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Abstract

We consider the relationship between the complexities of
- and those of restricted to formulas of constant

density.
Let be the infimum of those such that - on

variables can be decided in time and be the
infimum of those such that on variables and

clauses can be decided in time .
We show that . So, for any

, - can be solved in time independent
of if and only if the same is true for with any fixed
density of clauses to variables. We derive some interesting
consequences from this. For example, assuming that -
is exponentially hard (that is, ), of any fixed
density can be solved in time whose exponent is strictly less
than that for general .

We also give an improvement to the sparsification lemma
of [12] showing that instances of - of density slightly
more than exponential in are almost the hardest instances
of - . The previous result showed this for densities
doubly exponential in .

1. Introduction

The performance of algorithms or heuristic methods for
hard problems, such as NP-complete problems, is often
instance–sensitive. This raises the question: how does the
difficulty vary with the instance?

In the case of CNF satisfiability, 3 common approaches
to parametrically constrain a CNF in an attempt to upper
bound how hard it is are

bound the maximum clause width to some ,

bound the ratio of clauses to variables to some ,
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bound the maximum frequency with which variables
can appear to some ,

and we denote the problems with these restricted inputs by,
respectively, -SAT, SAT , and -Freq-SAT.

All known upper bounds on the running times of known
algorithms for solving these problems in the worst case for
particular values of the parameters are of the form

where tends to as the parameter in question
tends to . This raises the question of whether for any
of the restriction types there is an algorithm for which
converges to a number less than as the parameter tends to

. (In the case of -SAT this question is discussed in [18]).
While we do not resolve these questions, we show in this

paper that they are equivalent. In fact, we show more: the
sequences of best possible exponents ( ) for the 3 restric-
tion types have an intuitive functional relationship and even
converge to the same limit (theorems 13, 14). In particular,
assuming that for -SAT, also called the exponen-
tial time hypothesis (ETH), the complexities of -SAT and
SAT are almost the same when . We will
make this more precise in .

The intuition for our proofs comes from considering
pairs of restrictions. E.g. if we fix and vary , how does
the complexity of -SAT -SAT SAT vary? If
is very small, then the problem will be underconstrained, in
that there will typically be a very large number of solutions,
and we will be able to set many variables arbitrarily without
making the problem unsatisfiable. Thus, in some intuitive
sense, the problem really involves a much smaller number
of variables than it has, and is thus not maximally difficult.
On the other hand, an instance where is very big is over-
constrained, in that setting a few variables usually will force
the values of many others. Thus, overconstrained problems
are also not the most difficult.

For random formulas, this intuition can be substantiated.
The hardest random instances of -SAT are those where

has a threshold value, where the formulas go from satisfi-
able with high probability to unsatisfiable with high proba-
bility. (Interestingly, while it is known that such a threshold
function exists, and it is known to asymptotically lie be-

Proceedings of the 21st Annual IEEE Conference on Computational Complexity (CCC'06) 
0-7695-2596-2/06 $20.00 © 2006 IEEE Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 09,2024 at 23:06:13 UTC from IEEE Xplore.  Restrictions apply. 



tween two constants, it is not known that the threshold ap-
proaches a constant ([9])). This threshold is known to grow
exponentially with ([1, 2]). For densities somewhat below
this exponent, there are algorithms that will almost certainly
find the satisfying assignments ([10]). On the other hand,
for resolution-based methods, random formulas have expo-
nential complexity for constant densities above the thresh-
old, but sub-exponential for every increasing density ([5]).
Experimental studies also illustrate how the expected diffi-
culty of the problem peaks at the threshold, then falls grad-
ually off ([14]).

Our work builds on and extends a line of research on
a quantitative theory of the worst-case difficulty of NP-
complete problems. This line of work is related to and
borrows techniques from parameterized complexity, which
looks at the time required to solve instances of NP-complete
problems when certain parameters of the problem are small
([7, 8]). However, while parameterized complexity tends
to look at the easiest instances of NP-complete problems,
those solvable in polynomial-time, exact complexity is in-
tended to reason about the difficulty of the hardest instances.

