
CSE 599I Course Notes: Spring 2024

ETH, SETH and Fine-Grained Complexity, Lifting

Paul Beame

June 5, 2024

1

Overview

Exponential time hypotheses and fine-grain complexity: Beyond P vs NP Despite the
best efforts of researchers for over 50 years since the P vs NP question was formulated, the
best algorithms we have for SAT and other NP-complete problems are still exponential in the
worst case and barely improve on brute force. If these are representative of the correct level
of complexity, which seems a reasonable stronger conjecture than P̸=NP, our usual ways of
proving relationships between NP problems need to be rethought, both from a theoretical and
practical point of view, and radically new relationships between problems emerge, a subject
termed “fine-grain complexity”. This yields surprising connections that have produced a web of
problem-solving relationships well beyond the usual resource-focused complexity classes, for
example, showing how improving existing polynomial-time algorithms for well-known prob-
lems is tied to improving exponential-time algorithms for SAT.

In this part of the course we will first discuss algorithms with different approaches to SAT
and the best analysis with respect to their worst-case behavior. We will then consider the
Exponential-Time Hypothesis (ETH) for SAT originally formulated by Impagliazzo and Paturi,
analyze its robustness and implications for other NP problems.

After that we will then focus on a much more powerful Strong Exponential-Time Hypothesis
(SETH) which, though it not as robust as ETH, has nearly the same level of evidence, and has
wide-ranging implications that would allows to pinpoint the the complexity of many problems
in P with a high degree of accuracy, proving that current algorithms are not far from the best
possible. This is based on so-called fine-grained reductions and analysis of the complexity of
these problems. (In general, fine-grained complexity encompasses both the consequences of
SETH, but also of a small number of other key hypotheses, but in this course we will only focus
on those that relate to SETH, or other closely related hypotheses.)

Depending on time we may also briefly discuss how even much smaller algorithmic im-
provements over brute force in solving satisfiability for restricted classes of circuits yield circuit
lower bounds – an “ironic” consequence that algorithms imply lower bounds.

Lifting A number of longstanding problems in computational complexity have been resolved
in the last decade by showing how simple forms of function composition let us convert hardness
results proven in weak models of computation into hardness results for more powerful models
of computation, a methodology that has been termed “lifting”. We discuss lifting techniques
and the some of the longstanding problems resolved using them. We then focus on a number
of open problems and approaches to resolving them.

The main idea of lifting is conceptually simple: Given a Boolean function f or search prob-
lem (relation) R defined on {0,1}n, one can take a simple Boolean function g (a “gadget”)
and define the composition f ◦ gn or R ◦ gn, by f (z1, . . . , zn) where zi = g(x i) or zi = g(x i, yi)
depending on context where x i and yi may involve multiple bits.

The resulting function f ◦ gn is called a “lift” of f . It can easily be computed in a composed
manner also: Given a computation of f , whenever f needs to access zi, the computation for
the lift of f can access the x i (possibly also yi) and compute g instead to produce the value for

2

zi. The general idea is to translate the complexity of computing f to its lifted version but in
a stronger computational model for example converting the complexity of computing f using
queries (decision trees) to the complexity of the lift of f in a communication complexity model.
The simple algorithm of computing a zi each time it is needed yields a communication protocol
that has communication complexity equal to the product of the query complexity of f and the
communication complexity of g.

A key question is whether this can be improved. Lifting results have shown that under
certain general conditions it cannot be improved. Applications of this to circuit complexity
and proof complexity follow from the fact that lifting applies to search problems as well as to
Boolean functions.

3

The worst-case complexity of SAT

We can ask this question for many different input formats, each a special case of CIRCUIT-SAT
where the input is a circuit C defined on Boolean variables in {0,1}n.

The obvious brute force algorithm for CIRCUIT-SAT has complexity |C | · 2n.
All of the special cases of CIRCUIT-SAT we will discuss are NP-complete. We first focus on

k-SAT for k ≥ 3. How much can we improve on this brute force algorithm?

1 Best current SAT algorithms

We review the ideas behind the best current algorithms.

The PPZ Algorithm

The first is an extremely simple randomized algorithm, the PPZ algorithm of Paturi, Pudlak,
and Zane.

Algorithm 1 The PPZ-algorithm.
Input k-CNF formula F in n Boolean variables x1, . . . , xn.

1: function PPZ(F)
2: repeat n22n−n/k times:
3: α← ;
4: F ′← F ▷ The current partial assignment
5: while F ′ ̸=⊥ and F ′ has an unassigned variable do ▷ F ′ is not identically false
6: Choose an unassigned variable x i uniformly at random
7: if F ′ contains the unit clause x i then
8: b← 1 ▷ x i ’s value is forced to 1.
9: else if F ′ contains the unit clause x i then

10: b← 0 ▷ x i ’s value is forced to 0.
11: else
12: Choose b ∈ {0,1} uniformly at random
13: Add x i = b to α
14: F ′← F ′|x i←b ▷ Set x i to b in F ′ and simplify

15: if F ′ =⊤ then Halt and output satisfying assignment α ▷ F is satisfied
16: until

Theorem 1.1. If F is a satisfiable k-CNF formula, the PPZ algorithm finds a satisfying assignment
for F with probability 1− o(1).

Before we prove this, we need a few definitions.

4

Definition 1.2. For x ∈ {0, 1}n, write x⊕i for the element with the i-bit flipped. For a n-bit
Boolean function f , i ∈ [n], and x ∈ {0,1}n, bit i is sensitive for f at x iff f (x⊕i) ̸= f (x).
The sensitivity of f at x is the number of bits i that are sensitive for f at x , denoted s f (x).
We extend this to circuits and formulas by applying the definition to the associated Boolean
function.

Proposition 1.3. Suppose that x is a satisfying assignment for CNF formula F. Then there are
sF(x) distinct critical clauses of F, one clause Cx ,i for each sensitive bit i of F at x, such that
Cx ,i(x) = 1 but Cx ,i(x⊕i) = 0. In particular, Cx ,i contains x i or x i.

Proof. The existence of critical clauses is immediate from the definition. The fact that the
clauses must be distinct follows from the fact a clause containing both variables x i and x i′ for i
and i′ sensitive on x cannot be critical for either variable since the clause would have two true
literals on input x .

Proposition 1.4. Let S be the set of satisfying assignments of F. Then
∑

x∈S 2sF (x) ≥ 2n.

Proof. By induction on n. For n= 0 there is exactly one string in {0, 1}n which has sensitivity 0
so the statement holds. Suppose it is true for n−1 and consider the subsets Sb = {x ′ ∈ {0,1} |
x ′b ∈ S} for b = 0, 1. Then Sb is the set of satisfying assignments of Fb = F |xn=b. If S0 is empty
then S = {x ′1 | x ′ ∈ S1}. Then by definition sF(x ′1) = sF1

(x ′) + 1 and

∑

x∈S

2SF (x) =
∑

x ′∈S1

2sF (x ′1) =
∑

x∈S1

2sF1
(x ′)+1 ≥ 2 · 2n−1

by the induction hypothesis for F1. The same bound holds if S1 is empty. Finally, if both S0 and
S1 are non-empty, then
∑

x∈S

2SF (x) =
∑

x ′∈S0

2sF (x ′0) +
∑

x ′∈S1

2sF (x ′1) ≥
∑

x ′∈S0

2sF0
(x ′) +
∑

x ′∈S1

2sF (x ′) ≥ 2n−1 + 2n−1 = 2n

by the inductive hypothesis applied to F0 and F1.

Proof of Theorem 1.1. Let S be the set of satisfying assignments for F . Fix some x∗ ∈ S and let
j = sF(x∗). There are j critical clauses on input x∗. Each execution through the repeat loop of
the PPZ algorithm induces a uniformly random permutation π on the variables.

Define E1 be the event that for at least j/k of the j critical clauses Cx∗,i on input x∗, the
critical variable x i occurs last among the variables in the clause under the permutation π. Let
ℓ be the random variable for this number. For each critical clause, the critical variable occurs
last with probability at least 1/k since each clause has size at most k. Therefore E[ℓ] ≥ j/k.
We claim that with probability that E1 holds is at least 1/(k j − j + 1) ≥ 1/(kn): Since j,
k, and ℓ are integers, a value of ℓ below j/k must be most (j − 1)/k. Since ℓ is an integer
bounded by j, the probability that ℓ < j/k is at most the probability that applying Markov’s
inequality to random variable j− ℓ, whose expected value is ≤ j− j/k = (k−1) j/k, is at least
j − (j − 1)/k = ((k − 1) j + 1)/k which is ((k − 1) j + 1)/k. This means that if ℓ is below its

5

expected value, then j − ℓ is at least ((k − 1) j + 1)/((k − 1) j) times its expected value which,
by Markov’s inequality, occurs with probability at most 1− 1/((k− 1) j + 1).

Now assume that E1 holds and consider the probability that the assignment chosen in the
while loop agrees with x∗. At each iteration, if the value of x i is forced then it certainly agrees
with x∗; otherwise it agrees with with x∗ with probability 1/2. Since E1 holds, there are at
most n− j/k assignments to agree with x∗ that are not forced since the ≥ j/k variables in the
critical clauses witnessing event E1 will all be forced. Therefore this occurs with probability
at least 2 j/k−n = 2sF (x∗)/k−n and hence the probability that a single iteration of the repeat loop
finds satisfying assignment x∗ is at least 1

kn2sF (x∗)/k−n. Putting it all together we have

Pr[a repeat iteration outputs a satisfying assignment]

=
∑

x∈S

Pr[a repeat iteration outputs satisfying assignment x]

≥
1
kn

∑

x∈S

2sF (x)/k−n

=
1
kn

2n/k−n
∑

x∈S

2(sF (x)−n)/k

≥
1
kn

2n/k−n
∑

x∈S

2sF (x)−n

≥
1
kn

2n/k−n by Proposition 1.4.

Since PPZ runs this n22n(1−1/k) times it succeeds with probability 1− o(1).

In particular when k = 3, PPZ has a running time of 22n/3+o(n) which is at most 1.5875n for
large n.

PPZ also show how their randomized algorithm can be made deterministic with essentially
the same complexity but the details make the algorithm substantially messier.

The PPSZ algorithm

This algorithm was improved by Paturi, Pudlak, Saks, and Zane to yield the PPSZ algorithm,
which replaces the unit clause test for forced variables with a slightly different criterion tests
than unit clauses. It checks whether x i or x i can be derived by bounded resolution on constant-
size clauses. The resolution rule is given by

A∨ x , B ∨ x
A∨ B

and lets one add the new clause A∨ B if both clauses A∨ x and B ∨ x are known. This is a
sound rule since variable x connect make both of the original clauses true. In general, this can
increase the sizes of the derived clauses and have exponential size, but if there is a constant
size limit on the size of the derived clauses (e.g. a limit of 5 variables when k = 3) then all
derived clauses can be found in polynomial time.

6

The success probability of each iteration for PPSZ is 2cn/k−n−o(n) for c = π2/6 and hence
the savings in the exponent is roughly cn/k. The original PPSZ analysis only applied when the
sensitivity of every satisfying assignment was n (the satisfying assignments are all isolated).
This was extended by Hertli to the general case and subsequent papers have improved the
analysis only very slightly. For the special case that k = 3, the current best general bound due
to Scheder is 1.306973n. Again this algorithm can be determinized without significant loss.

Schöning’s Random Walk Algorithm

The basic idea of this algorithm is repeated local search starting from a random initial assign-
ment.

Theorem 1.5. Suppose that F is a satisfiable k-CNF formula with each clause of size exactly k.
Then Schöning’s algorithm finds a satisfying assignment for F with probability 1− o(1).

Algorithm 2 Schöning’s algorithm.
Input k-CNF formula F in n Boolean variables x1, . . . , xn.

1: function SCHOENING(F)
2: repeat 30 · 2n

�

1− 1/k
�n

times:
3: Choose an assignment α ∈ {0,1}n uniformly at random
4: repeat 3n times
5: if F is satisfied by α then
6: Halt and return satisfying assignment α.
7: else
8: Let C be a clause of F such that C(α) = 0
9: Choose a uniformly random variable x i in C .

10: α← α⊕i ▷ Flip assignment αi to make C true.
11: until
12: until

Proof. Suppose that F has some satisfying assignment α∗. For each clause C of F , we identify
one special variable xC whose associated literal in C is set to true by assignment α∗. Each time
Step 9 is executed, since clause C has exactly k variables, the special variable xC in C is chosen
with probability exactly 1/k. Fix an iteration of the outer repeat loop. For t = 0, . . . , 3n let
X t ∈ {0, 1, . . . , n} be the random variable counting the Hamming distance between the current
assignment α and α∗. If X t is not satisfying then X t+1 = X t − 1 with probability at least 1/k
corresponding to the case that the special variable is chosen. If some X t = 0 then the algorithm
halts and succeeds. (It may also succeed if it finds some other satisfying assignment.) Since
the initial α is chosen uniformly at random:

Pr[X0 = j] =
�

n
j

�

2−n.

7

Define a Markov chain Yt such that Y0 = X0 and for 0< j satisfies

Pr[Yt+1 = j − 1 | Yt = j] =
1
k

and Pr[Yt+1 = j + 1 | Yt = j] = 1−
1
k

, (1)

and if Yt = 0 then Yt+1 = 0. Clearly X t ≤ Yt . so

Pr[∃t ∈ [0,3n], X t = 0]≥ Pr[∃t ∈ [0,3n], Yt = 0].

If k = 2 then the walk Yt is an unbiased random walk and will reach 0 with high probability
in O(n2) steps. For k ≥ 3, the walk is biased away from 0 and will be far away from 0 if we
let it run too long, but there is some probability of reaching 0 in the early stages. If Y0 = j
then every i ≥ 0, if t = 2i + j the probability that Yt = 0 and Yt ′ > 0 for t ′ < t is equal to the
probability that the Markov chain has i increasing steps and i + j decreasing steps. For each
fixed pattern of increasing and decreasing steps that does not have prefix that reaches 0, this
occurs with probability

�1
k

�i+ j
·
�

1−
1
k

�i
.

If we didn’t have the condition that all proper prefixes have value > 0, there would be
�2i+ j

i

�

choices for the pattern of increasing/decreasing steps.
A standard theorem called the Ballot Theorem gives the following:

Claim 1.6. The number of good sequences that have i increasing steps, i+ j decreasing steps and
no proper prefix with an excess of j decreasing steps is

�

2i + j
i

�

j
2i + j

.

Proof of Claim. The general idea to prove the claim is to show that for any particular vector
v ∈
�2i+ j

i

�

exactly j of the cyclic shifts of v are good. We prove this by induction on i. For i = 0,
all j of the shifts of v are the same (and are good). We write +1 for each of the i increasing
steps and −1 for each of the i + j decreasing steps. For i > 0, there must be some consecutive
steps in cyclic order on v consisting of an increasing step followed by a decreasing step. A good
cyclic shift of v cannot end on either of these two steps since for the first it would be less than
− j one step before the end and for the second would be equal to − j two steps before the end.
If we let v′ be the string with these two steps removed, then the end points of the good cyclic
shifts of v′ are precisely those that are good for v. By induction exactly j of the 2(i − 1) + j
shifts of v′ are good and hence j shifts of v are good.

8

Therefore

Pr[∃t ∈ [0,3n], X t = 0]
≥ Pr[∃t ∈ [0, 3n], Yt = 0]

=
n
∑

j=0

Pr[X0 = j] ·
∑

t=2i+ j≤3n

�

2i + j
i

�

j
2i + j

�1
k

�i+ j
·
�

1−
1
k

�i

≥
n
∑

j=0

Pr[X0 = j] ·
j
∑

i=0

�

2i + j
i

�

j
2i + j

�1
k

�i+ j
·
�

1−
1
k

�i

=
n
∑

j=0

Pr[X0 = j] ·
j
∑

i=0

�

2i + j
i

�

j
2i + j

�1
k

�i+ j
·
�

1−
1
k

�i

≥
1
3

n
∑

j=0

Pr[X0 = j] ·
j
∑

i=0

�

2i + j
i

�

�1
k

�i+ j
·
�

1−
1
k

�i
.

For k = 3 it turns out that the dominant term in

j
∑

i=0

�

2i + j
i

�

�1
k

�i+ j
·
�

1−
1
k

�i

occurs when i = j. That term is
�3 j

j

�

(1/3)2 j(2/3) j. Using Stirling’s formula
�3 j

j

�

is asymptotically
2p
3π j

33 j/22 j so the term is asymptotically equal to 2p
3π j

2− j ≥ 1p
5n

2− j. Plugging this in we get

that the probability of success is asymptotically at least

1

3
p

5n

n
∑

j=0

Pr[X0 = j] · 2− j =
2−n

3
p

5n

n
∑

j=0

�

n
j

�

2− j =
2−n

3
p

5n
(3/2)n.

which is roughly (3/4)n so the running time is roughly (4/3)n. The savings over brute force
search is roughly a (2/3)n factor.

