wi| in ψ. There is
no other such assignment with z = 1, and any with z = 0 agrees with b.

So we can use binary search to discover l′′ using ≤ |Ci| lg(wi + 1) queries. If l′′ = l′,
then a satisfies weight l′′ in φi and we are done. Otherwise, as a slight optimization, if the last
query set the jth literal of Ci to 1, then we can safely set literal j to 1 and literals 1 through
j − 1 to 0 in the partial assignment b, and at this point, we know that b can be extended to a
full assignment satisfying weight l′′ in φi and that b satisfies Ci (since l′′ > l′). We can continue
using the lemma to extend b to such an assignment using n− j more queries to A.

If wi < 0, then l′′ ∈ [l′ + wi, l
′]. Let b be the partial assignment that makes Ci false.

For each t ∈ (l′ + wi, l
′] we can use 1 query to A and the lemma to discover whether there is

an assignment satisfying weight ≥ t in φi. So we can use binary search to discover l′′ using
1Here we take ’uniqueness’ of a coloring solution to mean ’unique up to permutations of the colors’.

95

≤ lg(|wi|+1) queries. If l′′ = l′+wi, then a satisfies weight l′′. Otherwise, we can continue using
the lemma to extend b to a full assignment satisfying weight l′′ in φi using n− |Ci| more queries.

At the end, we simply compare l′ to l. The reduction uses time polynomial in the size
of the input and makes ≤

∑
i(|Ci| lg(|wi|+1)+n−|Ci|) oracle calls, each with ≤ n+1 variables,

so it is efficient.

Theorem 9.29 applies to integer weights, but the proof is robust and can easily be modi-
fied to accommodate rational weights, e.g. by first multiplying by the LCM of the denominators.
Since the weights used in the proof have the same size as those of the input, the same proof works
for the problem restricted to unit weights. The same proof also works for nonnegative weights,
or any combination of the above.

Negating the input weights together with the algorithm in the proof also gives an efficient
reduction from Min-k-SAT to SU-Min-k-SAT. The only rub is that this reduction is not correct
if we restrict to nonnegative weights. To handle this case, we use a different reduction below.

Theorem 9.31. If we restrict to nonnegative integer weights,

Min-k-SAT ' SU-Min-k-SAT ' DU-Min-k-SAT .

Two clauses are in conflict with each other, i.e. cannot be simultaneously unsatisfied,
iff they share a variable, but positively in the one and negatively in the other. We want to find
a maximum weight independent set in the graph with the clauses as vertices and edges between
conflicting clauses. But even if we restricted to unit weights, we cannot simply invoke corollary
9.28 since the parameter here is variables, not clauses. Thus it seems like we need another proof.

It should be pointed out that the proof below does not work if we restrict to unit
weights since the construction of ψ uses non-unit weights. There may be some more convoluted
construction using the same ideas but that avoids this technical point.

Proof. (Min-k-SAT � SU-Min-k-SAT) Let A be an oracle for SU-Min-k-SAT and φ ∈ k-CNF, l ∈
Z be our input where φ has variables x1, . . . , xn and clauses C1, . . . , Cm with (wlog) positive
weights w1, . . . , wm. Let z be a variable not in φ. For i going from 1 to m, we will find the
minimum weight l′ that can be satisfied in φi = {C1, . . . , Ci} and an assignment a that satisfies
that weight. Initially, l′ = 0 and a is arbitrary. Suppose we know the minimum weight l′ that
can be satisfied in φi−1 and a satisfies it. The minimum weight l′′ that can be satisfied in φi is
in the interval [l′, l′ + wi]. Letting b be the partial assignment that makes Ci false, we can use
the following lemma and binary search to discover l′′ using lg(wi + 1) calls to A.

Lemma 9.32. Let l′ be the smallest weight that can be satisfied in φi−1 and let a satisfy that
weight. Let wi > 0 and l′ ≤ t < l′ +wi. Let b be a partial assignment and ψ = φi−1 ∪ {wi · (z →
xr 6= ar) | r ∈ [n]} ∪ {wi · (z̄ → xr 6= br) | r ∈ domain of b} ∪ {(n − |b|)wi · (z)}. Then ψ has
an assignment that satisfies weight ≤ t + nwi, and it is unique iff b cannot be extended to an
assignment that satisfies weight ≤ t in φi−1.

Proof. a together with z = 1 satisfies weight ≤ l′ + nwi ≤ t+ nwi in ψ. There is no other such
assignment with z = 1, and any with z = 0 agrees with b.

If l′′ = l′ + wi, then a satisfies weight l′′ in φi. Otherwise, we use the lemma (with
t = l′′) n− |Ci| times to extend b to a full assignment achieving weight l′′ in φi. At the end, we
simply compare l′ to l. The reduction uses time polynomial in the size of the input and makes
≤

∑
i(lg(wi + 1) + n− |Ci|) oracle calls, each with ≤ n+ 1 variables, so it is efficient.

96

9.4.7 Conclusions

We’ve shown a simple technique to settle conjecture (9.22) as well as many questions
relating the exponential complexity of similar parameterized constraint satisfaction problems
to their unique-solution counterparts. The problem list here is not intended to be exhaustive
but demonstrative. Theorem 9.29 shows the robustness of the technique, allowing considerable
variation in problem specification without disturbing the proof.

Relating the exponential complexities of such problems to their unique-solution coun-
terparts under the promise of at most 1 solution appears to be harder. Current techniques, such
as the Valiant-Vazirani reduction and the Isolation Lemma 9.14 use oblivious hashing, which
we showed in §9.3 necessarily fall short of such strong results as are here. It seems like new,
non-oblivious techniques are needed to make further progress.

Acknowledgements

Material from §9.2 is joint work with Russell Impagliazzo, Ramamohan Paturi, and
Valentine Kabanets and appears in [CIKP08]. That from §9.3 is unpublished joint work with
Russell Impagliazzo. That from §9.4 is joint work with Ramamohan Paturi and appears in
[CP09].