For example, [12] introduced several techniques for rea-
soning about the hardest instances of -SAT and the rela-
tive complexities of different NP-complete problems. Their
main tool was a sparsification lemma, which shows that for
any fixed , there is a density so that -CNF formulas of
density are almost the hardest instances of -SAT. (In-
dependently, Johnson and Szegedy ([13]) proved a similar
result for the maximum independent set problem.) This sup-
ports the intuition that the hardest instances have a linear re-
lationship between variables and constraints. However, this
constant density was doubly exponential in . Intuitively,
however, the hardest density of -SAT should be exponen-
tial in , as is the case for random instances. We give a
tighter version of the sparsification lemma for which the
density is exponential in , which is much closer
to the intuitive value.

Using the sparsification lemma, [12] were able to show
that the complexities of -SAT are related, showing, in par-
ticular, that is equivalent to ETH (i.e.

). So if -SAT is exponentially hard for any , then
-SAT is also exponentially hard.

Assuming ETH, it is natural to ask for a more precise
relationship between the complexities of -SAT for various

. A partial answer was given by [11], who showed that,
assuming ETH, -SAT gets strictly harder as increases.
More precisely, they showed that, for every there is an
with (theorem 4). We use this result to
prove a similar gap result for constant density SAT (theorem
11).

Besides looking at what the characteristics of the in-
stance reveal about its difficulty, it is also interesting to ask
what properties of the set of solutions make a SAT problem
easy or hard. An initial result along these lines is found in
[6], where they show that solving -SAT with a promise of
unique solutions asymptotically approaches the complexity
of general -SAT, as increases.

One interesting feature of the above work is that there
seems to be a highly fruitful connection between new ap-
proaches to SAT algorithms and reductions between re-
stricted versions of SAT. (For example, [11] is largely based
on the satisfiability coding lemma of [16], which was origi-
nally used to analyze a new SAT algorithm.) Our results are
also largely based on a SAT algorithm, a relatively recent
algorithm for general SAT due to Schuler [18]. Schuler’s
approach leverages the performance of -SAT algorithms
([17, 16, 15]) to solve general SAT through a width reduc-
tion technique. We reformulate this technique as a reduction
from SAT to -SAT.

The rest of the paper is organized as follows. In we
define the symbols that we use globally throughout the rest.
In we state previous results that ours rely upon - in partic-
ular the sparsification lemma and Schuler’s width-reduction
algorithm. In we prove our main results relating -SAT
to both SAT and -Freq-SAT. In we show one appli-
cation: demonstrating the impossibility of sparsifying CNF
formulas of size polynomial in the number of variables. In

we reduce the sparsification constant of [12] from doubly
exponential in to almost singly exponential. We conclude
with a few open questions aimed at further sharpening the
picture of the parameterized complexity of SAT.

2. Definitions

is the set of all Boolean formulas in conjunctive
normal form. We will consider to be a set of
clauses, and a clause to be a set of non-contradictory literals.
We use to represent the number of clauses in . The
variables of , , is the set of variables that actually
occur in . The width of is

. The density of is . The
frequency of , , is the maximum number of times
a variable occurs in . The set of solutions to is

.
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-

- -

For a language , define

Then define

-SAT

-Freq-SAT

and a subscript of in any of these sequences will repre-
sent the limit; e.g. . Occasionally, we
will use the same notation when are growing functions
of the number of variables ; e.g.

.
If an algorithm has several outputs, then we say

has delay if the time between each successive output (and
before the first output) is .

3. Previous work

The following was shown in [12].

Lemma 1 (Sparsification). There is a deterministic al-
gorithm and a function s.t.

- outputs - s.t.

1.

2.

3.

4. each is output with delay, although the de-
gree of the polynomial may depend on

5. , although the degree of the polyno-
mial may depend on .

This is far more detail than we need. The following
weaker corollary will usually suffice.

Corollary 2. For each , there is a -time
Turing reduction from - with variables to
with variables, where , although the degree
of the polynomial may depend on .

The sequences will be our main object of study.
Clearly both are nondecreasing and upperbounded by . We
will often use the assumption that , also called the
exponential time hypothesis (ETH) ([12]).

Corollary 3. The following are equivalent: ,
, .

Proof sketch. is ob-
vious. To show , given a -CNF with

variables and clauses, apply corollary 2 to reduce to
. Then reduce the width of the resulting formula by re-

placing each -clause by new -clauses in new
variables. The resulting -CNF is equivalent to the input

-CNF, but with variables.

The following theorem [11], whose proof uses lemma 1,
upperbounds the rate of convergence of .

Theorem 4. .