More generally, the dominant term occurs when i is roughly j/(k−2) so that i+ j is roughly
j(k− 1)/(k− 2) and i is roughly j/(k− 2) so the ratio of the two roughly matches the ratio of
the corresponding probabilities. For this dominant term, the Stirling approximation gives that
�2i+ j

i

�

is asymptotically at least

1
Θ(
p

n)
· k2i+ j/(k− 1)i+ j

and the corresponding term is 1
Θ(
p

n) · (k − 1)− j. Plugging this in we get that the probability of
success is asymptotically at least

2−n

Θ(
p

n)

n
∑

j=0

�

n
j

�

(k− 1)− j =
2−n

Θ(
p

n)
(k/(k− 1))n.

9

With a bit more care, one can observe that the Θ(1/
p

j) factor (which became 1/
p

n) can be
removed because there are roughly Θ(

p

j) terms of roughly equal size. The savings over brute
force is roughly (1− 1/k)n.

Observe that as k grows 1 − 1/k is roughly e−1/k = 2−1/(k ln2). Therefore the savings over
brute force for Shöning’s algorithm is a 2−n/(k ln2) ≥ 2−1.4427n/k factor. This is better than PPZ
but not as good as PPSZ since π2/6 is roughly 1.6645.

Better k-SAT algorithms?

In the three algorithms discussed so far, there is a running time savings of 2Θ(n/k) versus brute
force search. There is a later algorithm of Chan and Williams based on a completely different
approach, that de-randomizes probabilistic polynomials; it also gets savings of this character,
though with a substantially worse constant in the exponent. This algorithm not only determines
satisfiability, it also computes the exact number of satisfying assignments.

There is no general algorithm known that does better, though Viya and Williams have shown
that for random k-CNF formulas, the basic PPZ algorithm almost surely has savings at least
2Ω(log k)n/k. It is not clear what the hardest instances would be for the PPZ algorithm.

10

2 The Exponential Time Hypothesis

The Exponential Time Hypothesis (ETH) of Impagliazzo and Paturi is simply the hypothesis that
the worst-case complexity of 3-SAT on formulas in n variables is at least 2δn for some constant
δ > 0.

The ETH was motivated by the fact that the best algorithms for 3-SAT known at the time
all had running times at least cn for some constant c > 1. In the roughly 25 years since it
was formulated, that state of affairs has not changed. Impagliazzo and Paturi considered it a
hypothesis rather a conjecture, in that they simply found it plausible; they were most concerned
about what its consequences would be if it were true.

What does the ETH imply for NP-complete problems? Consider the implication for the
problem INDEPENDENT-SET. Consider the standard reduction 3-SAT≤PINDEPENDENT-SET
which maps a 3-CNF formula to a graph with 3m vertices, one per literal occurrence, with
edges joining every pair of occurrences of the same variable with opposite sign.

Suppose that we tried to claim that ETH implies that INDEPENDENT-SET requires 2δ
′n time

for some δ′ > 0. We would need to show that it is impossible for INDEPENDENT-SET to be
solved in time 2δN for N -node graphs for some δ < δ′ given the ETH. However, the graph size
in the reduction has N = 3m where m could be as large as Θ(n3). A solution in time 2δN would
then be in time 23δm which would be much larger than the trivial SAT algorithm which runs in
time 2npol y(m) and hence would not imply anything new.

However ETH would imply that INDEPENDENT-SET on N -node graphs requires time 2Ω(N
1/3)

using the same reduction.

Sparsification

To get around this problem, Impagliazzo, Paturi, and Zane devised a way to sparsify formulas
to show that ETH is equivalent to ETH for sparse 3-SAT formulas with n variables and only
O(n) clauses.

In general, one cannot reduce a 3-CNF formula F with n variables and m clauses to one
with only O(n) clauses, so one needs to reduce the formula F to multiple other formulas. The
total work on these formulas must also not be not too large. Impagliazzo, Paturi, and Zane
showed that this approach does work and Calabro, Impagliazzo, Paturi significantly improved
the analysis (full details in Calabro’s dissertation) yielding the following theorem:

Theorem 2.1 (Sparsification Lemma). Let ϵ > 0 and k ≥ 3 be a constant. There is a 2ϵnpol y(n)
time algorithm that takes a k-CNF formula F on n variables and produces 2ϵn k-CNF formulas,
F1, . . . , F2ϵn , such that F is satisfied if and only if

∨

i Fi is satisfied and each Fi has n variables and
�

k/ϵ
�O(k)

n clauses. In fact, each variable is in at most pol y(1/ϵ) clauses, and the Fi are over the
same variables as F.

Corollary 2.2. The ETH implies that there exist some constants c,δ > 0 such that satisfiability
of 3-CNF formulas in n variables and at most cn clauses (sparse formulas) requires time at least
2δn.

11

Proof. Each of the formulas Fi in the Sparsification Lemma has O(n) clauses in n variables and
hence is sparse. Suppose that the conclusion is false. If 3-SAT is easy for sparse formulas, say
with running time at most 2ϵ

′n for every ϵ′ > 0, then one could solve 3-SAT in time 2ϵ
′′n′ time

for any ϵ′′ > 0 and arbitrary clause density as follows:
Applying the Sparsification Lemma with ϵ = ϵ′ = ϵ′′/3, computing all the formulas Fi.

Check the satisfiability of each one in turn in time 2ϵ
′n and output YES iff all of the Fi are

satisfied. The total runtime would be pol y(n) · 22ϵ′ = pol y(n)22ϵ′′/3 < 2ϵ
′′
. This would violate

the ETH, so it must be the case that ETH is true even for sparse formulas.

Here is a sampling of the consequences/equivalent formulations of the ETH given the Spar-
sification Lemma.

Corollary 2.3. The ETH is equivalent to the following:

• For every k ≥ 3 there is a constant sk > 0 such that k-SAT on n variable formulas requires
time at least 2skn−o(n).

• For each of the following NP-complete problems there is a constant c > 0 such that the
problem requires time at least 2cN :

– INDEPENDENT-SET, VERTEX-COVER and DOMINATING-SET on graphs with N edges,

– CLIQUE on N-node graphs,

– 3-COLOR on graphs with N edges,

– k-COLOR on graphs with N edges,

– SUBSET-SUM with N integers of at most N bits each,

– HAMILTONIAN-PATH, HAMILTONIAN-CYCLE on graphs with N edges.

We now focus on the proof of the Sparsification Lemma. The basic idea is a kind of tree
search where we branch on the value of variables (or subclauses), simplifying the formula on
each branch as we go. This will be effective in reducing the number and lengths of clauses while
the simplified formulas are not sparse, yielding a frontier where we stop where the formulas
are all sparse. Each final Fi is the conjunction of the path to the simplified formula at this
frontier. It remains to argue that this frontier is small and that all the formulas at the frontier
are sparsified.

At each step the algorithm will introduce new short clauses that may subsume (imply) other
longer clauses that contain them. Whenever we do so we will reduce the formula by deleting
all subsumed clauses. We call this operation reduce(·). We will view each CNF formula as a
set of clauses using an implicit conjunction.

The key idea of the branching algorithm is that formulas with many clauses must have large
sets of clauses that share a non-trivial subclause on which they overlap and that this overlap
can be pulled out using the distributive law: either the common subclause is satisfied, which
makes all of the clauses true, or the remaining part of each clause must be satisfied.

12

This is related to but different from the kinds of intersections in the sunflower lemma,
where the core (common intersection) may be empty and the remaining sets (petals) must be
disjoint.

Here we identify each clause with a set of literals and have the notion simply of an (h, p)-
flower, which is a collection ≥ θ ϵ,kp clauses of size exactly (h + p) that all share a common
subclause H, the heart of the flower, of size h ≥ 1. We write P, the set of petals of the flower,
for the set of p-clauses that remain from the flower when H is removed. The values θ ϵ,kp are
parameters that we set later. We identify an (h, p)-flower by its heart H.

At each stage, there may be many different flowers that can be branched on. The algorithm
always chooses to branch using flowers with the smallest current clause size that have that
smallest petals (largest heart) so that the potential subsumptions are maximized.

Algorithm 3 Sparsification algorithm.
Input a k-CNF formula F in n Boolean variables x1, . . . , xn.
Assumes a set of parameters θ ϵ,kp for p = 1, . . . , k that give the threshold for the number of
petals of size p at which subformulas F ∗ are designated as (h, p)-flowers.

1: function SPARSIFY(F ′)
2: F ′← reduce(F ′) ▷ Remove subsumed clauses from F ′

3: if there is some (h, p)-flower F ∗ in F ′ then
4: Choose an (h, p)-flower F ∗ such that h+ p is minimized and then h is maximized.
5: Let H be the heart of F ∗ and P be the set of petals of F ∗.
6: Sparsify(F ′ ∪ {H}) ▷ First branch is the case that H is set to true.
7: Sparsify(F ′ ∪ P) ▷ Second branch is the case that all petals in P are set to true.
8: else
9: Append formula F ′ to the list of output formulas.

The values of the parameters θ ϵ,kp algorithms depend on k and ϵ solely via a parameter
α = αε,k ≥ 2 that we will define later. For simplicity of notation, we will drop the k and ϵ and
just write θp instead of θ ϵ,kp . These are defined in terms of auxiliary parameters βk′ and are
defined by

β1 = 2

βk′ =
k′−1
∑

h=1

4αβk′−hβh for 2≤ k′ < k

θ0 = 2

θk′ = αβk′ for 1≤ k′ < k.

Note that since θ0 = 2> 1, an (h, p)-flower must have p > 0.
For k′ ≤ k, we say that a formula F ′ is k′-sparsified iff for every j ≤ k′ and every h with

0< h< j, F ′ does not contain an (h, j − h)-flower.
The execution of the sparsification algorithm produces a binary tree with each node u la-

belled by a formula Fu = reduce(F ′) where F ′ is the formula at which the node is called. By

13

definition, u is a leaf of this tree if and only if Fu is k-sparsified. We write Hu for the heart found
during the call at node u and Pu for the set of petals at node u. If u is not a leaf and v, w are the
left and right children of u, respectively, then Fv = reduce(Fu∪{Hu}) and Fw = reduce(Fu∪Pu).

The following proposition is immediate from the fact that the F ′ ≡ reduce(F ′) and that any
truth assignment that satisfies a flower satisfies its heart or satisfies all of its petals.

Proposition 2.4. Fu ≡ Fv ∨ Fw.

Lemma 2.5. Suppose that Fu is k′-sparsified.

(a) If C ′ is an arbitrary clause, with |C ′|= h< j ≤ k′, there are fewer than θ j−h j-clauses C ∈ Fu

containing C ′.

(b) For j ≤ k′, Fu contains fewer than 2θ j−1n/ j clauses of length j.

Proof. For (a), assume that there are at least θ j−h j-clauses in Fu that contain C ′. Let H be their
common intersection. Then C ′ ⊆ H so |H| ≥ h. Since θ j−|H| ≤ θ j−h, this would contradict the
assumption that Fu is k′-sparsified.

For (b), suppose that Fu contains at least 2n
j θ j−1 j-clauses. Therefore there are at least

2nθ j−1 total literals occurring in these j-clauses. It follows that at least one literal occurs in at
least θ j−1 clauses which would be a (1, j − 1) flower contradicting the assumption that Fu is
k′-sparsified.

Since the formulas output by the algorithm are k-sparsified, we can immediately apply part
(b) of the above lemma to obtain the following.

Corollary 2.6. Every formula output by the sparsification algorithm contains at most ck,ϵn clauses

for ck,ϵ =
∑k

j=1
2θ j−1

j .

It remains to show that the total number of leaves is small and to bound ck,ϵ... In any of the
formulas Fu, we say that a clause C ∈ Fu is new iff it is not in the original formula at the root;
that is, it is either the heart or one of the petals introduced along the path from the root to u.
In moving from Fu to Fv or Fw, the new clauses added may eliminate clauses from Fu when the
reduce operation is applied.

Lemma 2.7. If a new clause C ′ with |C ′| = i < j eliminates any new j-clause from Fu then it
eliminates at most 2θ j−i − 2 total j-clauses, both original and new.

Proof. Suppose that C ′ eliminates some new j-clauses and at least 2θ j−i − 1 total j-clauses.
Consider the first node u′ along the path from the root to u that contains all of the eliminated
j-clauses. The node u′ cannot be the root since C ′ eliminates at least one new j-clause so it
has some parent u′′ along the path.

At that parent u′′, the formula Fu′′ must be j-sparsified since some new j-clause is added at
u′ and the sparsification procedure chooses the minimal clause size for the flowers it selects,
which must have been larger than j.

14

By Lemma 2.5(a), there are at most θ j−i − 1 j-clauses of Fu′′ that contain C ′. Since there
are at least 2θ j−i −1 total j-clauses in Fu′ that contain C ′, at least θ j−1 of them must have been
added in moving from Fu′′ to Fu′ .

Now u′ cannot be a left child of u′′ since only a single clause Hu′′ is added to Fu′′ and
θ j−i ≥ θ0 ≥ 2. On the other hand, if u′ is a right child of u′′, we must have a set P ′ ⊆ Pu′′ of at
least θ j−i petals that contain C ′ and these petals in P ′ must have size j. Let h = |Hu′′ | so the
≥ θ j−i clauses F ′u′′ ⊆ Fu′′ corresponding to P ′ must have size exactly h+ j. All of these clauses
contain H ′ = H∪C ′ which, since H and C ′ must be disjoint, has size h+ i. Therefore the subset
F ′u′′ is an (h+ i, j − i) flower in Fu′′ contradicting the maximality of h in choosing a flower at
node u′′.

Lemma 2.8. For j < k, the number of new clauses of size ≤ j that ever get created on a root-leaf
path is at most β jn.

Proof. The proof is by induction on j. Let N j be number of such clauses. For j = 1, there are
at most 2n 1-clauses that could possibly be created which is at most β1n since β1 = 2. Now
suppose that it is true for j − 1. The number of new clauses created on the path is at most the
number of clauses at the end plus the number that were created and then deleted, therefore,
if we let E j,k′ be the number of k′ clauses on the path eliminated by j-clauses, we have

N j ≤ N j−1 +
j−1
∑

i=1

Ei, j +
2n
j
θ j−1 by Lemma 2.5(b)

≤ N j−1 +
j−1
∑

i=1

(2θ j−i − 2)Ni + 2θ j−1n/ j

since there are at most Ni new clauses of size i along the path and each eliminates at most

2θ j−1 − 2 j-clauses by Lemma 2.7,

≤ β j−1n+
j−1
∑

i=1

(2θ j−i − 2)βin+ 2θ j−1n/ j by induction hypothesis

< β j−1n+ 2
j−1
∑

i=1

αβ j−iβin+ 2αβ j−1n since θi = αβi for i ≥ 1

≤ 4
j−1
∑

i=1

αβiβ j−in since α≥ 2,

= β jn

as required.

Corollary 2.9. Every root-leaf path is of length at most βk−1n.

Proof. Each step creates at least one new clause.

15

Lemma 2.10. There are at most (k− 1)n/α petal steps on every root-leaf path.

Proof. By Lemma 2.8, for j ≤ k − 1, there are at most β jn total new j-clauses created along
the path. Each petal steps that creates j-clauses, creates θ j such j-clauses, so the number of
petal steps that create j-clauses is at most β jn/θ j = n/α. There are only k− 1 possibilities for
j, which gives the bound.

Proof of Sparsification Lemma. We suppose that 0< ϵ ≤ 1 and k ≥ 3. Defineα= 2(k−1)2

ϵ lg 32(k−1)2

ϵ ≥
2. Though it is a pain to actually argue, one can show that β j ≤ 4(32α) j−1. (This is not simply
by induction with this bound.) We can describe each path to a leaf by a sequence of at most
βk−1n steps with at most p ≤ (k− 1)n/α petal moves. We use the fact that

∑ℓ

j=0

�n
j

�

≤ 2H2(ℓ/n)n

where H2(γ) is the binary entropy function equal to γ lg(1/γ)+(1−γ) lg(1/(1−γ)). It follows
that the total number of leaves is at most

(k−1)n/α
∑

p=0

�

βk−1n
p

�

≤ 2H2(
k−1
αβk−1

)βk−1 n.

It therefore suffices to show that H2(
k−1
αβk−1

)βk−1 ≤ ϵ. For γ < 1/2, it isn’t hard to show that
H2(γ)≤ γ lg(4/γ), so

H2(
k− 1
αβk−1

)βk−1 ≤
k− 1
α

lg(
4αβk−1

k− 1
)

≤
ϵ

2(k− 1) lg 32(k−1)2
ϵ

· lg(
16 · 32k−2αk−1

k− 1
) by definition of α and the bound on βk−1

≤
ϵ

2 lg 32(k−1)2
ϵ

· lg(
32α
k− 1

)≤ ϵ since k− 1≥ 2

and hence the bound follows.

k-SUM

ETH has some surprising consequences inside P.
The k-SUM problem is a parameterized variant of SUBSET-SUM that given n integers of

O(log n) bits each and a target t asks whether or not there are k integers that sum to t.

Proposition 2.11. k-SUM can be solved in O(n⌈k/2⌉ log n) time.