Chapter 10

Clause width, density duality for
SAT

The performance of algorithms is often instance-sensitive, but how does the difficulty
vary with the instance? For CNF-SAT, 3 common approaches to parametrically constrain a CNF
to upper bound how hard it is are

• bound the maximum clause width to some k,

• bound the ratio of clauses to variables to some ∆,

• bound the maximum frequency with which variables appear to some f ,

and we denote the problems with these restricted inputs by, respectively, k-SAT, SAT∆, and
f -Freq-SAT. All known upper bounds α on the exponential complexities of these problems for
particular values of the parameters k,∆, f converge to 1 as the parameter in question tends to
∞. This raises the question of whether for any of the 3 restriction types there is an algorithm,
or even a non-uniform sequence of algorithms, for which α converges to a number < 1 as the
parameter tends to ∞. For k-SAT, the negation of this we called the Strong Exponential Time
Hypothesis (SETH, conjecture 6.10).

Though still not resolved, [CIP06] show, and we show in this chapter, that they are
equivalent. Thus SETH can be equivalently defined in terms of any of these restrictions. In
fact, [CIP06] show that the sequences of exponential complexities (α) for the 3 restriction types
have an intuitive functional relationship and even converge to the same limit (theorems 10.13,
10.14). In particular, cSAT∆ is not must larger than ck-SAT when k ≤ O(lg ∆), and the reverse
approximate inequality holds when lg ∆ ≤ O(k lg k). 1 We will make this more precise in §10.3.1.

The intuition for the proofs comes from considering pairs of restrictions. E.g. if we fix
k and vary ∆, how does the complexity of k-SAT∆ = k-SAT ∩ SAT∆ vary? If ∆ is very small,
then the problem will be underconstrained, in that there will typically be a very large number
of solutions, and we will be able to set many variables arbitrarily without making the problem
unsatisfiable. Thus, in some intuitive sense, the problem really involves a much smaller number
of variables than it has, and is thus not maximally difficult. On the other hand, an instance
where ∆ is very big is overconstrained, in that setting a few variables usually will force the values
of many others. Thus, overconstrained problems are also not the most difficult.

For random formulas, this intuition can be substantiated. If F is chosen as a uniformly
random set of m = ∆n clauses over n variables (et al distributions), it is known that there is a

1It was slightly overstated in [CIP06] that cSAT∆ ≈ ck-SAT when k = Θ(lg ∆). This would actually require a
further reduction in the sparsification constant.

97

98

constant satisfiability threshold for ∆, which is 2k ln 2−O(k) ([AM02, AP03]), below which F ∈
SAT w.h.p. and above which F /∈ SAT w.h.p. It is not known whether this threshold is a single
value or a small interval ([Fri99]). Poly time algorithms that almost certainly certify satisfiability
of random instances with clause density substantially below the threshold are known ([FS96]),
and survey propagation is a heuristic that seems to work well even for instances near but below
the threshold. There is currently no proven efficient algorithm that can certify unsatisfiability
just above the threshold, nor even is there a poly time algorithm when k = 3, ∆ is above the
threshold but �

√
n [Fla09]. However, for resolution-based methods, random formulas have

exponential complexity for constant densities above the threshold, but sub-exponential for every
increasing density ([BKPS98]). Both experimental and theoretical studies illustrate how the
expected difficulty of the problem peaks at the threshold, then falls gradually off ([KS94, ART06]).

The sparsification lemma shows that for any fixed k, there is a density ∆ so that k-CNF
formulas of density ∆ are almost the hardest instances of k-SAT. (Independently, [JS99] proved
a similar result for the maximum independent set problem.) This supports the intuition that
the hardest instances have a linear relationship between variables and constraints. However, in
[IPZ01], this constant density was doubly exponential in k. Intuitively, however, the hardest
density of k-SAT should be exponential in k, as is the case for random instances. The improved
bound from [CIP06], and here in theorem 5.15, brings this down to exponential in O(k lg k),
which is much closer to the intuitive value.

As one application of the new techniques here, we will demonstrate in §10.4 the impos-
sibility of sparsifying CNF formulas of size polynomial in the number of variables.

There seems to be a highly fruitful connection between new approaches to SAT algo-
rithms and reductions between restricted versions of SAT. For example, [IP01], which showed
that ETH implies sk increases infinitely often as a function of k, is largely based on the satisfia-
bility coding lemma of [PPZ99], which was originally used to analyze a new SAT algorithm. The
results here are also largely based on a SAT algorithm: Schuler’s CNF-SAT algorithm [Sch05].
Schuler’s approach leverages the performance of k-SAT algorithms such as PPZ to solve general
SAT through a width reduction technique. We reformulate this technique as a reduction from
SAT∆ to k-SAT, giving a considerably different presentation from that of [Sch05]. A benefit of
this is that while [Sch05] presents as an open question whether there exists a deterministic algo-
rithm solving CNF-SAT on n variables and m clauses with exponential complexity ≤ 1 − 1

lgm ,
the presentation here will show clearly that the answer is yes.

10.1 Definitions

The width of F is width(F) = max{|C| | C ∈ F}. The density of F is density(F) =
|F |

|var(F)| . The frequency of F , freq(F), is the maximum number of times a variable occurs in F .
The average frequency of F , freq(F), is the number of times each variable occurs in F , averaged
over all variables; i.e. the number of literal occurrences divided by | var(F)|.

k-SAT = {F ∈ CNF-SAT | width(F) ≤ k}
SAT∆ = {F ∈ CNF-SAT | density(F) ≤ ∆}

f -Freq-SAT = {F ∈ CNF-SAT | freq(F) ≤ f}
f -Freq-SAT = {F ∈ CNF-SAT | freq(F) ≤ f}.