[18] demonstrated a randomized algorithm solving SAT
in variables and clauses, with no restriction on clause
width, in time

(1)

This algorithm can be viewed as a Turing reduction from
SAT with bounded clause density to SAT with bounded
clause width, and we will now present and analyze it as
such.

For , define the following routine.

1
2 if has no clause of size
3 output
4 else
5 let be a clause of

of size
6
7
8
9 /* is but with the literals of set to false,

10 and with true clauses and false literals removed */
11 /* left branch:

guess true */
12 /* right branch:

guess false */

The idea is that the algorithm reduces the width of an
arbitrary long clause (size ) by branching on whether
the disjunction of the first literals of is true or not. If
it guesses so, then it replaces by the short clause and
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the number of long clauses is reduced by . If it guesses not,
then it simplifies the formula by eliminating the variables
of . Clearly the solutions of the input formula is the union
of the solutions of the output formulas.

Let be some path of length in the tree of recursive
calls of and let be the output at the
leaf of . Let be the number of left, right branches in .

Then since each right branch eliminates variables, we
have and . Since each left branch
eliminates clause of size , we have .

So the number of paths in with right branches is
, and each outputs a formula with vari-

ables. Furthermore, each output formula is generated with
delay.

Lemma 5. If - can be solved in time by some
algorithm then in variables and clauses
can be solved in time

the polynomial not depending on .

Proof. Combining with gives an algo-
rithm for whose running time is times

since

[16] gave an algorithm solving -SAT in time
, where the polynomial does not depend

on , and so Schuler’s result (1) can now be obtained from
the proof of lemma 5 by taking .
However, we are going to be more interested in using the
above as a reduction than to directly design SAT algorithms.

4. Relating the SAT constants

We use the reductions given in the previous section to
prove our main results - that the constants for , -
SAT, -Freq-SAT are intertwined, and hence the limiting
constants are identical.

SAT

The proof of proceeds in 2 steps. First, spar-
sification (corollary 2) shows that . To go the
other way, we reduce to -SAT by using Schuler’s
width-reduction algorithm. The following lemma bounds
the penalty paid for this reduction.

Lemma 6. .

Proof. Let be an algorithm solving -SAT in time
. Now take in lemma 5.

Taking the limit as gives the following.

Corollary 7. .

By choosing we can make the penalty
small. In particular, we will want this to be smaller than the
distance between and , which we can lower bound
by using theorem 4. The following technical lemma shows
exactly how to choose .

Lemma 8.

Proof. Let be as in theorem 4. Choose
, , so large

that . Then

(2)

So

by theorem 4

by (2)

Now we can upperbound the complexity of by
that of -SAT for some (and vice versa) and even add an
exponential gap.

Corollary 9. .

Proof. Combine corollary 7 and lemma 8.

Corollary 10. .
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Proof. From corollary 2, . Let be as in theorem
4. Choose so large that . Then

We are now in a position to prove the analog of theorem
4.

Theorem 11. .

Proof. Combine corollaries 9, 10.

We need the following to eliminate the assumption of
ETH.

Lemma 12. .

Proof. Use corollary 3 and lemma 6 to conclude that
. Choose to get

that , which implies .

Theorem 13. .

Proof. Combine corollaries 9, 10 and lemma 12.

It is interesting to note that in [6] it was shown that
, where Unique- -SAT. So now we have

.
Of course the above theorem did not require the gaps in

corollaries 9, 10 that we went through so much trouble to
lowerbound. 5 will make use of these gaps.

Analogous to theorem 13, we can easily show that
.

Theorem 14. .

Proof. Since any with has
, we have . So . If

, then by lemma 12, . If ETH holds,
then corollary 9 and lemma 1 show that

, and so .

Combining theorems 14, 11 gives the following.

Theorem 15. .

5. Impossibility of general sparsification

In [18] it was conjectured that might be , and
it was observed that at least this is true if we restrict
instances to have linearly many clauses [4]. (although corol-
lary 9 proves this directly) This naturally makes one wonder
whether a more general sparsification is possible, where we
assume a polynomial bound on the number of clauses ,
but no restriction on the maximum clause width .

Such a general sparsification lemma would be useful if,
say, one had a formula with bounded average clause width,
in which case the number of clauses would be polynomially
bounded.

Conjecture 16 (general sparsification). function
algorithm

outputs with
delay and where s.t.

1.

2. iff

3.