Proof. Here is an algorithm: Compute the sums of all the
� n
⌈k/2⌉

�

subsets of the input list of

size ⌈k/2⌉. Sort these sums. For each of the
� n
⌊k/2⌋

�

subsets S of ⌊k/2⌋ input integers run binary
search on the sorted list for the value t−

∑

i∈S x i. The cost is dominated by the time to compute
the sorted list.

Theorem 2.12. ETH implies that there is a constant ϵ > 0 such that k-SUM requires time Ω(nϵk).

16

Proof. The general idea of the argument is that we will see how to use algorithms for k-SUM to
decide 3-SAT on formulas with n variables and O(n) clauses. To do this we first reduce 3-SAT
to 1-in-3-SAT which will be more convenient; A 3-CNF formula for 1-in-3-SAT will be a yes
instance iff there is an assignment that makes exactly one literal true in each clause. To reduce
3-SAT to 1-in-3-SAT we add 4 new variables for each original 3-clause and replace (x ∨ y ∨ z)
by (¬x ∨ a ∨ b)(y ∨ b ∨ c)(¬z ∨ c ∨ d). The resulting formula has O(n) variables and O(n)
clauses.

(We have several cases: Suppose that the assignment satisfying x ∨ y ∨ z satisfies y; then
we can extend it by setting b and c to false and setting b = x and s = z. Suppose that the
assignment does not satisfy y; if it also does not satisfy x then we set a = b = 0, c = 1 and
d = 0 since it must set z to true. The subcase that z is not satisfied is symmetric. If both x and
z are satisfied, then we set a = 0, b = 1, c = 0, d = 1. Conversely consider any 1-in-3 satisfying
assignment of the new formula. If it sets b = c = 0 then y must be true which satisfies x∨ y∨z.
It it sets b = 1, then we must gave ¬x = 0 and hence x = 1 which satisfies x ∨ y ∨ z. If it sets
c = 1 then we must have ¬z = 0 which again satisfies x ∨ y ∨ z.)

The main idea of the reduction is that we break up the n variables of the 1-in-3-SAT formula
into k chunks of n/k variables each, V1, . . . , Vk and have one integer corresponding to each
partial assignment to those n/k variables for a total of N = k2n/k integers. We think of each
integer as being written in base k+1 so there won’t be any carries when we add up k of these
numbers. There will be one digit for each of the m = O(n) clauses and k digits to correspond
to which chunk a number corresponds to. For each truth assignment to Vi the number will
have the digit in chunk position i set to 1, with the rest of the chunk bits 0, and will have a
0 or 1 for each clause digit depending on whether it sets 0 or 1 literals in the clause to true.
(If it sets more than one literal in a clause to true, we don’t include a number for that partial
truth assignment since it cannot possibly be extended to 1-in-3-satisfying.) The target t will
simply be the all 1’s string of length k +m in base k + 1. These numbers are easy to compute
in O(km2n/k) = O(Nm) = O(kN log N) time.

By construction, each number takes O(m log k) bits to represent which is O(k log k log N)
bits and hence O(log N) for k fixed.

It is easy to see by construction that there are k numbers that sum to t iff the original
formula has a 1-in-3-satisfying assignment iff the original formulas is satisfiable. A running
time of N o(k) for k-SUM would give a running time of (k2n/k)o(k) for n variable 3-SAT which
would be 2o(n) contradicting the ETH.

17

3 The Strong Exponential-Time Hypothesis (SETH)

The Strong Exponential-Time Hypothesis (SETH) is that the sequence of constants sk for k-SAT
given by Corollary 2.3 satisfies limk→∞ sk = 1 or, equivalently, that for every ϵ > 0 there is a k
such that k-SAT requires time at least 2(1−ϵ)n.

SETH was stated as a possibility at the end of the original Impagliazzo-Paturi paper that
defined the ETH. Since our best upper bounds on sk are at least 1 − O(1/k), SETH seems
consistent with the best algorithms we know.

Unlike the ETH, which we have shown is very robust w.r.t. the choice of NP-complete
problems, SETH is specialized to satisfiability problems. Nonetheless, we will see that SETH
has many strong and surprising consequences.

Orthogonal Vectors

The (Boolean) Orthogonal Vectors (OV) problem takes as input a set of n vectors in {0,1}d and
asks whether there is a pair of vectors a, b in the set such that the inner product a · b = 0 over
the integers.

The obvious algorithm for OV takes time Θ(n2d) by simply computing all of the
�n

2

�

inner
products. The following theorem of Ryan Williams shows that SETH implies that this is nearly
optimal for vectors of O(log n) bits each.

Theorem 3.1. SETH implies that for every ϵ > 0, there is a constant c > 0 such that OV with
d ≤ c log2 n requires time at least n2−ϵ.

Proof. By SETH, we can choose n and k sufficiently large that k-SAT on sparse n variable for-
mulas requires time at least 2(1−ϵ/3)n. We can assume that these hard formulas have m= Ok(n)
clauses and that n is even. The basic idea will be to split the variables of such a formula F
into two parts V1 and V2 of size n/2 and associate one input vector with each partial truth
assignment to V1 or V2 respectively. Each input vector will have length m+ 2.

A vector will begin with 01 if it corresponds to an assignment to V1 and 10 if it corresponds
to an assignment to V2. For each of the remaining m positions, the vector will have a 0 in
position j if the partial assignment satisfies the j-th clause of F and will have a 1 in position j
if it does not. Given a formula F , the set of all such vectors can be computed in time O(Nm).

There are a total of N = 2n/2+1 vectors and m+ 2 is Ok(log N) and hence Oϵ(log N).
Correctness is easy to see: If there is a satisfying assignment to F then we choose the pair

of vectors corresponding to this assignment. Each clause will be satisfied by one or both halves
of the assignment so at least one of the two vectors must have a 0 in the clause position and
the first two bits of the two vectors each have one 0.

Conversely, if there are two orthogonal vectors, since there are no cancellations, they must
correspond to assignments to opposite halves of input bits and, because they are orthogonal,
one or the other half of the assignment (or both halves) must satisfy every clause.

An OV algorithm running in time N 2−ϵ on these inputs would therefore give a k-SAT al-
gorithm running in time time (2n/2+1)2−ϵO(m) = 2n(1−ϵ/2)+2−ϵO(m) < 2n(1−ϵ/3) since n is suffi-
ciently large, contradicting our choice of k.

18

Though the Orthogonal Vectors problem appears to have nothing at all to do with k-SAT,
this reduction shows that one can view any algorithm for OV as an algorithm for k-SAT.

Rather than having just one set, for OV, we often find it convenient to separate the two sets
of vectors into U and V of size N and m coordinates each and the problem asks whether there
is a pair of orthogonal vectors, one from U and one from V . Clearly the same reduction shows
the same lower bound based on SETH.

Approximating Diameter

We can use the two set variant of OV to get a lower bound for graph problems: Consider the
problem of computing the diameter of an undirected graph with n vertices and m edges. By
computing BFS from each vertex gives an O(mn) algorithm for diameter. Can we do better if
we only want to approximate it?

Theorem 3.2. SETH implies that one cannot decide diameter 2 versus diameter 3 on n vertex
m-edge (for m= O(n log n)) in less than mn1−ϵ time for any ϵ > 0.

Proof. We use the split version of OV with d = O(log n). We have one node for each element
of U , one for each element of V , one node for each of the set C of d coordinates and two extra
nodes X and Y that are neighbors. X is joined to every element of U and C . Y is joined to to
every element of V and C . So far the graph has diameter exactly 3 since U to V has exactly
distance 3 and C has distance 2 from U and V . Now we join every vector u ∈ U with u j = 1 to
node j in C and every vector v ∈ V with v j = 1 to node j in C .

The resulting graph has O(n) vertices and m = O(nd) = O(n log n) edges. If every pair
u ∈ U and v ∈ V have a shared 1, the diameter will be 2; if there is an orthogonal pair u · v = 0,
the diameter will be 3. An algorithm deciding diameter 2 versus diameter 3 running in time
mn1−ϵ would be time O(n2−ϵ log n) algorithm for split OV, violating SETH.

Fine-grained reductions

The reduction from SETH to OV is of a radically different form from our usual format that
involves only small changes in input sizes based on complexity bounds. The Sparsification
Lemma also involved a very different form of reduction in that we took one problem instance,
a n-variable m-clause k-CNF formula and produced a larger number of n variable sparse k-CNF
formulas in order to reduce ETH to sparse ETH.

The notion of fine-grained reduction incorporates both of these ideas along with the idea
that we only care about the high-order part of the complexity for each problem:

Definition 3.3. Given computational problems A and B and complexity bounds a, b : N→ R+,
we say that A (a, b)-reduces to B iff for every ϵ > 0 there is a δ > 0 such that there is an
O(a(n)1−δ) time algorithm that takes an input x of size n, and produces y1, . . . , yk of sizes
n1, . . . , nk such that x ∈ A iff every y j ∈ B and

∑k
j=1 b(n j)1−ϵ ≤ a(n)1−δ.

The following is essentially immediate from the definition.

19

Proposition 3.4. If B can be solved in time b(n)1−ϵ for some ϵ > 0, and A (a, b)-reduces to B
then A can be solved in time O(a(n)1−δ) for some δ > 0.

In particular, we have shown that sparse CNF-SAT (2n, n2)-reduces to OV on O(log n)-bit
words.

20

4 Algorithms for Orthogonal Vectors?

Write OVn,d for the split Orthogonal Vectors problem where we have two set U and V of n
vectors in {0,1}d . We’ve shown that for every ϵ > 0, SETH implies that OVn,d requires time
n2−ϵ time for d ≥ cϵ log n for some constant cϵ > 0. In particular SETH also implies that there
is no n2−ϵpol y(d) algorithm or indeed n2−ϵ2o(d) algorithm for OVn,d .

Other related problems: Subset-Query: Given a collection S1, . . . , Sn ⊆ [d] and a database
D of n subsets of [d], is there a set T ∈ D such that Si ⊆ T?

Partial-Match: Given n queries x1, . . . xn ∈ {0,1,⋆}d and a size n database D ⊆ {0,1}d , is
there a y ∈ D that matches some x i in all of x i ’s non-⋆ positions.

Lemma 4.1. OV, Subset-Query, and Partial-Match problems are equivalent up to a factor 2 in d.

Proof. For the reductions between OV and Subset-Query, observe that we can identify the sets
S1, . . . , Sn with their characteristic vectors in the set U and identify the elements of D with their
complement vectors in V . The condition that u and v are orthogonal implies that whenever
ui = 1, we must have vi = 0 and therefore the complement vector v has v i = 1, which is
precisely the condition for containment.

We first reduce OV to Partial-Match, by replacing every 0 in a vector u ∈ U by ⋆ to get the
corresponding x j vector which is in {⋆, 1}d and replace each v ∈ V by v to get D. The OV
property ensures that some element of D has 1’s wherever the corresponding x j does which is
a partial match.

Reducing Partial-Match to OV, we use two coordinates for each coordinate of each x j and
each element of D: A 0 in the x j in Partial-Match becomes 01, a 1 becomes 10 and a ⋆ becomes
00. On the other hand, a 0 in D becomes 10 and a 1 becomes 01. This ensures that the ⋆
coordinates in Partial-Match can never cause non-trivial inner product but that other values
will match iff they do not cause non-trivial inner product.

Lemma 4.2. Let ϵ > 0. For d ≤ (1− ϵ) log n, OVn,d can be solved in time Õ(n2−2ϵ).

Proof. With these parameters there are at most n1−ϵ distinct numbers in each of the lists. We
simply mark all elements of {0, 1}d that appear in each list and compare the pairs. This takes
time O(dn) to compute the two lists and d ·22d to compare all the pairs which is O(22−2ϵ log n).

What if the dimension d is c(n) log n for some function c(n)≥ 0? The following is the best
algorithm known for OVn,d due to Abboud, Williams, and Yu. It uses some clever tricks to speed
things up based on probabilistic polynomials.

Theorem 4.3. OVn,d for d = c(n) log n can be solved in time n2−Θ(1/ log c(n)) by a randomized
algorithm with small error.

The algorithm will show that for sufficiently small sets of vectors, we can repeat the com-
putation of the solution of OVs,d so that the total cost is much less than doing it O(n2/s2) times.
We split the OVn,d problem into θ (n2/s2) subproblems of the form OVs,d as follows: Split U and

21

V into q = ⌈n/s⌉ sets U1, . . . , Uq and V1, . . . , Vq where each Ui and Vi has size s and solve all q2

subproblems.
We can express the subproblem involving Ui and Vj as a depth 3 circuit involving the bits of

the vectors in the two sets: In particular there is a big OR of width s2 at the top, then an AND
of width d for the coordinates and a ¬uk ∨¬vk for each k ∈ [d] for each u ∈ Ui and v ∈ Vj.

The algorithm will first replace this depth 3 formula using low-degree polynomials and the
following result of Razborov that was used by Razborov and Smolensky to prove circuit lower
bounds for AC0[2] circuits.

Lemma 4.4. For ℓ > 0, and randomly chosen ri j ∈ {0, 1} for i ∈ [t] and j ∈ [ℓ], define F2 polyno-

mials Ot(y1, . . . , yℓ) = 1+
∏t

i=1(1+
∑ℓ

j=1 ri j y j) and At(y1, . . . , yℓ) =
∏t

i=1(1+
∑ℓ

j=1 ri j(1+ y j)).

Then for all y1, . . . , yℓ, Prr[Ot(y1, . . . , yℓ) ̸=
∨ℓ

i=1 y j] ≤ 2−t and Prr[At(y1, . . . , yℓ) ̸=
∧ℓ

i=1 y j] ≤
2−t .

Proof. If
∨ℓ

j=1 y j = 0 then Ot(y1, . . . yℓ) = 0 since every
∑ℓ

j=1 ri j y j = 0. Now suppose that
∨ℓ

j=1 y j = 1. Then there is some j such that y j = 1. For each fixed rik for k ̸= j, exactly one of

the two choices of ri j will make
∑ℓ

k=1 rik yk = 1 since y j = 1, so a single term in the product will
be 0 with probably 1/2. The t terms are independent so the probability that the product is not
0 will be 2−t and hence the polynomial will be 1 with probability exactly 1− 2−t as required.
The properties of polynomial At follow since AN D(y1, . . . , yℓ) = OR(y1, . . . , yℓ) and y i = 1+ yi

as an F2 polynomial.

We will choose a probabilistic polynomial approximating OVs,d as follows: For the bottom
gates ¬u j ∨ ¬v j, we write the polynomial 1 + u j v j and feed this into the polynomials for the
higher level gates. For each of the fan-in d AND gates at level 2 of the circuit for OVs,d we
choose t = ⌈3 log s⌉ and for the fan-in s2 top gate we choose t = 2. There are s2 second level
AND gates so by a union bound, for each fixed set of inputs, the probability that there is an
error in any second level gates is at most s2/s3 = 1/s. The probability that the output gate
computes an incorrect value given correct inputs is at most 1/4, so the total error probability
is at most 1/4+ 1/s ≤ 1/3 for s ≥ 12. (We can reduce this error probability to polynomially
small by repeating independent trials O(log n) times and take the majority answer. Note that
the errors go in both directions.)

When we expand the resulting polynomial for OVs,d , it will be important to understand the
number of monomials we get. When expanded, the polynomials At and Ot are multilinear and
have degree t in ℓ variables and therefore has at most

∑t
i=0

�

ℓ

i

�

≤ (ℓe/t)t distinct monomials.
At the middle level we observe that t = 3 log s and ℓ= d. The level 1 monomials are of the form
1+u j v j which means that there are still only (ed/3 log s)3 log s monomials in the resulting formula
(since the u j and v j variables are always paired with each other). Finally, these monomials are
substituted into the top level polynomial which has t = 2 and ℓ= s2 and only O(s4)monomials
of degree 2. The final number of monomials M(s, d) is therefore O(s4(de/(3 log s)6 log s) which
is O(s4(d/ log s)6 log s) which is at most s5(d/ log s)6 log s.

This number of monomials can be much bigger than the original O(s2d) circuit size de-
pending on the relationship between s and d. How do we get a savings? The idea will be that

22

computing this polynomial on q2 pairs of inputs will be less expensive than simply repeating it
q2 times.

The underlying idea of this algorithm will be to use a particular form of fast matrix mul-
tiplication due to CopperSmith that we will use to multiply polynomials with few monomials
quickly:

Theorem 4.5 (Coppersmith 1982). One can multiply an N × N 0.172 matrix by an N 0.172 × N
matrix in O(N 2 log2 N) arithmetic operations.

Corollary 4.6. Given a polynomial P(x1, . . . , xℓ, y1, . . . , yℓ) over F2 with at most N 0.1 monomials
and two list of vectors U = {u1, . . . , uN} ⊆ {0, 1}ℓ and V = {v1, . . . , vN} ⊆ {0,1}ℓ we can compute
all the values P(ui, v j) for ui ∈ V and v j ∈ V in time Õ(N 2).