99

Then define

sk = ck-SAT

d∆ = cSAT∆

ϕf = cf-Freq-SAT

ϕf = cf-Freq-SAT,

and a subscript of ∞ in any of these sequences will represent the limit; e.g. s∞ = limk→∞ sk.
Occasionally, we will use the same notation when k,∆ are growing functions of the number of
variables n; e.g. SAT∆ = {F ∈ SAT | density(F) ≤ ∆(|var(F)|)}. Note that for any CNF F ,

freq(F) ≤ freq(F) ≤ density(F). (10.1)

So ∀f > 0 ϕf ≤ ϕf ≤ df .

10.2 Previous work

Let k-SAT∆ = k-SAT ∩ SAT∆, and sk,∆ = ck-SAT∆ . Then by composing the sparsi-
fication algorithm with any algorithm for k-SATO(k/ε)3k we obtain from the new sparsification
constants in theorem 5.15:

Lemma 10.1. ∀k, ε > 0 ∃f ≤ O(k/ε)3k sk ≤ ck-SAT∩f-Freq-SAT + ε.

In particular, letting ε = k−c, we obtain:

Corollary 10.2. ∀k, c > 0 ∃f ≤ 2O(ck lg k) sk ≤ ck-SAT∩f-Freq-SAT + k−c.

Thus, roughly exponential density formulas are very close to the hardest k-CNF in-
stances. (10.1) then implies the following.

Corollary 10.3. ∀k, ε > 0 ∃f > 0 sk ≤ ϕf + ε ≤ ϕf + ε ≤ df + ε.

The following theorem, proven by demonstrating a deterministic Turing reduction using
the sparsification lemma and ideas from the satisfiability coding lemma (theorem 6.2), upper
bounds the rate of convergence of sk.

Theorem 10.4 ([IP01]). ETH⇒ ∃d > 0 ∀k ≥ 3 s∞ − sk ≥ d
k .

[Sch05] demonstrated a randomized algorithm solving CNF-SAT in n variables and m
clauses, with no restriction on clause width, in time

poly(n,m)2(1− 1
1+lg m)n. (10.2)

This algorithm can be viewed as a Turing reduction from CNF-SAT with bounded clause density
to CNF-SAT with bounded clause width, and we will now present and analyze it as such.

For k ≥ 3, consider the routine in figure 10.1. The idea is that the algorithm reduces
the width of an arbitrary long clause (size > k) C by branching on whether the disjunction C ′ of
the first k literals of C is true or not. If it guesses so, then it replaces C by the short clause C ′

and the number of long clauses is reduced by 1. If it guesses not, then it simplifies the formula
by eliminating the k variables of C ′. Clearly the solutions of the input formula is the union of
the solutions of the output formulas.

Let p be some path of length t in the tree T of recursive calls of ReduceWidthk(F) and
let G be the output at the leaf of p. Let l, r be the number of left, right branches in p. Then
since each right branch eliminates k variables, we have |var(G)| = n− kr and r ≤ n

k . Since each
left branch eliminates 1 clause of size > k, we have l ≤ m.

So the number of paths in T with r right branches is ≤
(
m+r
r

)
, and each outputs a

formula with n − kr variables. Furthermore, each output formula is generated with poly(n,m)
delay.

100

ReduceWidthk(F ∈ CNF)
if F has no clause of size > k

output F
else

let C be a clause of F of size k′ > k
and C ′ be the first k literals of C
F1 ← F − {C} ∪ {C ′}
F0 ← F |(C ′ = 0)
/* F0 is F but with the literals of C ′ set to false,
and with true clauses and false literals removed */
ReduceWidthk(F1) /* left branch: guess C ′ true */
ReduceWidthk(F0) /* right branch: guess C ′ false */

Figure 10.1: width reduction algorithm

Lemma 10.5. If k-SAT can be solved in time poly(n,m)2sn by some algorithm S, where the
polynomial does not depend on k, s, S, then CNF-SAT in n variables and m ≥ n

k clauses can be
solved in time

poly(n,m)2sn+ 4m

2sk ,

the polynomial not depending on k, s, S. (If m < n
k , then we get poly(n,m)2(s+ 4

k2sk)n.)

Proof. Combining S with ReduceWidthk gives an algorithm for CNF-SAT whose running time
is ≤ poly(n,m) times

bn
k c∑
r=0

(
m+ r

r

)
2s(n−kr)

≤
m+bn

k c∑
r=0

(
m+ bnk c

r

)
2s(n−kr)

≤2sn
(
1 + 2−sk

)m+ n
k

≤2sne2
−sk(m+ n

k)

≤2sn+
4 max{m, n

k
}

2sk .

PPZ is an algorithm solving k-SAT in time poly(n,m)2(1− 1
k)n, where the polynomial

does not depend on k, and so Schuler’s result (10.2) can now be obtained from lemma 10.5 by
taking s = 1 − 1

k , k = 1 + lgm. Our derandomization of LocalSearch in §6.4.1 solves k-SAT
in time poly(n,m)2(1−lg(1+ 1

k))n+o(n), where the polynomial does not depend on k. So using the
derandomized LocalSearch, s = 1− lg(1+ 1

k), k = lgm, we get a deterministic algorithm for CNF-
SAT with running time ≤ poly(n,m)2(1− 1

lg m)n+o(n), answering one of Schuler’s open questions.
(Note that for our derandomization of PPZ, the leading polynomial in the running time has an
exponent that grows linearly with k, and so will not suffice for this result unless we strengthen
the hypothesis by bounding m.) However, we are going to be more interested in using the above
as a reduction than to directly design SAT algorithms.

101

10.3 Relating the SAT constants

We use the reductions given in the previous section to prove the main results of the
chapter – that the exponential complexities of k-SAT, SAT∆, and f -Freq-SAT are intertwined,
and hence their limiting values are identical.