4. . (a weak demand on the rate
of growth of )

We can weaken the demands of the conjecture consider-
ably and still show that it is unlikely to be true. The follow-
ing is implied by conjecture 16.

Conjecture 17. functions
a -time Turing reduction from

to that preserves the number of variables.

Theorem 18. not conjecture 17.

Proof. Suppose indirectly that conjecture 17 holds. Then

which implies, by corollary 9,

Since , we have .
So , which implies, by lemma 10,

a contradiction.

Of course, if you are an optimist, then the contrapositive
is the more interesting way to look at the above: if -
sized formulas can be sparsified, then -SAT can be solved
fast.

Proceedings of the 21st Annual IEEE Conference on Computational Complexity (CCC'06) 
0-7695-2596-2/06 $20.00 © 2006 IEEE Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 09,2024 at 23:06:13 UTC from IEEE Xplore.  Restrictions apply. 



6. Improvement of sparsification

Lemma 1, shown in [12], gave , called the spar-

sification constant, as roughly , which is doubly
exponential in . We will outline how this can be reduced
to .

For fixed , the sparsification algorithm
searches the input formula for a common subexpression

and a pair of integers such that

is a disjunction of literals

occurs in clauses of size

where is a sequence of positive inte-
gers depending only on . The -clauses that contain
form an admissible -flower of . then branches on
whether is true or false.

If guesses that is true, then it will insert into the
formula and remove all the clauses that properly contain ,
of which there are at least of size .

If guesses that is false, then it will remove from
each -clause in which it occurs and simplify the resulting
formula by removing any clause properly containing an-
other.

When the algorithm has several admissible -
flowers available, it will prioritize lexicographically, select-
ing an admissible -flower with the smallest and then
the largest . If there is no admissible flower, then outputs

, since it is already sparsified.

Say is -sparsified iff has no admissible
flower of -clauses. If a clause is added to the formula
and is properly contained in another clause , then will be
removed and we say that eliminates .

The following salient properties of the algorithm hold no
matter how we choose the , and were shown in [12]:

1. If is -sparsified, then each literal occurs in
-clauses.

2. In any computation path (sequence of branches the al-
gorithm takes), each clause that eliminates any new
clauses eliminates -clauses.

The are then chosen as where the are defined
recursively so that the number of new clauses of size in
any computation path is , and depends only on .

Each branch adds at least new clause, and the number
of new clauses in a computation path is . So the
number of branches is .

It was also shown in [12] that by choosing ,
the number of branches where the algorithm guesses to
be false (call these right branches) is at most . So the
number of computation paths is

(3)

The key observation leading to the choice of is that the
number of new clauses of size in a computation path is

# new -clauses that got eliminated by a new -clause

# -clauses at the end of the computation

# new clauses of size

Using the fact that the summation dominates and property
2, the above is within a constant factor of

(4)

We need to choose to be at least this, so it suffices for
to grow doubly exponentially in . With this choice of

, to keep (3) at most , it suffices to choose to be
roughly exponential in .

From property 1, the sparsification constant is the sum of
the , which is roughly , and therefore doubly exponen-
tial in .

We claim that property 1 is easily generalized: if is
-sparsified, then each -clause occurs in -clauses.

This allows us to generalize property 2: in any computation
path, each -clause that eliminates any new clauses elimi-
nates -clauses. The proof of these facts is
essentially the same as in [12].

This changes (4) to

which is a kind of convolution. We again want to up-
perbound this. The rate of growth of a sequence whose th
term is the convolution of the first terms with them-
selves is only exponential, not doubly exponential. (This
follows from the convergence of the generating function of
the sequence at some positive real.) The extra factor of in
the recursion forces to be .

To keep (3) at most , we now choose .
Our new bound on the sparsification constant is the sum of
the , which is roughly , which is for suffi-
ciently small.
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From the new sparsification lemma, it follows that in-
stances of -SAT with relatively low densities are nearly the
hardest. Let be the restriction of -SAT to formulas
of density at most , and the corresponding
constant. Then by composing the sparsification algorithm
with any algorithm for we obtain:

Lemma 19. .

In particular, letting , we obtain:

Corollary 20. .

Thus, roughly exponential density formulas are very
close to the hardest -CNF instances.

7. Open problems

Is it possible to further improve the sparsification con-
stant to ? Is it possible to remove the dependence of
the sparsification constant on ?
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