Proof. Let m be the number of monomials of P. Create an N × m matrix with each row r
corresponding to an element of U with the value of the j-th entry equal to the value of the part
of the j-th monomial involving Ur . Similarly define an m×N matrix using the same monomial
order for the rows and with c-th column having entry j that is the value of the part of the j-th
monomial involving Vc. The matrices can be constructed in time Nmℓ. Using Coppersmith’s
algorithm, their matrix-product can be produced in time Õ(N 2) and the entry (i, j) of their
product taken modulo 2 clearly contains P(ui, v j) by construction.

In our calculations we will have N = q = ⌈n/s⌉ and the number of monomials m= M(s, d)
which is at most s5(d/3 log s)6 log s.

We set s = nδ/ log c(n) for some smallδ > 0. Then log s isδ(log n)/ log c(n) = δd/(c(n) log c(n)).
Hence d/ log s is at most some constant times c(n) log c(n). When we raise this to the power
6 log s we get some 2δ

′ log n for a small δ′ > 0 which is nδ
′
. Putting this all together, even when

multiplied by s5 we get that the result is less than (n/s)0.1. By the lemma, the total cost is
Õ(q2) = Õ(n2/s2) which is n2−Θ(1/ log c(n).

Chan and Williams (SODA 2016, ACM ToA 2021) showed how to compute deterministic
polynomials that give correct modular counts of the sum of many OR functions and these
polynomials can be used instead of the probabilistic polynomials used here.

5 More on ETH and Parameterized Complexity

Many NP-complete problems have natural parameters in addition to the input size. For exam-
ple, we can consider the k-CLIQUE problem that asks whether there is a clique of size n in
an input graph. We can do the same thing with k-INDEPENDENT-SET, k-DOMINATING-SET,
k-VERTEX-COVER. Each of these has an O(nk) algorithm that is polynomial in n for each fixed
value of k. We identify these parameterized problems as fixed-parameter tractable iff there
is an algorithm with running time f (k)nO(1) for some function f . These algorithms will run
efficiently even for large n when k is small.

Lemma 5.1. There is an algorithm for k-VERTEX-COVER with running time O(2kn).

23

Proof. We define a simple binary search tree of height k as follows:

If G has no edges halt and accept.
Else if k = 0 return (failed branch)
Else Choose some edge (u, v) in G.
Try vertex u in the cover: Recursively search for a vertex cover of size k− 1 in G \ N(u).
Try vertex v in the cover: Recursively search for a vertex cover of size k− 1 in G \ N(v).

Clearly this algorithm takes linear time to modify G at each step and has only O(2k) calls.

Exercise: Show that ETH implies that k-VERTEX-COVER cannot be solved in time 2o(k)nO(1).

On the other hand we can prove that ETH implies that k-CLIQUE is not fixed-parameter
tractable in a strong sense. This was shown by Chen, Chor, Fellows, Huang, Juedes, Kanj, and
Xia:

Theorem 5.2 (Chen et al. 2004). ETH implies that there is no f (k)no(k) algorithm for k-CLIQUE.

Proof. We have seen that ETH implies that there is 2o(n) algorithm for 3-COLOR. Suppose that
there is an f (k)nk/α(k) algorithm for k-CLIQUE for some function α(k) that goes to infinity
with k. Define k(n) = the largest value of k such that f (k)≤ n and kk/α(k) ≤ n. Clearly, k(n) is
monotone increasing goes to infinity with n. We will set k = k(n).

Given a graph G on n vertices, we split the vertices of G into k groups of size n/k. We define
a new graph H where each vertex of H corresponds to a 3-coloring of one of the k groups of
vertices of G. H has k3n/k vertices. We connect each pair of vertices of H iff the colorings don’t
conflict with respect to G. (Vertices for partial colorings that themselves are not consistent with
G will be isolated.) It is easy to see that H has a k clique iff G has a proper 3-coloring.

The running time of the presumed k-CLIQUE algorithm will be f (k)(k3n/k)k/α(k) ≤ nkk/α(k)3n/αk ≤
n23n/αk(n). Since k(n) goes to infinity with n, α(k(n)) goes to infinity with n so this is a 2o(n)

algorithm contradicting the ETH.

Using standard fixed-parameter reductions that are polynomial in the input size and change
the parameter by at most a constant factor, one can get lower bounds for other problems also.

Corollary 5.3. ETH implies that there is no f (k)no(k) algorithm for k-SET-COVER, k-HITTING-
SET, k-BIPARTITE-DOMINATING-SET, k-CONNECTED-DOMINATING-SET.

6 Longest-Common Subsequence

At STOC 2015, Backurs and Indyk showed that another problem that OV reduces to is is Edit
Distance. Later at FOCS 2015, Abboud, Backurs, and Vassilevska-Williams, and Bringman
and Kunneman extended this to finding the length of the Longest Common Subsequence (LCS),
with the latter showing that this hardness extends to the case of the binary alphabet. LCS

24

is equivalent to a special case of Edit Distance in which the cost of insertion or deletion is 1
and the cost of substitution is 2. More formally, given strings A, B ∈ Σ∗ define LCS(A, B) to
be the maximum k such that there are sequences i1 < . . . < ik and j1 < . . . < jk for which
Ai1 = Bi1 , . . . , Aik = B jk .

There are simple natural dynamic programming algorithm for Edit Distance (and hence
LCS) that run in time O(n2) where |A| = |B| and the best algorithms known only shave off a
log n factor.

Theorem 6.1. SETH implies that LCS over binary strings does not have an O(n2−δ) algorithmn
for any δ > 0.

The proof of this begins by looking at a problem closer to OV . Define LCS-PAIRN ,m to be the
problem: Given sequences a1, . . . , aN , b1, . . . , bN ∈ Σm, find the maxi, j LCS(ai, b j). We describe
the reduction from OVN ,m to LCS-Pair along the lines given by Bringman and Kunneman.

Lemma 6.2. OVN ,m reduces in linear time to LCS-PAIRN ,cm for some constant c.

Proof. The general idea is to produce a local substitution of each character of ui and v j accord-
ing to different substitutions.

Define the strings 0u = 10011, 1u = 11100, 0v = 11001, and 1v = 00111. Observe that
LCS(0u, 0v) = LCS(0u, 1v) = LCS(1u, 0v) = 4 but LCS(1u, 1v) = 3.

We want to ensure that any LCS for ai and b j involves a character-by-character match of
ui and v j in {0, 1}m. To do this we define codeu(ui) to be the string where we replace each 0
or 1 of ui by the corresponding 0u or 1u and we separate each pair by, say, a string of three
2’s; do the same for codev(v j) except we use 0v and 1v instead. Define ai = codeu(ui) and
b j = codev(v j). In particular, if ui = 001 and v j = 011 then

ai = codeu(001) = 100112221001122211100

b j = codev(011) = 110012220011122200111

Therefore the total string length m′ is 8m− 3. It is clear that every LCS of ai and b j and must
match all the 2’s, which means that corresponding coordinates much be matched. If ui and v j

are orthogonal then LCS(ai, b j) = 4m + 3(m − 1) = 7m − 3, which we denote by S. On the
other hand, if ui and v j are not orthogonal then the contribution is only 3 instead of 4 in all the
coordinates with common 1’s and hence LCS(ai, b j) ≤ S − 1. The reduction simply compares
the length of the LCS to S.

To obtain a lower bound for LCS, we will need to concatenate these strings to a single
pair of strings A and B so that the length of the LCS of the whole string will be larger iff
there is some pair of orthogonal ui and v j. To do this we need to control things so that we
know the contribution of each the failed matches also. With the above construction, the more
overlapping 1’s, the worse the value. To fix this we use a slight modification of the above
construction that always guarantees a match of precisely 1 less than the maximum possible.

To do this we add an extra dummy coordinate to the encoding. Define code′u(ui) = code(ui0)
and code′v(v j) = code(v j1) as well as an extra “easy string” e = code(0m1). Observe that (ui, 0)

25

and (v j, 1) are orthogonal iff ui and v j are. Also every vector (v j, 1) has precisely one coordinate
with overlapping 1’s with (0m, 1). Let m′′ = 8m+ 5 be the length of code′u(ui). Now define

a′i = code′u(ui)3
m′′e

b′j = 3m′′code′v(v j)3
m′′

The total length of each of a′i and b′j is ℓ = 3m′′ = 24m + 15. Observe that any LCS for the
two strings must match one of the two groups of 3’s in b j in its entirely to the middle group
of 3’s in ai and then include an LCS between code′v(v j) and either code′u(ui) of e. If ui and
v j are orthogonal then we get a total contribution of S′ = m′′ + S + 7 where S is the value
from the above lemma since the extra coordinate gives a total contribution of 7. In particular
S′ = 8m+ 5+ 7m− 3+ 7= 15m+ 9. In the latter case there is precisely 1 segment where the
contribution is 3 instead of 4 so we get m′′+S+6= S′−1 (there is a contribution of 3 for the
matching 2’s and another 3 from the LCS between 1u and 1v).

We now are in a position to describe the construction of the strings A and B for the proof
of the theorem. The idea will be that the contribution will be to allow an arbitrary rotated
alignment of the combined string of encodings b1, . . . , bN , suitably separated, with the the
string of encodings a1, . . . , aN . This will necessitate two copies of one of the strings to allow
for the orthogonal pair (ui, v j) to have i > j as well as i ≤ j.

We define the strings

A= a′14ℓa′24ℓ . . . 4ℓa′N 4ℓa′14ℓa′24ℓ . . . 4ℓa′N
B = 4Nℓb′14ℓb′24ℓ . . . 4ℓb′N 4Nℓ.

In particular, both |A| = |B| = (4N − 1)ℓ which is O(Nm). A has (2N − 1)ℓ 4’s and 2Nℓ
characters from the a′i which is O(Nm), while B has has Nℓ characters from the b′j and (3N−1)ℓ
4’s. Clearly one can match all of the (2N − 1)ℓ 4’s in A in B.

If some pair ui and v j are orthogonal we can get a common subsequence as follows: Write
∆ = i − j + 1. We get a common subsequence by aligning the subsequence b14ℓ . . . 4ℓbN with
some a∆4ℓ . . . 4ℓa∆−1 where we write ak = aN+k for k ≤ 0. and matching up all the 4’s outside
of the subsequence in A with the 4’s at the beginning and end of B. Observe that this aligns
a′i and b′j. In total, this matches all 4(2N−1)ℓ 4’s in A plus S′ of the characters in a′i and b′j
and at least S′ − 1 characters for each of the other N − 1 positions for a total LCS length of
≥ S′′ = (2N − 1)ℓ+ NS′ − (N − 1).

On the other hand, suppose that there is no pair of orthogonal elements ui, v j. Consider
any LCS of A and B and consider how it matches up characters of B inside A. If there is some
b′j that has characters matching with more than one of the a′i strings then it must NOT match
any of the ℓ 4’s in between them. This costs ℓ in terms of the 4’s but could potentially increase
the number of matches inside the string b′j, but since matching b′j to just one of the a′i would
already give S′−1 so in the best case the amount of increase would be at most ℓ−S′+1 which
is strictly less than the loss of 4’s. Therefore, any LCS of A and B must match and (2N − 1)ℓ
4’s in A and each b′j to at most one of the a′i strings. No matter which i it is matched to, the

26

longest part of the LCS inside b′j can be at most S′ − 1, so the the total length of the LCS is at
most (2N − 1)ℓ+ N(S′ − 1) = S′′ − 1. (This length is actually achievable.)

Therefore, OVN ,log2
2 n is reducible in time O(n) = O(N 2 log2 n) to LCS on length n strings over

{0,1, 2,3, 4}. This proves the theorem except for the reduction of the alphabet size to binary.
That reduction requires a more subtle way to put the various strings in order to replace the
symbols 2,3, 4 by binary strings.

Encoding LCS using binary strings instead

The idea, due to Bringman and Künneman, is quite general. It assumes that we have two sets
of binary codes, one for Cx and one for Cy with the following properties:

• Cx ⊂ {0, 1}ℓx and has sx 1’s.

• every string in Cy ⊂ {0,1}ℓy and has sy 1’s.

For example, Cx = {0u, 1u} we have ℓx = 5 and sx = 3 and Cy = 0v, 1v has ℓy = 5 and sy = 3.
We saw that for single bits u and v, x = codeu(u) ∈ Cx and y = codev(v) ∈ Cy , LCS(x , y) = 4
if u · v = 0 but LCS(x , y) = 3 if u · v = 1.

The general idea is to build an alignment gadget to encode longer strings of elements from
Cx and Cy such that the best way to build an LCS must involve matching individual codes.
This will be done by separating these codes using very long blocks of 0’s and very long blocks
of 1’s.

Define γ1 = ℓx + ℓy , γ2 = 6(ℓx + ℓy), γ3 = 10(ℓx + ℓy) + 2sx − ℓx and γ4 = 13(ℓx + ℓy).
For a string z ∈ Cx ∪ Cy , we write G(z) = 1γ20γ1z0γ11γ2 . Observe that for x ∈ Cx and

y ∈ Cy , LCS(G(x), G(y)) = LCS(x , y) + 2γ1 + 2γ2 = LCS(x , y) + 14(ℓx + ℓy). This follows
because there is no advantage to NOT matching the corresponding strings of 0’s and 1’s at the
beginning and end of the G(x) and G(y).

For n≥ m, x1, . . . , xn ∈ Cx and y1, . . . , ym ∈ Cy define

x = G(x1)0
γ3 G(x2)0

γ3 · · ·0γ3 G(xn) (2)

y = 0nγ4 G(y1)0
γ3 G(y2)0

γ3 · · ·0γ3 G(ym)0
nγ4 . (3)

Observe that since x i has sx 1’s so G(x i)0γ3 so it has 2γ2+ sx = 12(ℓx + ℓy) + sx 1’s. It also has
2γ1 + ℓx − sx + γ3 = 2(ℓx + ℓy) + ℓ− sx + 10(ℓx + ℓy) + 2sx − ℓx = 12(ℓx + ℓy) + sx 0’s, so it is
balanced. (Further observe that this is at most γ4.) Also, every prefix of G(x i)0γ3 has at least
as many 1’s as 0’s since G(x i) begins with γ2 1’s and G(x i) has at most 2γ1 + ℓx − sx < γ2 0’s.

By our observation, x has fewer than n[12(ℓx + ℓy) + sx] 0’s which is at most nγ4.
We want to claim that the best LCS of x and y is given by the max over all choices of 0 ≤

∆ ≤ n−m of the matching that aligns the G(x∆+1)0γ3 · · ·0γ3 G(x∆+m) with G(y1)0γ3 · · ·0γ3 ym

and matches all the remaining 0’s in x with the 0’s at the beginning and end of y , since there
are enough of them in total. That number of extra 0’s matched at the ends of such an alignment
is independent of the choice of ∆, since the number of 0’s in each x i is exactly the same, and

27

the total length of the LCS is simply some fixed value plus
∑m

k=1 LCS(x i+∆, yi), which is the
sum of the shifted LCS alignments of the original encodings.

It remains to show that no other alignment can give a better LCS than one of these align-
ments∆. Consider some other alignment of x with y . Now for each of the blocks G(y1), . . . , G(ym)
of y we can define x(j) to be a substring of the x string that contains the portion of the LCS
that matches G(y j) and z(j) for j = 1, . . . , m− 1 to be the substring of x that aligns with the
0γ3 after G(y j). Given this alignment, if x(j) contains more than half of some x i string (a piece
inside G(x i) then, since there might be more than one such x i, define i∗(j) to be the leftmost
such i. This function i∗ might not be defined for some values of j but, if it is, then i∗(j)> i∗(j′)
for j > j′. Thus i∗ is a partial increasing 1-1 function from [m] to [n].

Claim: If i∗(j) is defined then there are at least as many characters of not matched between
x(j) and G(y j) as there are not matched between G(x i∗(j)) and G(y j).

If x(j) touches some G(x i) other than G(x i∗(j)) then there was more than one candidate for
i∗(j) then there is huge number of unmatched characters in x(j) since it contains the interven-
ing sequence 0γ11γ20γ31 if it is to the right or 10γ31γ20γ1 if it is to the left which yields a much
greater distance number than ℓx + ℓy which is an upper bound on the number of unmatched
characters between G(x i∗(j)) and G(y j).

If not, then the string x(j) is contained in 0γ3 G(x i∗(j))0γ3 . Since G(y j) begins and ends with
γ2 > ℓx + ℓy 1’s, x(j) must begin and end with 1’s or the LCS with G(y j) will have more than
ℓx+ℓy unmatched characters. Further x(j)must have more than |G(y j)|−γ2 characters or there
will again be more than γ2 unmatched characters. Note that the right substring x i∗(j)0

γ11γ2 or
the left substring 1γ20γ1 x i∗(j) have length ℓx+γ1+γ2, they are too short, so the string x(j)must
look like 1a0γ1 x i∗(j)0

γ11b for some a and b. It is easy to see that the fewest mismatches would
occur when a = b = γ2 which is exactly the case of the claim.

Claim: If i∗(j) is not defined then x(j) and G(y j) have at least ℓx + ℓy mismatches which
is at least than the number of mismatches between G(y j) and any G(x i).