10.3.1 Relating k-SAT to SAT∆

The proof of d∞ = s∞ proceeds in 2 steps. First, sparsification (corollary 10.3) shows
that s∞ ≤ d∞. To go the other way, we reduce SAT∆ to k-SAT by using the width-reduction
algorithm. The following lemma bounds the penalty paid for this reduction.

Lemma 10.6. ∀∆ > 0, k ≥ 1
∆ , ε > 0 d∆ ≤ sk + ε+ 4∆

2(sk+ε)k .

Proof. Let S be an algorithm solving k-SAT in time O(2(sk+ε)n). Given F ∈ CNF with n
variables and m ≤ ∆n clauses, duplicate clauses in F until m ∈ [∆n,∆n+1). Now apply lemma
10.5.

Taking the limit as ε→ 0 gives the following.

Corollary 10.7. ∀∆ > 0, k ≥ 1
∆ d∆ ≤ sk + 4∆

2skk .

By choosing k = O(lg ∆) we can make the penalty 4∆
2skk small. In particular, we will

want this to be smaller than the distance between sk and s∞, which we can lower bound by using
theorem 10.4. The following technical lemma shows exactly how to choose k.

Lemma 10.8. ETH⇒ ∀∆ > 0 ∃k ∈ O(lg ∆), δ ∈ Ω(1
lg ∆), l

sl − sk ≥
4∆
2skk

+ δ.

Proof. Let d be as in theorem 10.4. Choose k = 2
s3

lg(2
s3

16∆
d) ∈ O(lg ∆), δ = d

4k ∈ Ω(1
lg ∆), l so

large that s∞ − sl ≤ d
2k . Then

d

16∆
2skk ≥ d

16∆
2s3k =

(2
s3

)2 16∆
d

≥ 2
s3

lg
(2
s3

16∆
d

)
= k.

(10.3)

So

sl − sk = (s∞ − sk)− (s∞ − sl)

≥ d

k
− d

2k

=
d

4k
+

d

4k

≥ 4∆
2skk

+ δ by (10.3).

Now we can upper bound the complexity of SAT∆ by that of k-SAT for some k (and
vice versa) and even add an exponential gap.

Corollary 10.9. ETH⇒ ∀∆ > 0 ∃l d∆ ≤ sl − Ω(1
lg ∆).

102

Proof. Combine corollary 10.7 and lemma 10.8.

Corollary 10.10. ETH⇒ ∀k ≥ 3 ∃∆ > 0 sk ≤ d∆ − Ω(1
k).

Proof. From corollary 10.3, s∞ ≤ d∞. Let d be as in theorem 10.4. Choose ∆ so large that
d∞ − d∆ ≤ d

2k . Then

sk ≤ s∞ −
d

k
≤ (d∞ − d∆) + (d∆ −

d

k
)

≤ d∆ −
d

2k
.

We are now in a position to prove the analog of theorem 10.4.

Theorem 10.11. ETH⇒ ∀∆ > 0 d∞ − d∆ ≥ Ω(1
lg ∆).

Proof. Combine corollaries 10.9, 10.10.

We need the following to eliminate the assumption of ETH.

Lemma 10.12. ¬ETH⇒ ∀∆ > 0, k d∆ = sk = 0.

Proof. Use theorem 9.17 and lemma 10.6 to conclude that ∀∆ > 0, k ≥ 1
∆ , ε > 0 d∆ ≤ ε + 4∆

2εk .
Choose k = 1

ε lg 4∆
ε to get that ∀ε > 0 d∆ ≤ 2ε, which implies d∆ = 0.

Theorem 10.13. d∞ = s∞.

Proof. Combine corollaries 10.9, 10.10 and lemma 10.12.

From theorem 9.16, s∞ = σ∞, where σk = cUnique-k-SAT. So now we have d∞ = s∞ =
σ∞.

Of course the above theorem did not require the gaps in corollaries 10.9, 10.10 that we
went through so much trouble to lower bound. §10.4 will make use of these gaps.

10.3.2 Relating k-SAT to f-Freq-SAT

Analogous to theorem 10.13, we can easily show that ϕ∞ = ϕ∞ = d∞ = s∞ = σ∞.

Theorem 10.14. d∞ = ϕ∞ = ϕ∞.

Proof. Recall that ∀f > 0 ϕf ≤ ϕf ≤ df . So ϕ∞ ≤ ϕ∞ ≤ d∞. If ¬ETH, then by lemma 10.12,
ϕ∞ ≤ ϕ∞ ≤ d∞ = 0. If ETH holds, then corollaries 10.9 and 10.3 show that ∀∆ > 0 ∃k, f, ε >
0 d∆ ≤ sk − ε ≤ ϕf − ε

2 ≤ ϕf −
ε
2 , and so d∞ ≤ ϕ∞ ≤ ϕ∞.

Combining theorems 10.14, 10.11 gives the following.

Theorem 10.15. ETH⇒ ∀f ≥ 2 ϕ∞ − ϕf ≥ Ω(1
lg f).

103

10.3.3 Putting the bounds together

Theorem 10.16. ϕf is a continuous function of f on the domain [1,∞).

Proof. It is easy to see that ϕ1 = limf→1+ ϕf = 0. Since ϕf is monotonically nondecreasing in
f , it is sufficient to show that

∀f > 1, ε > 0 ∃δ > 0 ϕf+δ − ϕf−δ ≤ ε. (10.4)

Let f > 1, ε > 0 and choose δ = ε(f−1)
2 . Let F ∈ CNF, n = | var(F)|, freq(F) ≤ f + δ.

Let S be the set of the εn variables of F of highest frequency. By branching on S, we obtain
≤ 2εn formulas Fi. For each variable x that is removed by the branching, we can replace it by a
unit clause in x. This has the effect of restoring the original number of variables, but reducing
the frequency of the εn most frequent variables to just 1. Let Gi be the result of adding such
unit clauses to Fi. So F is satisfiable iff some Gi is satisfiable, and freq(Gi) ≤ ε+(f +δ)(1− ε) ≤
f + δ − (f − 1)ε ≤ f − δ. So we can decide the satisfiability of F by using a (f − δ)-Freq-SAT
solver on each Gi, and this shows (10.4).

Theorem 10.17. d∆ is a continuous function of ∆ on the domain [0,∞).

Proof. Consider the following procedure applied to a CNF F with n variables and ≤ ∆n clauses:
while there is a pure literal, set it to true and simplify F by removing true clauses and false
literals. The result is a CNF G with no pure literals and G ∈ SAT iff F ∈ SAT. Now branch on
some literal and simplify again. Note that both the true and false branches lead to the elimination
of some clause since the branch literal is not pure.

If we repeat this procedure εn times, we will eliminate ≥ εn clauses. We can add back
the eliminated variables in one big clause without altering the satisfiability of the formula. The
resulting formula will have density ≤ (∆−ε)n+1

n , and so d∆ ≤ d∆−ε + ε. Taking δ = ε
2 and

replacing ∆ by ∆ + δ, we have

∀∆, ε > 0 ∃δ > 0 d∆+δ − d∆−δ ≤ ε,

which shows that d∆ is continuous.

Combining corollaries 10.2, 10.7, theorems 10.16, 10.17, and the intermediate value
theorem, we obtain the following.

Theorem 10.18. ∀k, c > 0 ∃f,∆ ∈ [2Θ(k), 2Θ(ck lg k)]

|ϕf − sk| ≤ k−c

|d∆ − sk| ≤ k−c.

10.4 Impossibility of general sparsification

In [Sch05] it was conjectured that cCNF-SAT might be < 1, which is slightly stronger than
¬SETH, and it was observed that at least this is true if we restrict to instances to have linearly
many clauses [AS03]. (although corollary 10.9 proves this directly). This naturally makes one
wonder whether a more general sparsification is possible, where we assume a polynomial bound
on the number of clauses m, but no restriction on the maximum clause width k.

Such a general sparsification lemma would be useful if, say, one had a formula with
bounded average clause width, in which case the number of clauses would be polynomially
bounded.

-

104

Conjecture 10.19 (general sparsification). ∃ function g ∀c, ε > 0 ∃ algorithm A
∀F ∈ CNF, |F | ≤ nc, n = |var(F)| A(F) outputs F1, . . . , Fs ∈ CNF with poly(n) delay and where
|var(Fi)| ≤ n s.t.

1. s ≤ 2εn

2. sol(F) 6= ∅ iff ∪i sol(Fi) 6= ∅

3. density(Fi) ≤ g(c, ε)

4. ∃c′ > 1 g(c′, ε) ∈ 2o(
1
ε). (a weak demand on the rate of growth of g)

We can weaken the demands of the conjecture considerably and still show that it is
unlikely to be true. The following is implied by conjecture 10.19.

Conjecture 10.20. ∃ functions α(n) ∈ ω(1), g(ε) ∈ 2o(
1
ε) ∀ε > 0 ∃ a O(2εn)-time Turing reduc-

tion from SATα to SATg(ε) that preserves the number of variables.

Theorem 10.21. ETH⇒ not conjecture 10.20.

Proof. Suppose indirectly that conjecture 10.20 holds. Then

∀ε > 0 ∃∆ ∈ 2o(
1
ε) dα ≤ d∆ + ε,

which implies, by corollary 10.9,

∀ε > 0 ∃δ ∈ ω(ε), l dα ≤ sl + ε− δ.

Since δ ∈ ω(ε), we have ∃ε > 0 ε < δ(ε).
So ∃l dα < sl, which implies, by lemma 10.10,

∃∆′ > 0 dα < d∆′ ≤ dα,

a contradiction.

Of course, if you are an optimist, then the contrapositive is the more interesting way to
look at the above: if poly(n)-sized formulas can be sparsified, then k-SAT can be solved fast.

10.5 Conclusion

Let us make 2 remarks. First, all of the reductions used in this chapter – sparsification,
width reduction, and the variable-reduction technique from [IP01] – are all deterministic, and so
all the results in this chapter hold relative to deterministic exponential complexity as well. (E.g.
if we define s′k = dck-SAT, d

′
∆ = dcSAT∆ , then s′∞ = d′∞, etc.)

Second, having shown the equivalence of SETH in terms of clause width, clause density,
and variable frequency, we may ask whether for one of these restriction types algorithm design
might be an intuitively easier process. After all, the power of proving equivalences is that
something that might be hard to see from one perspective might be easier from another.

Let’s make a metaphor. 3-SAT is, in some sense, “easy” compared to Integer Program-
ming (IP), and this can be seen in (1) the ease with which one reduces 3-SAT to IP and (2)
the difficulty in the reverse direction. Nonetheless, they are both NP-complete. The way we
use this equivalence is that if we want to prove novel problem A is NP-hard, we may prefer to
reduce 3-SAT (the easy problem) to A rather than reducing IP (the hard problem) to A, since
we feel that a proof of the later would entail at least all the difficulty of reducing IP to 3-SAT,
and perhaps more. Conversely, if we want to prove that some novel problem is in NP, we may
prefer to reduce it to IP, since we may be able to leverage the nontrivial proof that IP is in NP,

105

whereas 3-SAT being in NP is so trivial that reduction to 3-SAT is unlikely to save any work.
Not surprisingly then, there are more nontrivial algorithms for 3-SAT than for IP – actually,
there are none for IP.