Since i∗(j) is not defined then there is some i such that x(j) is contained in x i0
γ11γ20γ31γ20|gamma1 x i+1

and contains less than half of x i and x i+1 (or an end case where it begins or ends with 1γ2).
If x(j) contains 1’s on both sides of the central 0γ3 then it contains γ3 0’s which exceeds the
number in G(y j) by more than ℓx + ℓy . If x(j) only contains 1’s on one side of the central)γ3

then it contains at most sx + γ2 ≤ ℓx + γ2 1’s. However G(y j) contains at least 2γ2 1’s and
γ2 − ℓx > ℓx + ℓy so there are more than ℓx + ℓy unmatched characters.

Since the z(j) are perfectly aligned in the alignments based on ∆, the middle sequence of
y ignoring the 0’s at the ends is always aligned at least as well as before. The bottom line from
this is that the total cost is at least as large as one of the consecutive alignments.

7 LCS is hard even given a very weak SETH

Abboud, Hansen, Vassilevska-Williams, and Williams at STOC 2016 showed that LCS is hard
even if very high complexity C IRCU I T -SAT is hard. We sketch a simpler proof of their theo-
rem.

28

Theorem 7.1. If there is no 2n−o(n) algorithm to compute satisfiability for

• depth o(n) circuits,

• size 2o(n) Boolean formulas, or

• verifiers given by space o(
p

n) nondeterministic Turing machines,

then LCS over an alphabet of size no(1) does not have an O(n2−ϵ) algorithm for any ϵ > 0.

One key observation is that the previous construction did not make use of the full range of
parameters possible in constructing A and B. All we needed for the conclusion is that each ai

for the LCS-PAIR problem has size N o(1) rather than restricting it to O(log2 N).
We note that by the usual formula balancing construction, the first two classes are identical.

The third follows from the first by the fact that NSPACE(S(n)) ⊆ DEPTH(S2(n)).

Proof Sketch. We use the same framework to convert from LCS-PAIR to LCS so we just give
the description for the ai and b j strings for LCS-PAIR. We use the same separation of the input
variables into U and V and N = 2n/2 assignments to each player as before. (We will index
assignments by α and β so as not to confuse notation.) We will define aα and bβ recursively.
We will define a av

α
and bv

β
for each gate v in the circuit. We will first produce them as weight

formulas and then argue that the weights can be removed. We will assume wlog that the depth
o(n) circuit has been converted to a balanced formula in which all negations have been pushed
to the leaves and each gate at depth k has two predecessors at depth k− 1.

We create av
α

and bv
β

by induction on k = depth(v). We will construct these so that
LCS(av

α
, bv
β
) is maximal iff v evaluates to 1 on input (α,β).

Suppose that k = 0. Then u is labelled by a literal ℓi that is either x i or ¬x i. Set

au
α
=

¨

∗ if i > n/2 or ℓi(α) = 1

$ otherwise,

and

bu
β
=

¨

∗ if i ≤ n/2 or ℓi(β) = 1

otherwise,

We will ensure that none of the a strings contain # and none of the b strings contain $. Clearly
both will have a ∗ iff literal ℓi is set to true on assignment (α,β).

Now suppose that u has children v and w at depth k− 1.
If u= v ∧w then define

au
α
= Pkav

α
Qkaw

α
Pk

bu
β
= Pk bv

β
Qk bw

β
Pk

where Pk and Qk are new symbols of weight Wk = 3k. Clearly any optimal LCS for this pair
must align all of the Pk and Qk and hence will have a maximal LCS iff both LCS(av

α
, bv
β
) and

29

LCS(aw
α

, bw
β
) are maximal.

If u= v ∨w then define

au
α
= Pkav

α
Qkaw

α
Pk

bu
β
=Qk bw

β
Pk bv

β
Qk

In this second case, the optimal LCS must match precisely one Pk and one Qk and include the
LCS of precisely one of the two pairs (av

α
, bv
β
) or (aw

α
, bw
β
). Hence it will be maximal iff at least

one of the two matches is maximal. (Note that the target weight of the maximal match is
different depending on whether the gate is an ∨ or an ∧ gates, but this doesn’t matter since we
know the target size from the property of the circuit itself. We could alternatively simply use
higher weight in the OR gadget to make them equal. We end up with o(n) different symbols.

The weighted aα and bβ strings are the ones for the output gate of the circuit. We can
remove all the weights easily by replacing a symbol σ with weight w by w consecutive copies
of σ without changing the LCS size. Clearly we can just use entire blocks corresponding the
weighted LCS. The claim is that this is the best we can do. Suppose that we have an LCS that
does not match things blockwise for σ and consider the leftmost partial match of σ between A
and B. That, say matches the i-th element in the block in A to the j-th element in the block in
B. This (i, j) match splits the LCS. Suppose wlog that i ≤ j. Clearly that are at most w− i + 1
elements of the LCS that touch either of these two blocks since there is no match in the block
to the left of the (i, j) match and matches in the LCS cannot cross each other. We can do at
least well (obtaining w matched pairs in the blocks) by locally replacing all of those edges by
a full matching of the two blocks.

Note that the total weight for depth k is ck for some constant c, each resulting string has
length 2o(n) = N o(1).

30

8 Circuit-SAT Algorithms Imply Lower Bounds

We consider Boolean circuits over the De Morgan basis consisting of binary ∧, ∨ and ¬.

Theorem 8.1 (Shannon). At least a 1− o(1) fraction of Boolean functions require circuit size at
least 2n/n− o(2n/n).

Proof. We will not optimize the constants and assume for convenience that the negations have
been pushed to the inputs via de Morgan’s Law so we have access to literal gates x1, . . . , xn, x1, . . . , xn

and all internal nodes are labelled via ∧ and ∨. We count the number of circuits with S ∧ and
∨ gates. We can label each internal gate based on its two inputs which are each either gates or
literals and its type. There fewer than (S+2n)2 choices of inputs per gate and 2 choices of gate
label so there are [2(S + 2n)2]S possible gates and S choices for the name of the output gate.
In total, this is at most SO(S) = 2O(S log S) different circuits of size at most S ≥ 2n. On the other
hand, there are 22n

possible Boolean functions. Therefore for some constant ϵ > 0 if S log S is
at most ϵ2n, the number of circuits of size at most S is a vanishingly small fraction of all func-
tions. This implies that S is Ω(2n/n). The sharper bounds follows from a more careful count
since there are S! different ways of naming the internal gates; this shows that the number of
distinct functions computed by circuits of size at most S is SS+o(S).

This is matched by a result of Lupanov.

Theorem 8.2 (Lupanov). Every Boolean function f on n bits can be computed by a Boolean
circuit of size 2n/n+ o(2n/n).

Sketch. Observe that over all assignment α to the last n−k variables there are only 22k
possible

functions among f (x1, . . . , xk,α). We can compute all such functions using dynamic program-
ming in total size at most 22k

.
We now build up the Boolean functions on longer prefixes that we need using F(x1, . . . , xm+1,β) =

¬xm+1 ∧ F(x1, . . . , xm, 0,β) ∨ xm+1 ∧ F(x1, . . . , xm, 1,β).) This add O(2n−k) = O(2n/2k) gates
in total. We choose k such that 22k

is roughly 2n/n. In that case 2k is n− log2 n and the total
number of gates is O(2n/n). Again, with a slightly sharper construction and analysis one can
obtain the claimed bound.

Despite the fact that almost all functions are exponentially hard for circuits, getting our
hands on any hard functions is quite elusive.

The largest classes of circuits where we have very simple explicit functions with strong
lower bounds was the class AC0[p] for p prime which consists of constant-depth circuits with
unbounded fan-in AND gates, OR gates, and mod-p gates where a mod-p gate outputs 0 if
the sum of its Boolean inputs is 0 modulo p and outputs 1, otherwise. (Alternatively, in
the special case that p is a prime a mod-p gate with inputs y1, . . . , yk computes the quantity
(y1 + . . . yk)p−1 mod p. This does not nicely extend to cases of mod-m gates.) Razborov and
Smolensky used the probabistic polynomials that we described before (and its generalization
to other moduli other than 2) to show that any such circuit that computes the mod-q function
for q ̸= p prime requires exponential size.

31

Though Shannon’s bounds are far from explicit, if we go to a sufficiently high complexity
class, we can find functions that require large circuits.

Proposition 8.3. There is a function family in EX PEX P (double exponential-time) that requires
circuit size Ω(2n/n).

Proof. The idea for an input x of size n is to search through all possible tables of Boolean
functions on n bits until we find one that has circuit complexity at least S(n) = ϵ2n/n. We
search through all possible 22n

truth tables of such functions starting with the all 0’s table in
lexicographic order. For each such function we try all circuits of size < S(n) of which there are
fewer than 22n

. For each such circuit, we evaluate the function on all 2n inputs which takes
only S(n)2n time. If we find a circuit that is correct on all inputs we move on to the next truth
table in order. The value of the function on input x is defined to be the entry for x in the first
truth table where all of the circuits fail.

It is known that for every integer k ≥ 0, the complexity class ΣP
2 = N PN P contains functions

that require size at least Ω(nk). Using an exponential translation of this result, we can obtain
that the complexity class EX PEX P in the above proposition can be reduced to EΣ

P
2 where

E = DI I M E(2O(n)).
What about N EX P, nondeterministic exponential time? It is consistent with our knowledge

that every problem in N EX P has polynomial-size circuit. (despite the fact that we expect that
there are problems in N P that don’t have polynomial-size circuits - which would be stronger
than P ̸= N P but incomparable with ETH and SETH). Ryan Williams proved the following
stronger result.

Theorem 8.4 (Williams). For any class of circuits C that is closed under ∨ and ∧ if C -SAT for
circuits of size nk for all k can be solved deterministically in time 2n/n10 then N EX P does not have
polynomial-size circuits in C .

Note that this is only a polynomials savings over brute force which would take time O(2nnk)
using standard CIRCUIT-SAT algorithms.

Theorem 8.5 (Murray-Williams). There is a ϵ > 0 such that for any class of circuits C that is
closed under ∨ and ∧ if C -SAT for circuits of size nk for all k can be solved deterministically in
time 2n−nϵ then N T I M E(npolylogn) does not have polynomial-size circuits in C .

Theorem 8.6 (Murray-Williams). IfC -SETH is false then for every k, N P contains functions that
require C -circuits of size larger than nk.

In the following, we sketch the most basic of the ideas for the arguments which are quite
involved. Since the assumptions are algorithmic, we will need to leverage some lower bound.
That lower bound is the nondeterministic time hierarchy theorem.

Theorem 8.7 (Nondeterministic Time Hierarchy Theorem). For all T (n) that is the running
time of some TM and functions t such that t(n+1) is o(T (n)), N T I M E(T (n)) ̸⊆ N T I M E(t(n)).

32

The proof of this theorem which is covered in CSE 531 is much trickier than the one for the
deterministic time hierarchy theorem and it doesn’t work for very fast growing functions.

Corollary 8.8. N T I M E(2n) ̸⊆ N T I M E(o(2n)).

The general idea of the structure of the proof is to show that if we have both

1. N EX P has polynomial-size C circuits, and

2. There is a deterministic C -SAT algorithm with running time 2n/n10 for all polysize C
circuits

then we can produce an N T I M E(o(2n)) algorithm for any L ∈ N T I M E(2n), which violates the
nondeterministic time hierarchy theorem.

To use assumption 1, we apply the following result of Impagliazzo, Kabanets, and Wigder-
son.

Lemma 8.9 (Easy Witness Lemma). If N EX P has polynomial-size circuits then for every N EX P
verifier V for a language L ∈ N EX P (which runs in deterministic time 2nc

and given as input
a string x of length n and accepts iff there is a witness string y of length 2nc

such that V (x , y)
accepts), then for all large enough x ∈ L there is a circuit CV,x with nc inputs bits and size nd for
some constant d computing a Boolean function such that the truth table T of the function CV,x is
a witness for x ∈ L, namely V (x , T) accepts.

This lemma can be specialized to specific circuit classes also. The general idea of its proof
is very complicated. The idea is that if it isn’t true then you can nondeterministically find truth
tables of very hard functions, then one can use this truth table as the basis of a pseudorandom
generator (PRG). This PRG can let you derandomize a PCP for NEXP and get that MA (Merlin-
Arthur which is like NP but with randomized verifiers) is in NSUBEXP (

⋂

ϵ>0 N T I M E(2nϵ)).
The assumption that NEXP has polysize circuits directly implies that everything in EXP has
polysize circuits, which implies that EXP is the same as MA via the Karp-Lipton theorem, which
implies that EXP is in NSUBEXP. But the NEXP has polysize circuits means that NSUBEXP only
needs circuits of some fixed polynomial size nk for some fixed k. That contradicts what we
know; in particular, we know that EXP requires circuits of arbitrarily large polynomial size
since it contains ΣP

2 . Whew!
The point here is that we can reduce the amount of nondeterminism for N T I M E(2n) from

2nc
down to nd , namely guessing the circuit that must exist. (Note that we only care that it is

down to o(2n when we started with c = 1.) This circuit gives us a nice efficient way to access
any bits of the witness string also. The construction gives a C -circuit of this size if NEXP has
polynomial-size C -circuits.

We haven’t used the second of our assumptions yet, namely that there is a 2n/n10 deter-
ministic algorithm for C -CIRCUIT-SAT. We need to be able to replace the O(2n) time for the
verifier V for L with something shorter. If we don’t, we won’t save anything. To do this one
needs a very special structured PCP for NEXP. The general idea of a PCP is that rather than
having a verifier V that looks at the whole witness y , one encodes y in a larger string E(y) so

33

that one can examine some small randomly chosen portion of E(y) and be able to check that
this should be accepted efficiently based on that small portion. For NEXP, the standard PCPs
examine only a polynomial size portion of the exponentially long string E(y). These PCPs have
the property that if x ∈ L then no matter what the portion examined in E(y) will cause the
verifier to accept and any x /∈ L, the string E will be rejected with constant probability. In
particular, we need to argue that the entire process of taking the random bits r that let one
choose which part of E(y) to look at, compute those bits based on the circuit that produces y ,
and make the decision about whether to reject can be done in some nk size C -circuit for some
k. It happens that such very structured PCPs do exist once we know that we have an nd size
circuit for the bits of y .

We just need to know whether there is an r that causes us to reject, which is where we
use the C-CIRCUIT-SAT algorithm. This runs in o(2n) deterministic time. Therefore, the whole
algorithm, both the guess and verifier run in o(2n) time, which contradicts the nondeterministic
time hierarchy theorem.

In the application, we even know that, say, either all the r choices are bad (cause the PCP
to accept) or at least half of them cause the PCP to reject. In fact, we get the extra promise
that if the circuit is satisfiable then at least half the assignments are satisfying.

Therefore we can replace all the C -CIRCUIT-SAT problems with their "Gap" versions that
have this promise.

Williams gave a clever algorithm using the polynomial method for computing satisfiability
of circuits in the class ACC0 ⊃

⋃

m AC0[m] which consists of constant-depth unbounded fan-
in circuits of AND, OR, and mod-m gates for arbitrary many different m. (The ACC in ACC0

stands for Alternating Circuits with Counters.)

Theorem 8.10. For ϵ > 0, there is a deterministic algorithm for satsfiability of n variable ACC0

circuits of size at most 2nϵ in time 2n−nϵ .

Corollary 8.11 (Williams, Murray-Williams). N EX P does not have polynomial-size ACC0-circuits.
In fact, N T I M E(npolylogn) does not have such circuits.

34

9 SAT solvers

DPLL Algorithm

This basic algorithm is a simplified version of one by Davis, Logeman, and Loveland (CACM
1962), modifying an approach of Davis and Putnam (CACM 1960) which was quite different.
The original goal of both was as a component of a decision procedure for first-order logic.
Confusion over the terminology and attribution for the algorithm in the 1990s was settled by
agreement to reference all of the authors.

Algorithm 4 The DPLL algorithm for satisfiability search. This is invoked as DPLL(F ,nil). This
is a complete algorithm in that failure of the search implies that F is unsatisfiable.

1: function DPLL(F , A)
2: while F contains a clause x of size 1 do
3: F ← Fx←1; A← (A, x) ▷ Unit propagation
4: if F is empty then
5: Halt and output satisfying assignment A
6: if F contains the empty clause ⊥ then
7: return
8: else choose unset literal x ▷ Decision literal
9: DPLL(Fx←1 , (A, x))

10: DPLL(Fx←0 , (A,¬x))

The DPLL algorithm is closely related to a method for inferring new clauses from existing
ones, called Resolution. This has precisely one inference rule, the resolution rule:

A∨ x; B ∨ x
A∨ B

This rule is sound since any truth value of x cannot make both of the given clauses true, so
one of A or B must be made true. A Resolution refutation is a sequence of clauses ending in the
empty clause ⊥, each of which is either a given clause or follows from two prior clauses via the
resolution rule.

Proposition 9.1. A given set F of clauses is unsatisfiable iff there is a Resolution refutation of F.

A Resolution refutation is tree-like iff each derived clause is used at most once in any reso-
lution rule.