So (A “easily” reduces to B but not vice versa) seems to imply that algorithmic design
for A should be easier than for B. Given that sparsification is substantially more technically
sophisticated than the other reductions we used, we should suspect that f -Freq-SAT may be
“easy” compared to k-SAT. Yet, much more effort for algorithmic design has focused on k-SAT.
Perhaps this is a mistake. It is true that, starting from a CNF of bounded width, sparsification
yields a CNF of bounded width and bounded frequency, but we have already shown that the
sparsification constant from [IPZ01] was somewhat loose, and it may still be. So it may be
worthwhile to spend more effort looking at k-SAT algorithms where the frequency (or density)
is closer to the satisfiability threshold, or perhaps just f -Freq-SAT problems more generally.

Acknowledgements

Material here is joint work with Russell Impagliazzo and Ramamohan Paturi and ap-
pears in [CIP06].

Chapter 11

Summary and open problems

Below, we summarize the main results of this work.

• We decreased the sparsification constant from (8k2k

ε)2
k−1

to O(kε)
3k.

• We reviewed the currently best worst-case upper bound k-SAT algorithms, and showed an
upper bound on the PPZ k-SAT algorithm that decreases as a function of the number of
solutions of the input formula.

• We showed cΠ2 3-SAT ≥ s∞, providing an alibi for the lack of nontrivial algorithms at and
beyond the 2nd level of the polynomial hierarchy, gave a canonical syntactic form to the
hard instances of Π2 3-SAT, and related the cΠi k-SAT constants for other values of i, k.

• We gave what we believe is the first nontrivial algorithm for deciding the satisfiability
of circuits of n variables, d depth, cn gates. It has exponential complexity 1 − α where
α ≥ 1/O(c2

d−2−1 lg3·2d−2−2 c), and the constant in the big-Oh depends only on d.

• We thoroughly reviewed the Valiant-Vazirani reduction, derandomizing it when the input
has ≤ 2o(n) solutions, and discussing its limitations. We extended this reduction through
the isolation lemma, upper bounding the unique satisfiability gap sk − σk by O(lg2 k

k),
which implies s∞ = σ∞, and showed that this gap is nearly optimal for oblivious hashing
techniques.

• We showed that deciding whether a problem has exactly 1 solution, i.e. defines a function,
has the same exponential complexity as deciding whether there is a solution for many
standard problems, giving a technique that easily generalizes.

• We showed an intuitive functional relationship between sk, d∆, ϕ∆: that these are approxi-
mately the same when lg ∆ is between Ω(k) and O(k lg k), which implies s∞ = d∞ = ϕ∞ =
σ∞.

If we could reduce the sparsification constant to O(1
ε)
k, we could simplify the last bullet

point to “sk, d∆, ϕ∆ are approximately the same when k = Θ(lg ∆)”. This seems so plausible
that perhaps it is worth investigating. Is there a superior CNF-SAT algorithm that can exploit
both limited clause width and variable frequency close to that of the satisfiability threshold?
What non-oblivious techniques could possibly break the Ω(1

k) barrier for the unique satisfiability
gap? We already know a few properties of the structure of k-CNF solution spaces, given by
the satisfiability coding lemma and the insensitivity of k-CNFs. Perhaps one of these or some
other combinatoric property of the solution space structure will shed the necessary light. The
alternative is to look into the syntax of the formulas. Are ETH and SETH equivalent? If not,

106

107

does ETH imply any explicit lower bound on s∞? If it is too much to hope for a nontrivial
algorithm for the satisfiability of arbitrary circuits, what is the largest class for which we can
find such algorithms?

11.1 Impact of quantum computers

Lastly, we should say something about quantum computation since it may be in the
medium-term future. Peter Shor’s poly time quantum factoring and discrete log algorithms and
Lov Grover’s quadratic speedup algorithm [Sho97, Gro96, BBHT96] show great potential for
quantum computing. As we have observed before, Grover’s algorithm transforms a time t algo-
rithm with success probability p into a time O(t/

√
p) algorithm with constant success probability.

It was observed in [DKW05] that since all of the satisfiability algorithms discussed in this work –
PPZ, PPSZ, LocalSearch, the Iwama-Tamaki algorithm, Schuler’s algorithm, the constant depth
and linear size circuit solver in chapter 8 – can be expressed as exponential iterations of poly
time algorithms, Grover’s algorithm can halve each of their exponential complexities.

This prompts the following question: given an algorithm A with exponential running
time t, can we always transform it into an exponential iteration of a poly time algorithm B
with success probability approximately 1/t? Such a transformation would prime A for use in
Grover’s algorithm and we could reap the full benefit of its quadratic speedup. Most backtracking
algorithms have such a property, but not everything is a backtracking algorithm of polynomial
depth, e.g. dynamic programming with an exponentially large DP table. What other algorithmic
paradigms might not have such a property? Are there better algorithms for satisfiability lurking
within them?

While normally randomness in an algorithm is often seen as a temporarily acceptable
curse to be lifted as soon as possible, perhaps when designing algorithms in the future, citing
the property that an algorithm can be randomized, in the sense of being transformed into an
iteration of a fast algorithm with less success probability, may be seen as a feature.

Bibliography

[AM02] Dimitris Achlioptas and Cristopher Moore. The asymptotic order of the random
k-sat threshold. In FOCS, pages 779–788. IEEE Computer Society, 2002.

[AP03] Dimitris Achlioptas and Yuval Peres. The threshold for random k-sat is 2k ln 2−o(k).
In STOC, pages 223–231. ACM, 2003.

[APT79] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algo-
rithm for testing the truth of certain quantified boolean formulas. Inf. Process. Lett.,
8(3):121–123, 1979.

[ART06] Dimitris Achlioptas and Federico Ricci-Tersenghi. On the solution-space geometry of
random constraint satisfaction problems. In Jon M. Kleinberg, editor, STOC, pages
130–139. ACM, 2006.