Proposition 9.2. The trace of every DPLL algorithm that fails to find a satisfying assignment for
a CNF formula F corresponds to a tree-like refutation of F.

Proof. At each of the leaves of the tree of partial assignments A explored, the empty clause
⊥ corresponds to an original clause falsified by the corresponding assignment A. The unit
propagation nodes each only have one child but we can make each such node a binary node

35

by adding a leaf node for the alternative polarity of the literal involved. That corresponds to
falsifying the original clause that was a unit clause under assignment A and therefore that leaf
can also be labelled by an original clause that the partial assignment that reaches it falsifies.

We now walk up the tree building the tree-resolution proof. Now consider the last decision
literal x at node u above two leaf nodes v where x is set to true and w where x is set to false.
Let Cv and Cw be the original clauses that are violated at nodes v and w. The partial assignment
A that reaches node u together with setting x to true. Then A together with x falsifies Cv and A
together with x falsifies Cw. Since u is not a leaf, A does not falsify either Cv or Cw. Therefore
Cv = D∨ x and Cw = D∨ x , for some clauses D and E where A falsifies D and A falsifies E. We
can apply the resolution rule to Cv and Cw to derive the clause Cu = D∨E which we use to label
node u. The assignment A falsifies Cu. Applying this operation inductively up the tree, we can
label every node by a clause such that the partial assignment reaching the node falsifies the
associated clause and each node is the resolvent of its two child, resolving on the literal being
branched on.

At the end we obtain a clause labelling the root of the tree that is falsified by the empty
partial assignment. This means that the clause labelling the root must be ⊥ and the whole
thing is a tree-resolution refutation. Observe that the tree-resolution refutation exactly follows
the structure of the DPLL execution.

Note that the above simulation works no matter how the decision literals are chosen. In
fact, one can show that for every tree-resolution refutation of F can be pruned and converted
into a DPLL execution of the same structure with some choice of decision literals the same size

CDCL SAT solvers

CDCL stands for Conflict-Directed Clause Learning. These are the most important practical
algorithms for SAT solving and formal reasoning. In DPLL, when the search fails because of a
conflict in line 7, the recursive calls simply backtrack and the last decision is simply undone.
However, while the conflict was found using the last branching decision, it may not depend on
any other recent branching decision, so changing those decisions may not impact the conflict.
The general idea of conflict-directed clause learning, is to record somewhat more about the
decisions and unit propagations make during the proof search, using a data structure called a
conflict graph and replace line 7 of DPLL with a conflict analysis step which adds a new learned
clause to F , which summarizes the reason for the conflict and can be used to simplify future
searches:

The algorithm maintains the partial assignment A, which is called the trail. The conflict
graph is a directed graph with one vertex for each literal in the trail A. Decision literals are
source nodes. For every literal x in A assigned through propagation of a unit clause that was
originally a clause C of F , all of the other literals z in C must have previously appeared as ¬z
in A; in the conflict graph we put an edge from each of these ¬z literals to x . It is possible that
this unit propagation produces the empty clause ⊥ rather than a literal, if a decision is made
that causes an immediate contradiction.

36

Definition 9.3. Given a conflict graph G = (V, E), a source-sink cut in G is a set of vertices
U ⊂ V such that

• U contains all sources (decision literals) in G,

• U does not contain the sink node labeled ⊥.

• U there are no edges from V − U to U in G.

Given such a cut U , let EU be the set of edges that lead from U to V − U . Observe that EU is a
set of edges whose removal eliminates all paths from source nodes to ⊥. Given such a cut U ,
we define conflict clause CU to be the clause whose literals are negations of literals at tails of
edges in EU .

CDCL solvers choose one of these clauses that is guaranteed to cause immediate unit prop-
agation at a level higher than the current level. Such a clause is called an asserting; the level
where this unit propagation takes place is call the assertion level of the clause. Note that the
clause consisting of the negations of all the decision literals will be asserting at a level one
above the current level. If we add that clause, this will be the equivalent to DPLL since unit
propagation will switch to the other assignment of the last decision literal.

Algorithm 5 Simplified CDCL ideas for satisfiability search.
1: function SIMPLE-CDCL(F)
2: Set A to nil and conflict graph to empty.
3: Set decision level to 0.
4: while true do
5: while F contains a clause consistent with A with only one literal x not set by A do
6: A← (A, x)
7: Propagate(x ,F) ▷ Unit propagation
8: Add x and edges to conflict graph
9: if F has no active clauses then Halt and output satisfying assignment A

10: if conflict graph has ⊥ then
11: if decision level=0 then Halt and output “unsatisfiable”.
12: Use conflict graph to find asserting conflict clause CU ▷ Analyze Conflict
13: Add CU to F
14: Set decision level to assertion level of CU , pruning A and the conflict graph.
15: else
16: Choose unset literal x according to decision heuristic ▷ Decision literal
17: Increment decision level.
18: A← (A, x).
19: Propagate(x ,F).
20: Add source x to conflict graph tagged with decision level.

The asserting learned clause is typically found by using the 1UIP (1st Unique Implication
Point) cut given by a single node (the first starting from ⊥) that separates ⊥ from the decision

37

literal at the last level. Example of a conflict graph and asserting learned clause (w ∨ v ∨ a)
given by the 1UIP is the following:

Proposition 9.4. Learned clauses are derivable using a number of steps of the resolution rule at
most the size of the last decision level.

Proof. We show the idea using the example. The conflict graph implies that clauses b∨ c, y ∨
a ∨ b, w ∨ c must be part of the formula. Resolving the 1st with the 2nd gives y ∨ a ∨ c and
resolving this with the 3rd gives the desired learned clause. The general case follows similarly
working backwards from ⊥.

There are a few optimizations that are critical for the good performance of CDCL. One
is that the algorithm only maintains the trail rather than the residual (simplified) formula at
each step. All that is required is that the algorithm be able to tell when a clause in the residual
formula has at most one unset literal outside of A. Learned clauses can also get quite long,
even if the original formula was in 3-CNF. To do this the algorithm maintains the names of just
two watched literals for each original and learned clause that has not been satisfied by A, as
well as a list of which active clauses have these literals. Every time that A sets a literal, each
the watched literal pair for each in the list is updated. (If one of these is falsified by the newly
assigned literal, then another literal in the clause is chosen to be watched if possible.) This has
the advantage of being cache-efficient.

Another optimization is that the algorithm can periodically choose to restart from the root,
but keeping around learned clauses so that the algorithm doesn’t get stuck at large decision
levels; a simple example might be if a clause of size 1 is learned which enforces the assignment
to one of the variables, but it can also be useful if there simply have been a large number of
decisions.

Good CDCL algorithms also use information about the conflict graph and learned clauses
to help with the decision heuristic for new literals is based on which literals have shown up in
recent learned clauses, using a tunable parameter. A popular one is called VSIDS, which uses
multiplicative weight updates for variables. Depending on the application, decisions about
which polarity to use for each literal may be to always try false first, or to use the same sign as
was last used, or to randomize the choice.

38

Also, it turns out that some frontier clauses include more literals than necessary because
the negations of some of those literals are implied by the negations of other sets of literals in
the clause. Simplifying such clauses is call clause minimization.

Finally, the number of learned clauses can grow very quickly, which would overwhelm the
storage. To avoid this, CDCL algorithms usually have a cache pruning phase that periodically
removes learned clauses that have not been used recently. (Often this is in the form of a marking
algorithm that periodically halves the number of learned clauses, removing old learned clauses
that have not been used since the last cache pruning.)

Algorithm 6 CDCL for satisfiability search.
1: function CDCL(F)
2: Choose two watched literals for each clause of F , if possible.
3: Set A to nil and conflict graph to empty.
4: Set decision level to 0.
5: while true do
6: while F contains a clause with only 1 watched literal x do
7: A← (A, x)
8: Propagate(x ,F) ▷ Unit propagation
9: Add x and edges to conflict graph

10: if F has no active clauses then Halt and output satisfying assignment A
11: if conflict graph has bot then
12: if decision level=0 then Halt and output “unsatisfiable”.
13: Use conflict graph to find asserting conflict clause CU ▷ Analyze Conflict
14: Minimize CU

15: Add CU to F and add two watched literals for CU

16: Update decision heuristic
17: if restart chosen then
18: Set A to nil and conflict graph to empty.
19: Set decision level to 0.
20: else if clause pruning chosen then
21: Remove oldest half of learned clauses unused since last pruning.
22: else
23: Set decision level to assertion level of CU , pruning A and the conflict graph.
24: Update watched literals.
25: else
26: Choose unset literal x according to decision heuristic ▷ Decision literal
27: Increment decision level.
28: A← (A, x).
29: Propagate(x ,F).
30: Add source x to conflict graph tagged with decision level.

39

Theorem 9.5. The trace of every CDCL SAT solver run on an unsatisfiable CNF formula F yields
a Resolution refutation of F of at most the same size.

40

10 Resolution Proofs

Definition 10.1. For a CNF formula F , we write Res(F) for the minimum number of clauses in
any Resolution refutation of F . If F is satisfiable then Res(F) =∞.

Definition 10.2. For a CNF formula F write w(F) = maxC∈F |C | and for a resolution proof P,
define the width of P, w(P) =maxC∈P |C |.

For a CNF formula F define width(F) to be the minimum width w(P) over all resolution
refutations P of F (and∞ if no such refutation exists).

Proposition 10.3. (a) Let P be a resolution derivation of a clause C from CNF formula F. For
any restriction ρ on the variables of F, P|ρ is a resolution derivation of C |ρ from F |ρ.

(b) For literal z, if width(Fz←1)≤ w then either width(F)≤ w or there is a resolution derivation
of ¬z from F of width at most w+ 1.

Proof. Part (a) is immediate. For part (b), let P ′ be a refutation of Fz←1 of width at most w.
For the new derivation, replace each input clause of Fz←1 by the corresponding clause of F and
retain the same sequence of resolution steps (which is possible since none of the resolution
steps involve the literal z) to yield a proof P. The replacement of input clauses of Fz←1 by those
of F may add ¬z to some input clauses. It is immediate, inductively, that every clause of proof
P ′ either stays the same or has ¬z added to it in P. If the output clause is still the empty clause
⊥, then all the clauses of Fz←1 leading to the output clause of P ′ were in the original formula
F , so P ′ is the required refutation. Otherwise, the clause width of P is at most w+ 1 and the
output clause is ¬z.

Theorem 10.4. Let F be a CNF formula in n variables. If Res(F)≤ S then

width(F)≤max(2
p

2n ln S,
p

2n ln S +w(F)).

Proof. Set W = ⌈
p

2n ln S⌉. We say that a clause C is wide iff w(C)≥W . We prove the follow-
ing claim by induction on n and k:

CLAIM: If (1−W/2n)k S < 1 then any CNF formula F in n variables having a resolution refu-
tation with ≤ S wide clauses has width(F)≤max(W, w(F)) + k.

Before proving the claim, we observe that the case k = W is sufficient to prove the state-
ment, since (1−W/2n)W < e−W 2/2n ≤ 1/S by the choice of W .

The case k = 0 is trivial, since a refutation with no wide clauses has width at most W .
For the general case, let P be a resolution refutation of F with n variable and ≤ S clauses

of width ≥W and suppose that (1−W/2n)k S ≤ 1. Choose the literal z appearing in the most
wide clauses of P. Since there are ≤ 2n possible literals and ≥ W distinct literals per wide
clause, z appears in ≥WS/2n wide clauses.

Consider the restrictions z← 1 and z← 0: Then Pz←1 is a resolution refutation of Fz←1 and
every clause of P containing z is satisfied and hence removed (and others are only shortened),

41

so Pz←1 has S′ ≤ S −WS/2n = (1 −W/2n) S wide clauses. Therefore (1 −W/2n)k−1 S′ ≤
(1−W/2n)k S ≤ 1. It follows by our inductive hypothesis with k′ = k− 1, that

width(Fz←1)≤max(W, w(Fz←1)) + k− 1≤max(W,w(F)) + k− 1.

By Proposition 10.3(b), either width(F) ≤ max(W,w(F)) + k, and we are done, or there is a
derivation P ′ of ¬z from F of width ≤max(W,w(F)) + k.

Now, Pz←0 is a refutation of Fz←0. By the inductive hypothesis applied to Fz←0, which has
n′ = n− 1 variables, there is a refutation P ′′ of Fz←0 of width at most max(W, w(F)) + k. We
next resolve ¬z with clauses of F containing z to produce every clause of Fz←0 used in P ′′. This
part requires width at most w(F).

Putting the parts together we obtain a single refutation of F of width at most max(W,w(F))+
k as required for the induction step.

Corollary 10.5. Let F be a CNF formula in n variables. If there is a resolution refutation of F or
size at most S then there is an algorithm running in time nO(

p
n log S+w(F)) that will find a resolution

refutation of F.

Proof. Apply a width-increasing search on proofs up to the width bound W ∗ given in Theo-
rem 10.4. That is, it applies all possible resolution inferences that yield clauses of width w
beginning with w = w(F) and increasing until a refutation is found. The number of distinct
clauses up to this width bound W ∗ is less than

∑W ∗

w=0

�2n
w

�

and the running time is polynomial
in this number of potential clauses. Plugging in the different values of W ∗ and using standard
binomial bounds for the two cases yields the claimed running times.

We restate Theorem 10.4 in the following convenient form:

Theorem 10.6. For any CNF formula F in n variables,

Res(F)≥ emin((width(F)−w(F))2/2n,width(F)2/8n).

This implies that sufficiently strong resolution width lower bounds suffice for proving res-
olution size lower bounds. It is known that the width-size relationship in Theorems 10.4
and 10.6 cannot be improved beyond a logarithmic factor in width or a polynomial factor
in size.

Boundary expansion and resolution clause width

Definition 10.7. For a bipartite graph G = (L, R, E) and a set S ⊆ L, the boundary of S, denoted
∂ S, is the set of all v ∈ R that have exactly one neighbor u ∈ S.

Graph G = (L, R, E) is an (r, c)-boundary expander iff for every S ⊂ L with |S| ≤ r, the
boundary ∂ S satisfies |∂ S| ≥ c|S|.

Definition 10.8. Any CNF formula F corresponds to a bipartite graph GF = (L, R, E) where L
is the set of clauses of F , R is the set of variables of F , and (C , x) ∈ E iff variable x appears in
clause C .

42

Given a set of clauses S, the boundary of S, ∂ S, in GF is a set of variables, but since each
occurs with a unique sign in the clauses of S, we can also interpret ∂ S as a set of literals when
it is convenient.

Lemma 10.9. If F is a CNF formula, C∗ is a clause and there is a resolution derivation of C∗ from
F for which S is the set of clauses of F that have a path to C∗, or then |C∗| ≥ |∂ S|.

Proof. Observe that the literals in the boundary variables of S pass through to C∗ without
cancellation.

Boundary expansion plays a role in a wide variety of lower bound arguments in proof
complexity. In particular, it suffices to prove width lower bounds for resolution proofs and
hence lower bounds on resolution proof size using Theorem 10.6.

Theorem 10.10. Any CNF formula F for which GF is an (r, c)-boundary expander requires reso-
lution refutation width > cr/2.

Proof. Without loss of generality we may assume that c > 0. Define the complexity of a clause
C in the refutation of F to be the size of the subset of clauses S of F that have a path to C in
the proof. In particular, since GF is an (r, c)-boundary expander, any set S of clauses of size at
most r has |∂ S| > c|S| > 0 by Lemma 10.9 and hence C ̸= ⊥. Therefore, the empty clause at
the root of the proof must have complexity > r. The input clauses have complexity 1. By the
soundness of the resolution rule, complexity is sub-additive; that is, if C is derived from A and
B, then the complexity of C is at most the sum of the complexities of A and B.

We therefore follow the proof back from the root, always taking the branch of larger com-
plexity, which will be at least 1/2 of the previous complexity by sub-additivity. Eventually
this must pass through a clause C∗ with paths from a minimal subset S of clauses of F with
r/2< |S| ≤ r that yields C∗. Since GF is an (r, c)-bipartite expander, |C∗| ≥ |∂ S| ≥ c|S|> cr/2
as required.

ETH holds for Resolution proofs

Let F k,m
n be a distribution of random k-CNF formulas with m clauses chosen uniformly ran-

domly and independently from the set of 2k
�n

k

�

possible clauses on k distinct variables.

Lemma 10.11. For m ≥ 2k ln2 · n, random k-CNF formulas are unsatisfiable with probability
1− o(1).

Proof. There are 2n possible assignments. For each such assignment, each clause is indepen-
dently set true with probability 1−2−k so the probability that the assignment satisfies the entire
formula is then (1−2−k)m ≤ (1−2−k)2

k ln 2·n Since (1−2−k)< e−2−k
this is o(e− ln2·n) and hence

o(2−n). Therefore the expected number of assignments that satisfy the formula is o(1) which
upper bounds the probability that the formula is satisfiable.

Lemma 10.12. Let ∆ > 0 and m = ∆n. For some 1 > c, c′ > 0, with probability 1 − o(n) a
random 3-CNF formula with m = cn is an (r, c)-boundary expander for r = c′n with probability
1− o(1).

43

Proof. Fix a set of clauses C of size s. We want to argue that |∂C | ≥ c′n for some c′. Any
variable appearing in C that is not in boundary must appear at least 2 times among the 3s
literals in C , so it suffices to show that every subset C of size s ≤ r = c′n contains more than
q = (3+ c)s/2 distinct literals for some constant c > 0.

For a single C ∈ C , Let p =
�q

3

�

/
�n

3

�

≤ (q/n)3 be the probability that all variables of C are
some fixed subset Q of size q and there are

�n
q

�

such subsets. Now

Pr[|vars(C | ≤ q]≤
�

n
q

�

ps

≤
�

ne
q

�q �q
n

�3s

= eq ·
�q

n

�3s−q

= e(3+c)s/2 ·
�

(3+ c)s/2
n

�(3−c)s/2

= as ·
� s

n

�(3−c)s/2

for some constant a depending on c. Therefore, the probability that GF is not an (r, c)-boundary
expander is at most

r
∑

s=1

�

∆n
s

�

as ·
� s

n

�(3−c)s/2
≤

r
∑

s=1

�

a · e ·∆n
s

�s

·
� s

n

�(3−c)s/2

=
r
∑

s=1

�

a · e ·∆ ·
� s

n

�(1−c)/2�s

=
r
∑

s=1

�

b ·∆ ·
� s

n

�(1−c)/2�s

for b = a · e which depends only on c.
To bound this quantity we split the sum into two cases depending on whether s is small or

large.
We can choose constant c′ > 0, depending on ∆ and c so that the term in the sum for

s ≤ r = c′n is at most 2−s. We use this for any threshold t = t(n) that grows with n to bound
the sum of all of the terms for s > t(n) by 2−t(n), which goes to 0 with n. For definiteness we
just choose t(n) = log n.

On the other hand, there are only log n terms for s ≤ t(n) and each is O((log n
n)

(1−c)/2) since
s ≥ 1, so that sum also is o(1) in n.

Theorem 10.13. There is a constant δ > 0 such that random 3-CNF formulas F with O(n) clauses
with probability 1− o(1), require Res(F)≥ 2δn.

Proof. By Lemma 10.12, there are constants c, c′ > 0 such that with probability 1− o(1), GF

is an (r, c)=boundary expander for r = c′n and hence, by Theorem 10.10, width(F) > cr/2 =

44

c′cn/2. Plugging this width lower bound into Theorem 10.6 yields the claimed bound with
δ = (c′c)2/32.

45

11 Communication Complexity and Lifting

Definition 11.1. A (deterministic) decision tree T with inputs in {0, 1}n is a rooted binary tree
with each internal node labeled by a variable x i for i ∈ [n], with the two out-edges labelled
0 and 1 indicating the value of x i. Each root-leaf path in T defines a partial assignment that
is the concatenation of the assignments on all edges in the path. The output of the decision
tree on a truth assignment x is the label of the leaf reached by the unique root-leaf path whose
associated partial assignment is consistent with x .

For a function f defined on {0,1}n, we write the decision tree complexity of f , C d t(f) to
be the minimum height of any decision tree computing f and sized t(f) to be the minimum
number of leaves in any such decision tree,

Definition 11.2 (False Clause Search). Given an unsatisfiable CNF formula F in n variables
with clauses C1, . . . , Cm, we define the search problem SearchF which takes as input x ∈ {0, 1}n,
which must falsify F , and outputs any index i ∈ [m] such that x falsifies clause Ci.

SearchF is an example of a relation R. In general we write R(x) for the set of legal outputs
of R on input x . For any relation R, write C d t(R) and sized t(R), for the minimum C d t(f) and
sized t(f) for any function f that is consistent with R.

Proposition 11.3. DPLL run on an unsatisfiable input F is a decision tree for the search problem
SearchF . In particular sized t(SearchF) is the minimum number of nodes in any DPLL run on
input F (equivalently the minimum size of any tree-resolution refutation of F) and C d t(SearchF)
is the minimum height of the DPLL search tree on input F.

(Two-Party) Communication Complexity

Here were have two players or parties, usually designated as Alice and Bob who cooperate in
order to compute based on shared inputs. Alice receives an input x ∈ X and Bob receives
y ∈ Y .

A (deterministic) 2-party communication protocol on X ×Y is a rooted binary tree, with each
internal node v labelled either by a function αv : X → {0, 1}, or a function βv : Y → {0,1}. The
two out-edges of v are labelled 0 and 1 respectively. The root-leaf paths in a protocol followed
on input x and y is given by following the out-edges given by αv(x) (Alice speaks) or βv(y)
(Bob speaks) depending on which kind of function labels v. The output of the protocol on
input (x , y) ∈ X × Y is the label of the leaf.

For a function f defined on X ×Y , we write the deterministic communication complexity of
f , CCc(f) to be the minimum height of any 2-party communication protocol computing f and
sizecc(f) to be the minimum number of nodes in any deterministic 2-party protocol computing
f . We extend these definitions to relations defined on X × Y also.

Examples: Consider X = Y = {0,1}n. Then for any f on X×Y has C cc(f)≤ n+1 since Alice
can simply send her entire input to Bob after which he computes the answer. Pari t yn(x , y)
that gives the total parity check for the string x y , has C cc(Pari t yn) = 2. Ma jn(x , y) which
has value 1 if there are at least as many 1’s as 0’s in x y has C cc(Ma jn) = O(log n).

46

What about EQn(x , y) which is 1 if x and y are equal and 0 otherwise?
In general given a function f defined on X × Y , we define the communication matrix of f ,

M f as the |X | × |Y | matrix whose (x , y) entry is f (x , y).
In particular MEQn

is the 2n × 2n identity matrix.

Definition 11.4. A (combinatorial) rectangle in X × Y is a set of the form A× B for A⊆ X and
B ⊆ Y . A rectangle R is 1-rectangle of f iff f evaluates to 1 on every element of R, and a
0-rectangle of f iff f is always 0 on R. R is monochromatic iff f is constant on R.

Lemma 11.5. The set of inputs in X × Y that reach each node v of a communication protocol is
a combinatorial rectangle.

Proof. We show this by induction starting at the root r which is rectangle Rr = X ×Y . Suppose
inductively that Ru = Au×Bu is the rectangle of inputs reaching node v in the protocol tree and
let the child following outedge 0 be v0 and the one following out-edge 1 be v1.

Case Alice: If v is labelled by some αv : X → {0,1}, then the set of nodes reaching v0 is
precisely Av0 × Bv0 where Av0 = Av ∩ α−1

v (0) and Bv0 = Bv and reaching v1 is Av1 × Bv1 where
Av1 = Av ∩α−1

v (1) and Bv1 = Bv.
Case Bob: If v is labelled by some βv : X → {0, 1}, then the set of nodes reaching v0 is

precisely Av0 × Bv0 where Av0 = Av and Bv0 = Bv ∩ β−1
v (0) and reaching v1 is Av1 × Bv1 where

Av1 = Av and Bv1 = Bv ∩ β−1
v (1).

Corollary 11.6. Let f be defined on X × Y . Then X × Y can be partitioned into at most 2C cc(f)

monochromatic rectangles of f , corresponding to the leaves of a protocol with this complexity.

Corollary 11.7. C cc(EQn) = n+ 1

Proof. MEQn
is a 2n×2n diagonal matrix and no two entries on the diagonal can be in the same

rectangle. This gives 2n 1-rectangles, plus there is at least one 0-rectangle giving more than
2n such rectangles. Taking logarithms and rounding up we obtain the lower bound; the upper
bound is true for all n-bit Boolean functions.

Other important problems of interest in communication complexity include

• Dis jn(x , y) =
∨n

i=1 x i ∧ yi, called the disjointness function. The terminology comes
from viewing x and y as characteristic functions of two subsets Sx , Ty ⊆ [n], since
Dis jn(x , y) = 0 iff the sets Sx and Sy are disjoint.

• I Pn(x , y) =
∑n

i=1 x i yi mod 2, the inner product function mod 2.

• Indexm : [m]× {0, 1}m where Indexm(x , y) = yx .

Proposition 11.8. C cc(Dis jn) = C cc(I Pn) = n+ 1 and C cc(Indexm) = m.

47

Karchmer-Wigderson Games

We now connect communication complexity of search problems to the complexity of Boolean
circuits over the De Morgan basis of binary ∧,∨ and ¬ gates. By De Morgan’s law we can push
all of the negations in a circuit or formula to the leaves so that we can assume that the inputs
for a circuit are literals and all interior gates are binary ∧ or ∨. We write C(f) for the minimum
circuit size for Boolean function f in that basis, D(f) for the minimum circuit depth for f and
L(f) for the minimum number of leaves in any Boolean formula for f .

We also will consider monotone circuits which do not use any negated literals. Monotone
circuits can only compute monotone Boolean functions, which are functions for which flipping
any input bit from 0 to 1 cannot decrease the function value. For monotone f , we write Cm(f),
Dm(f), and Lm(f) for the monotone circuit complexity, depth complexity, and formula size of
f .

Definition 11.9. Given a Boolean function f : {0, 1}n → {0, 1} we define the Karchmer-
Wigderson relation KWf : X × Y to [n] where X = f −1(1) and Y = f −1(0) be the relation

KWf (x , y) = {i | x i ̸= yi}.

If f is monotone then we know that for any input x , y for which f (x) = 1 and f (y) = 0, there
must be some bit x i = 1 and yi = 0. We can therefore define the monotone Karchmer-Wigderson
relation mKWf : X × Y to [n] where

mKWf (x , y) = {i | x i > yi}.

Theorem 11.10. For every Boolean function f , C cc(KWf) = D(f) and sizecc(KWf) = L(f). For
every monotone Boolean function f , C cc(mKWf) = Dm(f) and sizecc(f) = Lm(f).

Proof. Without loss of generality the optimal circuit depth is given by a Boolean formula (a
tree), since we can simply replicate gates. There are two directions here:

Given a Boolean formula T for f , the protocol tree for KWf will have exactly the same
structure as T . For each gate of the circuit v, we write fv for the Boolean function computed
at the node.

We maintain the invariant that the rectangle of inputs Ru that reaches node u is contained
in f −1

u (1)× f =1
u (0). To do this, every ∨ gate becomes a node for Alice and every ∧ gate becomes

a node for Bob. If gate u is an ∨ gate, where fu = fv ∨ fw, since any string y reaching this node
has fu(y) = 0, we know that fv(y) = f (w) = 0. On the other hand any string x reaching it
has fu(x) = 1 so at least one of fv(x) = 1 or fw(x) = 1. We define the function αu(x) is 0 if
fv(x)− 1 and 1 otherwise.

The situation if the gate if ∧ is dual: Alice’s input x evaluates to 1 on both children, while
Bob has to indicate one of v or w such that fu(y) = 0.

Applying this at a leaf we reach a literal or its negation. We label the leaf by the index i of
that literal, which must be correct for KWf since x and y evaluate differently on that literal. If
the circuit is monotone we must have x i = 1 and yi = 0 as required for mKWf .

48

Hence the complexities of the Karchmer-Wigderson relations are at most that of the corre-
sponding depth and size measures.

We now do the reverse simulation to show the other direction. We convert the protocol
trees for KWf or mKWf to Boolean formulas with exactly the same structure as the protocol
trees, replacing every node where Alice speaks by ∨ and every node where Bob speaks by ∧.
We work bottom-up arguing that we can maintain the property that the function fu satisfies
Ru ⊆ f −1

u (1)× f −1
u (0) where Ru is the rectangle of inputs reaching node u.

To get started we need to specify the leaf labels. At the leaves of the protocol for KWf with
output i, every input (x , y) in the rectangle Rℓ associated with that leaf ℓ must have x i and
yi must have opposite values. The values of both must be unique since this is a rectangle. If
x i = 1 and yi = 0 in the rectangle then the circuit has the positive literal i at ℓ and if x i = 0
and yi = 1 then we have the negation of literal i at ℓ. This ensures that the property holds for
fℓ.

Suppose that we have the property for children v and w of node u at which Alice speaks;
then fu = fv∨ fw by construction. Suppose that Ru = Au×Bu. Then Rv = Av×Bu and Rw = Aw×Bu

with Au = Av ∪ Aw where fv(Av) = 1 and fw(Aw) = 1 by the inductive property so therefore
fu(Au) = 1. Since both fv(Bu) = 0 and fw(Bu) = 0, we have fu(Bu) = 0. The same applies
dually to the nodes where Bob speaks. The fact that this correctly computes f follows from
the inductive hypothesis applied to the root.

12 Deterministic Lifting

Definition 12.1. Given a Boolean function f or search problem (relation) R defined on {0, 1}n,
and a Boolean function g : X × Y → {0,1} (called the gadget function). We define the compo-
sition f ◦ gn or R ◦ gn on the set X n× Y n by f ◦ gn(x , y) = f (z1, . . . , zn) where zi = g(x i, yi) for
(x i, yi) ∈ X × Y .

Note that in the composed function f ◦ gn, Alice receives all of x1, . . . , xn and Bob receives
all of y1, . . . , yn.

Proposition 12.2. Let f : {0,1}n→ {0, 1}. Then

C cc(f ◦ gn)≤ C d t(f) · C cc(g).

More generally if R is a search problem defined on {0, 1} then

C cc(R ◦ gn)≤ C d t(R) · C cc(g).

Proof. The communication protocols are simple: The two players simulate the best decision
tree protocol for f (or R) on input z1, . . . , zn; whenever that protocol queries zi, the players
compute it using the best communication protocol for g using C cc(f) bits of communication.

49

Key lifting question: Find broad circumstances in which the above algorithm is (close to)
optimal; that is, when C cc(f ◦ gn) is Ω(C d t(f)) or Ω(C d t(f) C cc(g)).

There are simple examples of f and g where the protocol of Proposition 12.2 is very far
from optimal: Suppose that both functions are parity functions; that is, f = ⊕n and g(x , y) =
Pari t ym(x , y) on {0,1}m × {0,1}m. In that case, C d t(f) = n and C cc(g) = 2 so the upper
bound from Proposition 12.2 would be 2n. However, the function f ◦ gn is simply Pari t ynm so
C cc(f ◦ gn) = 2.

Our focus will be on general theorems showing that for some function g, Proposition 12.2
holds for all functions f and all relations R. We clearly cannot do this if g is Pari t ym.

The first such general lifting theorem was proved by Raz and McKenzie was proven in order
to derive lower bounds on the depth complexity of monotone circuits by showing lower bounds
on monotone Karchmer-Wigderson game mKW of the composed function f ◦ gn. It therefore
was important that the gadget g be monotone.

Theorem 12.3 (Raz-McKenzie 1999). For every search problem R defined on {0,1}n and m that
is a sufficiently large polynomial in n we have

C cc(R ◦ Indexn
m) = Ω(C

d t(R) log m).

Recall that Indexm : [m] × {0,1}m is given by g(x , y) = yx so it is a monotone function
and hence yields a monotone function for every monotone function f . It has C cc(Indexm) =
log m+ 1 so it shows that Proposition 12.2 is asymptotically tight for Indexm.

Before proving this theorem we discuss one of its applications.
Raz and McKenzie used Theorem 12.3 together with an explicit sequence Fn of unsatisfiable

4-CNF formulas (based on pebbling pyramid graphs) that was known to require large depth
Resolution refutations and defined a monotone Boolean function based on f = Fn ◦ Indexn

m
such that the relation mKWf is precisely SearchFn

◦ Indexn
m and used the above theorem to

derive new depth lower bounds on monotone circuits.
Given an unsatisfiable k-CNF formula Fn with n variables, for the 2-party communication

problem SearchFn
◦ Indexn

m, Alice gets x1, . . . , xn ∈ [m]n, Bob gets y1, . . . , yn ∈ {0,1}n and
the goal is to output the index i of some clause of Fn that evaluates to false on the input
Indexm(x1, y1), . . . , Indexm(xn, yn)) = (y1x1

, . . . , ynxn
). In other words, this just a protocol for

SearchFn
with each of whose input bits being determined by the vector of pointers x1, . . . , xn.

A general form of the Raz-McKenzie construction of a monotone Boolean function was
given by Göös and Pitassi as follows:

Lemma 12.4 (Göös-Pitassi 2012). Let Fn be an unsatisfiable k-CNF formula in n variables with
t clauses and let m ≥ 2 be an integer. There is an explicit monotone Boolean function fFn,m with
N = tmk input bits such that the communication complexity of SearchF ◦ Indexn

m is at most that
of mKWfFn ,m

.

Proof. The function fFn,m takes as an input a string α that is thought of as describing an k-CSP
(constraint satisfaction problem with constraint size k) on the input space [m][n] using the
variable structure of the formula Fn. Each clause Cℓ for ℓ ∈ [t] involves some subset Sℓ of

50

indices in [n]. Fix such an ℓ. The string α will have one bit for each way of choosing the k
elements in [m]Sℓ indicating the truth table of the constraint indexed by ℓ in the k-CSP.