[AS03] Vikraman Arvind and Rainer Schuler. The quantum query complexity of 0-1 knap-
sack and associated claw problems. In Toshihide Ibaraki, Naoki Katoh, and Hirotaka
Ono, editors, ISAAC, volume 2906 of Lecture Notes in Computer Science, pages
168–177. Springer, 2003.

[Aus07] Per Austrin. Balanced max 2-sat might not be the hardest. In David S. Johnson and
Uriel Feige, editors, STOC, pages 189–197. ACM, 2007.

[BBHT96] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quan-
tum searching, May 1996.

[BDH93] Amir Ben-Dor and Shai Halevi. Zero-one permanent is #p-complete, a simpler proof.
In ISTCS, pages 108–117, 1993.

[Bea94] Paul Beame. A switching lemma primer. Technical Report TR UW-CSE-95-07-
01, Department of Computer Science and Engineering, University of Washington,
November 1994.

[BKPS98] Paul Beame, Richard M. Karp, Toniann Pitassi, and Michael E. Saks. On the com-
plexity of unsatisfiability proofs for random k-cnf formulas. In STOC, pages 561–571,
1998.

[BKS07] Piotr Berman, Marek Karpinski, and Alexander D. Scott. Computational complexity
of some restricted instances of 3-sat. Discrete Applied Mathematics, 155(5):649–653,
2007.

[Bop97] Ravi B. Boppana. The average sensitivity of bounded-depth circuits. Inf. Process.
Lett., 63(5):257–261, 1997.

108

109

[BW05] Fahiem Bacchus and Toby Walsh, editors. Theory and Applications of Satisfiability
Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June 19-23,
2005, Proceedings, volume 3569 of Lecture Notes in Computer Science. Springer,
2005.

[Cal04] Chris Calabro. Upper bounds for k-sat. research exam (available on author’s web
page), 2004.

[CG89] Benny Chor and Oded Goldreich. On the power of two-point based sampling. J.
Complexity, 5(1):96–106, 1989.

[Che05] Hubie Chen. Existentially restricted quantified constraint satisfaction. CoRR,
abs/cs/0506059, 2005.

[CIKP08] Chris Calabro, Russell Impagliazzo, Valentine Kabanets, and Ramamohan Paturi.
The complexity of unique k-sat: An isolation lemma for k-cnfs. J. Comput. Syst.
Sci., 74(3):386–393, 2008.

[CIP06] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between
clause width and clause density for sat. In CCC ’06: Proceedings of the 21st Annual
IEEE Conference on Computational Complexity, pages 252–260, Washington, DC,
USA, 2006. IEEE Computer Society.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC, pages
151–158. ACM, 1971.

[CP09] Chris Calabro and Ramamohan Paturi. k-sat is no harder than decision-unique-k-sat.
In Anna E. Frid, Andrey Morozov, Andrey Rybalchenko, and Klaus W. Wagner, edi-
tors, CSR, volume 5675 of Lecture Notes in Computer Science, pages 59–70. Springer,
2009.

[CPI09] Chris Calabro, Ramamohan Paturi, and Russell Impagliazzo. The complexity of
satisfiability of small depth circuits. In IWPEC, 2009. (to appear in IWPEC 2009,
LNCS).

[CW77] Larry Carter and Mark N. Wegman. Universal classes of hash functions (extended
abstract). In STOC, pages 106–112. ACM, 1977.

[DD01] Olivier Dubois and Gilles Dequen. A backbone-search heuristic for efficient solving
of hard 3-sat formulae. In Bernhard Nebel, editor, IJCAI, pages 248–253. Morgan
Kaufmann, 2001.

[DGH+02] Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon Kleinberg,
Christos Papadimitriou, Prabhakar Raghavan, and Uwe Schöning. A deterministic
(2 − 2/(k + 1))n algorithm for k-sat based on local search. Theor. Comput. Sci.,
289(1):69–83, 2002.

[DKW05] Evgeny Dantsin, Vladik Kreinovich, and Alexander Wolpert. On quantum versions
of record-breaking algorithms for sat. SIGACT News, 36(4):103–108, 2005.

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland. A machine program for
theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
J. ACM, 7(3):201–215, 1960.

110

[FK07] Martin Fürer and Shiva Prasad Kasiviswanathan. Algorithms for counting 2-sat
solutions and colorings with applications. In Ming-Yang Kao and Xiang-Yang Li,
editors, AAIM, volume 4508 of Lecture Notes in Computer Science, pages 47–57.
Springer, 2007.

[Fla09] Abraham D. Flaxman. Algorithms for Random 3-SAT, chapter (preprint to appear
in Encyclopedia of Algorithms). Springer, 2009.

[Fri99] Ehud Friedgut. Necessary and sufficient conditions for sharp thresholds of graph
properties, and the k-sat problem. J. Amer. Math. Soc., 12:1017–1054, 1999.

[FS96] Alan M. Frieze and Stephen Suen. Analysis of two simple heuristics on a random
instance of k-sat. J. Algorithms, 20(2):312–355, 1996.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

[GB97] Etienne Grandjean and Hans Kleine Büning. Sat-problems and reductions with re-
spect to the number of variables. J. Log. Comput., 7(4):457–471, 1997.

[Geb09] Heidi Gebauer. Disproof of the neighborhood conjecture with implications to sat.
CoRR, abs/0904.2541, 2009.

[Gho06] Subhas Kumar Ghosh. Unique k-sat is as hard as k-sat. Electronic Colloquium on
Computational Complexity (ECCC), 13(062), 2006.

[GK06] Venkatesan Guruswami and Valentine Kabanets. Hardness amplification via space-
efficient direct products. In José R. Correa, Alejandro Hevia, and Marcos A. Kiwi,
editors, LATIN, volume 3887 of Lecture Notes in Computer Science, pages 556–568.
Springer, 2006.

[GKMP09] Parikshit Gopalan, Phokion G. Kolaitis, Elitza N. Maneva, and Christos H. Papadim-
itriou. The connectivity of boolean satisfiability: Computational and structural di-
chotomies. SIAM J. Comput., 38(6):2330–2355, 2009.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In STOC,
pages 212–219, 1996.

[Har67] L. H. Harper. A necessary condition on minimal cube numberings. Journal of Applied
Probability, 4(2):397–401, 1967.

[H̊as86] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In STOC,
pages 6–20. ACM, 1986.

[H̊as01] Johan H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859,
2001.

[HS06] Shlomo Hoory and Stefan Szeider. A note on unsatisfiable k-cnf formulas with few
occurrences per variable. SIAM J. Discrete Math., 20(2):523–528, 2006.

[IP01] Russel Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput.
Syst. Sci., 62(2):367–375, 2001.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[IT04] Kazuo Iwama and Suguru Tamaki. Improved upper bounds for 3-sat. In J. Ian
Munro, editor, SODA, page 328. SIAM, 2004.

111

[JS99] David S. Johnson and Mario Szegedy. What are the least tractable instances of max
independent set? Proc. 10th ACM-SIAM Symposium on Discrete Algorithms, pages
927–928, 1999.

[JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approxima-
tion algorithm for the permanent of a matrix with nonnegative entries. J. ACM,
51(4):671–697, 2004.

[KLM89] Richard M. Karp, Michael Luby, and Neal Madras. Monte-carlo approximation al-
gorithms for enumeration problems. J. Algorithms, 10(3):429–448, 1989.

[KS94] Scott Kirkpatrick and Bart Selman. Critical behaviour in the satisfiability of random
boolean expressions. Science, 264:1297–1301, 1994.

[KST93] Jan Kratochv́ıl, Petr Savický, and Zsolt Tuza. One more occurrence of variables
makes satisfiability jump from trivial to np-complete. SIAM J. Comput., 22(1):203–
210, 1993.

[LLZ02] Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding techniques for the
max 2-sat and max di-cut problems. In William Cook and Andreas S. Schulz, editors,
IPCO, volume 2337 of Lecture Notes in Computer Science, pages 67–82. Springer,
2002.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier
transform, and learnability. J. ACM, 40(3):607–620, 1993.

[MNT93] Yishay Mansour, Noam Nisan, and Prasoon Tiwari. The computational complexity
of universal hashing. Theor. Comput. Sci., 107(1):121–133, 1993.

[MZK+99] Remi Monasson, Riccardo Zecchina, Scott Kirkpatrick, Bart Selman, and Lidror
Troyansky. Determining computational complexity from characteristic ’phase tran-
sitions’. Nature, 400:133–137, July 1999.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions
and applications. SIAM J. Comput., 22(4):838–856, 1993.

[PPSZ05] Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved
exponential-time algorithm for k-sat. J. ACM, 52(3):337–364, 2005.

[PPZ99] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma.
Chicago Journal of Theoretical Computer Science, 1999(115), December 1999.

[PSZ00] Ramamohan Paturi, Michael E. Saks, and Francis Zane. Exponential lower bounds
for depth three boolean circuits. Comput. Complex., 9(1):1–15, 2000.

[RK80] J.M. Buhrman R. Kaas. Mean, median and mode in binomial distributions. Statistica
Neerlandica, 34(1):13–18, 1980.

[Rol05a] Daniel Rolf. Derandomization of ppsz for unique-k-sat. In Bacchus and Walsh
[BW05], pages 216–225.

[Rol05b] Daniel Rolf. Improved bound for the ppsz/schöning-algorithm for 3-sat. Electronic
Colloquium on Computational Complexity (ECCC), 12(159), 2005.

[Rot96] Dan Roth. On the hardness of approximate reasoning. Artif. Intell., 82(1-2):273–302,
1996.

[Rud87] Walter Rudin. Real and Complex Analysis. McGraw-Hill, 3rd edition, 1987.

112

[Sch99] Uwe Schöning. A probabilistic algorithm for k-sat and constraint satisfaction prob-
lems. In FOCS, pages 410–414, 1999.

[Sch05] Rainer Schuler. An algorithm for the satisfiability problem of formulas in conjunctive
normal form. J. Algorithms, 54(1):40–44, 2005.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

[Tar72] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J.
Comput., 1(2):146–160, 1972.

[Tra08] Patrick Traxler. The time complexity of constraint satisfaction. In Martin Grohe
and Rolf Niedermeier, editors, IWPEC, volume 5018 of Lecture Notes in Computer
Science, pages 190–201. Springer, 2008.

[Vad01] Salil P. Vadhan. The complexity of counting in sparse, regular, and planar graphs.
SIAM J. Comput., 31(2):398–427, 2001.

[Val79a] Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput.
Sci., 8:189–201, 1979.

[Val79b] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J.
Comput., 8(3):410–421, 1979.

[VV86] Leslie G. Valiant and Vijay V. Vazirani. Np is as easy as detecting unique solutions.
Theor. Comput. Sci., 47(3):85–93, 1986.

[Wah05] Magnus Wahlström. Faster exact solving of sat formulae with a low number of
occurrences per variable. In Bacchus and Walsh [BW05], pages 309–323.

[Wei] Eric W. Weisstein. Stirling’s approximation. From MathWorld–A Wolfram Web
Resource
http://mathworld.wolfram.com/StirlingsApproximation.html.

[Wil02] Ryan Williams. Algorithms for quantified boolean formulas. In SODA, pages 299–
307, 2002.

[XZ06] Mingji Xia and Wenbo Zhao. #3-regular bipartite planar vertex cover is #p-
complete. In Jin yi Cai, S. Barry Cooper, and Angsheng Li, editors, TAMC, volume
3959 of Lecture Notes in Computer Science, pages 356–364. Springer, 2006.