Sometimes the k-CSP defined by α will be satisfiable and sometimes it is not. We define
fFn,m(α) = 1 iff the k-CSP defined by α is satisfiable. Clearly changing 0’s to 1’s in α can only
make the k-CSP defined by α more satisfiable so fFn,m is a monotone function of α.

In order to simulate an algorithm for SearchFn
◦ Indexn

m, on input assignment (x , y) ∈
[m]n × ({0,1}m)n with x = (x1, . . . , xn) ∈ [m]n and y = (y1, . . . , yn) ∈ ({0, 1}m)n, Alice creates
the string αx corresponding to the k-CSP whose ℓ-th constraint is 1 iff for every i ∈ Sℓ, the
input is consistent with x i. The k-CSP given by αx is satisfied by x so fFn,m(αx) = 1. On the
other hand, Bob creates the string αy corresponding to the unsatisfiable k-CSP whose ℓ-th
constraint evaluates to 1 iff for the vector x ′Sℓ ∈ [m]

Sℓ , the partial assignment (yi x ′i
)i∈Sℓ satisfies

Cℓ. Since Fn is unsatisfiable, for every x ′ ∈ [m]n, the formula on Fn with inputs y1x ′1
, . . . , ynx ′n

is not satisfied by y and hence the k-CSP in given by αy is unsatisfiable so fFn,m(αy) = 0.
The mKWfFn ,m

protocol for input pair (αx ,αy) produces some index (ℓ, x ′Sℓ) ∈ [t] × [m]
k

such that αx has value 1 and αy has value 0. Since αx has value 1, by definition x ′Sℓ = xSℓ .
However, since αy has value 0, by definition of αy , the partial assignment (yi x i

)i∈Sℓ does not
satisfy Cℓ which means that ℓ is a correct output for SearchFn

◦ Indexn
m.

Corollary 12.5. If Fn is an unsatisfiable family of k-CNF formulas requiring Resolution refutation
depth D then for m= nc for sufficiently large c, fFn,m requires monotone circuit depth Ω(D log n).

Proof. The assumption implies that C d t(SearchFn
) ≥ D. By Theorem 12.3, C cc(SearchFn

◦
Indexn

m) is Ω(D log n). By Lemma 12.4, this implies that C cc(mKWfFn ,m
) is Ω(D log n) which

implies that fFn,m, requires monotone circuit depth Ω(D log n).

Note that when k is constant and we can prove some Resolution depth lower bound of the
form D = nε for ε > 0 then by choosing some m= nc we obtain a lower bound of the form Nδ

for some δ > 0 on the explicit monotone Boolean function f defined by this construction.
Göös, Pitassi, and Watson improved the lower bound in Theorem 12.3 using a refined

version of the argument to show that one can take m as small as n2 log n. One can find explicit
3-CNF Boolean formulas in n-variables and a linear number of clauses that require Resolution
depth Ω(n/ log n) but this still yields a monotone function f with a fixed polynomial blow-up
in n and so the lower bound is only of the form nδ for some small δ < 1.

A Deterministic Lifting Theorem using Thickness We first observe that Indexm is a univer-
sal gadget.

Proposition 12.6. Any function g : [m]× [m]→ {0,1} is a subfunction of Indexm.

Proof. On input (x , y) ∈ [m] × [m], define y ′ ∈ {0,1}m by y ′i = g(i, y). Then by definition
Indexm(x , y ′) = y ′x = g(x , y).

Therefore, any lifting theorem involving such a gadget g that has communication complex-
ity Ω(log m) yields a lifting theorem for Indexm.

51

Rather than proving the version of the lifting theorem given by Raz-McKenzie and Göös-
Pitassi-Watson using Indexm, we prove the following lifting theorem using the Inner Product
function I Pd for d = O(log n)which was proved independently by Chattopadhyay, Koucký, Loff,
and Mukhopadhyay and by Wu, Yao, and Yuen. The description of the argument is based on a
version due to Rao and Yehudayoff, but the key ideas are the same as all of the other proofs.

Theorem 12.7. Let f : {0,1}n→ {0,1} for n≥ 64 and d ≥ 7 log n, then

C cc(f ◦ I Pn
d) = Ω(C

d t(f) d).

Similarly, if R is a relation on {0, 1}n then

C cc(R ◦ I Pn
d) = Ω(C

d t(R) d).

By the universality of Indexm, this implies Theorem 12.3 for m ≥ n7. The method of
proof of Theorem 12.7 is constructive. In particular, we show how to take any communication
protocol P computing f ◦ I Pn

d with C bits of communication and produces a decision tree T for
f of height at most 20C/d.

In particular, the protocol P operates on inputs x , y ∈ ({0,1}d)n, while the decision tree T
built from P operates on inputs z ∈ {0, 1}n. T is built from P by simulation.

The general idea is that we begin the simulation at the root of both the protocol P and the
as-yet-unbuilt tree T . At each node v in P and the corresponding nodes v′ of T we maintain
sets A= X v,v′ ⊆ X and B = Yv,v′ ⊆ Y such that the rectangle A× B of inputs consistent with the
current simulation. We follow a path in P until the protocol P has "learned too much" about
the portion of x and y in some coordinate j ∈ [n]. At that point we label the current node v′ in
T by a query to z j and create two child nodes in T , v′0 for the answer z=0 and v′1 for the answer
zi = 1. For b ∈ {0,1} and each node v′b we find some fixed pair of strings (x b

j , y b
j) ∈ I P−1

d (b)
and define X v,v′b

= X v,v′ |x j=x b
j

and Yv,v′b
= Yv,v′b

|y j=y b
j

and continue the simulation. The goal is to
show that Ω(d) steps of the protocol P are required per coordinate queried.

The simulation keeps track of a set S ⊆ [n] of unqueried coordinates. The simulation
depends on the sizes of the projections AS′ and BS′ of A and B on subsets S′ ⊆ S of unqueried
coordinates. In particular, the simulation focuses on the sets of cases S′ = S \ { j} which we
write as S − j for simplicity.

We say that A is j-abundant iff |AS|/|AS− j| ≥ 26d/7 and j-sparse otherwise. B is j-abundant
iff |BS|/|BS− j| ≥ 26d/7 and j-sparse otherwise. For a ∈ AS− j we say that a is thin iff a has < 24d/7

extensions in AS. Similarly for b ∈ BS− j we say that b is thin iff b has < 24d/7 extensions in BS.
We say that A and B are thick iff there are no thin a or thin b for either A or B.

Note that A being j-abundant is about the average number of extensions for elements a ∈
AS− j, whereas being thick bounds the worst-case number of number of extensions for all a ∈
AS− j.

For a coordinate j ∈ S, and a value c ∈ {0,1} we say that that a rectangle U b
j ×V b

j is c-good
iff it is a c-rectangle for I Pd and the set Ac × Bc consisting of the elements (x , y) ∈ A× B such
that x j ∈ U c

j and y j ∈ V c
j satisfies |Ac

S− j × Bc
S− j| ≥ |AS− j × BS− j|/2.

52

Algorithm 7 Deterministic simulation for IP lifting.
1: Initialize:
2: For every node u of P, let Ru = Au × Bu be the associated rectangle.
3: S← [n]
4: A, B← ({0,1}d)n
5: v← root of P
6: Create T be a tree with one root node v′

7: procedure BUILD-TREE(A, B, S, v, v′)
8: while S ̸=∅ and v is not a leaf of P do
9: if for every j ∈ S, A and B are both j-abundant then

10: Let v0 and v1 be the children of v in P. ▷ Simulate another step of P.
11: Choose b ∈ {0, 1} for which |(A× B)∩ Rvb

| ≥ |A× B|/2.
12: v← vb

13: A← A∩ Avb
and B← B ∩ Bvb

14: else if there is some j ∈ S and thin a ∈ AS− j or thin b ∈ BS− j then
15: while there is a thin a for A or thin b for B do ▷ Prune the sets A and B
16: Remove all elements of A that extend a.
17: Remove all elements of B that extend b.
18: else ▷ Both A and B are thick but at least one is j-sparse
19: Create a query to z j at node v′, adding children v′0 and v′1 for query answers 0

and 1.
20: Let U0

j × V 0
j be a 0-good rectangle for A× B. ▷ Requires proof

21: A0← the vectors in A with j-th coordinate in U0
j .

22: B0← the vectors in B with j-th coordinate in V 0
j .

23: BUILD-TREE(A0, B0, S − j, v, v′0).
24: Let U1

j × V 1
j be a 1-good rectangle for A× B. ▷ Requires proof

25: A1← the vectors in A with j-th coordinate in U1
j .

26: B1← the vectors in B with j-th coordinate in V 1
j .

27: BUILD-TREE(A1, B1, S − j, v, v′0).

28: Make v′ a leaf labelled by the label of leaf v (or the value of f (z) or some element of
R(z) if S =∅).

53

Analyzing the simulation Observe that when the procedure BUILD-TREE is called initially,
both A and B are thick, every a ∈ AS− j and b ∈ BS− j has 2d extensions in AS and BS respectively
and AS/AS− j = BS/BS− j = 2d . Therefore, A and B are both j-abundant and thick. This will
cause the procedure to do simulation according to steps 10-13. At each step either A and B
will decrease by a factor of at most 2 and this will change both the abundance and thickness
properties by at most a factor of 2 per bit of communication. Therefore, it will take Ω(d) steps
of communication in order to create a thin a or b or to make A or B j-sparse. Therefore it takes
Ω(d) communication steps before the first query.

We need to keep versions of this property in order to allocate the cost of each query to Ω(d)
bits of communication. Moreover, in the simulation in addition to ensuring this allocation that
the rectangles U0

j × V 0
j) and U1

j × V 1
j in steps 20 and 24 both exist and have good properties

assuming that both A and B are thick and either A or B is j-sparse.

Lemma 12.8. Let A and B be the sets before a prune step and A′ and B′ be the sets after the prune
step. Then |AS × BS| ≥ (7/8)2|A′S × B′S|.

Proof. Observe that the only way that a prune step occurs in the simulation is if the preceding
step was a simulation step because prune steps don’t follow each other and query steps only
reduce A× B based on coordinates j that are removed from S and so don’t contribute to the
creation of thin a or b. Let A− and B− be the sets prior to that preceding simulation step. Then
|A−S |/|A

−
S− j| ≥ 26d/7 and |B−S |/|B

−
S− j| ≥ 26d/7 for all j ∈ S. The simulation step implies that either

|A| ≥ |A−|/2, B = B− or A = A− and |B| ≥ |B−|/2. In particular, |AS|/|AS− j| ≥ 26d/7/2 and
|BS|/|BS− j| ≥ 26d/7/2. Rewriting, we obtain that |AS− j| ≤ 2|AS|/26d/7 and |BS− j| ≤ 2|BS|/26d/7.
Each thin a (respectively b) defined on S− j results in the removal of fewer than 24d/7 elements
of A (respectively B). Therefore the total number of elements removed from A is less than
∑

j∈S

|AS− j|24d/7 ≤
∑

j∈S

2|AS|/22d/7 ≤ 2n|AS|/22d/7 = 2n|AS|/n2 = 2|AS|/n≤ |AS|/8

since d ≥ 7 log n and n ≥ 16. Similarly we have the total number of elements removed from
B being at most |BS|/8. In particular, this implies that |A′S| ≥ 7|AS|/8 and |B′S| ≥ 7|BS|/8 which
yields the claimed property.

Corollary 12.9. Assume that elements in steps 20 and 24 can always be found. For every step of
the BUILD-TREE procedure, if A, B and S are the values at the beginning of the step and A′, B′ and
S′ are the values at the end of the step, then |A′S′ × B′S′ | ≥ |AS′ × BS′ |/2.

Proof. In the simulate step, the value of S does not change and the property holds by construc-
tion in Step 11. In the prune step the set S also does not change, and the property holds by
Lemma 12.8, Finally, in each of the branches of the query step, the condition of the values
found in Steps 20 and 24 being 0-good and 1-good respectively ensure that the property holds
on both branches.

Lemma 12.10. Assuming that Steps 20 and 24 always are achievable the depth of the decision
tree T is at most 20C(P)/d.

54

Proof. The measure of progress at each step will be based on

Φ=
|AS × BS|

22|S|d
≤ 1.

At the start, Φ = 1. Observe that if A is j-sparse then |AS− j| > |AS|/26d/7 and we always have
that |AS− j| ≥ |AS|/2d; analogous properties hold for B. Therefore after a query step to z j, the
new value of Φ for z j = c is

|Ac
S− j × Bc

S− j|

22(|S|−1)d
≥
|AS− j × BS− j|
22(|S|−1)d+1

since the restrictions on coordinate j are b-good

=
|AS− j| · |BS− j|
22(|S|−1)d+1

>
|AS| · |BS|

26d/7 · 2d · 22(|S|−1)d+1
since one of A or B is j-sparse

= 2d/7−1 |AS × BS|
22|S|d

.

Therefore, each query step increases the progress measure Φ by a factor of at least 2d/7−1. Note
that since d = 7 log n and n≥ 16, we have d/7− 1≥ d/7− d/28 = 3d/28. There are at most
C(P) simulate steps and at most C(P) prune steps along any path in T in the course of the
algorithm. Each simulate step or prune step leaves the set S unchanged and therefore reduces
Φ by at most a factor of 2. Therefore there must be at most 2C(P)/(d/7 − 1) query steps in
total which is at most 56C(P)/(3d)< 20C(P)/d query steps on any root-leaf path.

Clearly, by construction every input in the set A× B always is consistent with the partial
assignment to the variables zi for i ∈ [n] \ S and therefore the construction yields a correct
decision tree for f .

Note that the choices made by the simulation only depend on AS and BS so it always suffices
to keep one extension in A for each vector in AS and one in B for each vector in BS, so we could
always ensure that |A|= |AS| and |B|= |BS|, though the above simulation in steps 21,22,25,26
does not do this.

It merely remains to prove that 0-good and 1-good rectangles can be found in Steps 20 and
24. Since A and B are both thick, every a ∈ AS− j and b ∈ BS− j has many extensions (at least
24d/7 of them) on coordinate j in the corresponding set, so (a, b) has a rectangle A(a)j × B(b)j of
possible extensions on coordinate j inside A× B.

We want to ensure that at least 1/2 of such pairs (a, b) there is some pair of extensions in the
j-th coordinate for which I Pd evaluates to 0 and some pair of extensions in the j-coordinate for
which I Pd evaluates to 1. Note that different pairs (a, b)may have different possible extensions
to the j-th coordinate. This uses the following lemma:

Lemma 12.11. Let U ×V be a rectangle in ({0, 1}d)2 with |U |, |V | ≥ 24d/7. There are probability
distributions R0 on 0-rectangles of I Pd and R1 on 1-rectangles of I Pd such that for c ∈ {0, 1},

Pr
R∼R c
[R∩ (U × V) ̸=∅]≥ 1− 4/2d/14.

55

Before proving this lemma we see how it yields 0-good and 1-good rectangles in Steps 20
and 24.

Corollary 12.12. If A and B are thick there are 0-good and 1-good rectangles U0
j ×V 0

j and U1
j ×V 1

j

for A× B (and hence |A0
S− j × B0

S− j| ≥ |AS− j × BS− j|/2 and |A1
S− j × B1

S− j| ≥ |AS− j × BS− j|/2).

Proof. For each pair (a, b) ∈ AS− j×BS− j the set of extensions A(a)j ×B(b)j in coordinate j satisfies
the properties of U × V in Lemma 12.11. Therefore for c = 0 or c = 1, if we choose R ∈ R c

then PrR⊆R c[R∩ (A(a)j × B(b)j) =∅]≥ 1− 4/2d/14 ≥ 1/2 since d = 7 log n≥ 42 for n≥ 64.
Therefore, there is some fixed rectangle R = U c

j × V c
j in the support of R c such that the

fraction of pairs (a, b) ∈ AS− j × BS− j for which A(a)j × B(b)j contains an element in R is at least
1/2 and hence |Ac

S− j × Bc
S− j| ≥ |AS− j × BS− j|/2. This rectangle will be c-good.

It remains to prove Lemma 12.11 which involves defining the distributionsR c for c = 0, 1.

Proof of Lemma 12.11. We first define R0. Assume that d is even. Choose M to be a random
invertible d×d matrix over F2. Define RM = AM×BM where AM is the d/2-dimensional subspace
spanned by the first d/2 rows of M and BM is the d/2-dimensional subspace spanned by the
last d/2 rows of M−1. Therefore for every x ∈ AM and y ∈ BM , x · y = 0 in F2 so RM is a
0-rectangle of I Pd .

If AM were a random subset of {0,1}d of size |AM | we would expect AM ∩ U to have an
intersection with U of size |U ||AM |/2d = |U |/2d/2 ≥ 24d/7/2d/2 = 2d/14. The situation with AM

which is a random subspace of dimension d/2 is quite close to that bound. T The proof that
the intersection size is non-empty uses a 2nd moment method. If 0d ∈ U then AM∩U is trivially
non-empty, so assume that 0d /∈ U .

Let W = |AM ∩U |. Then W =
∑

u∈U Wu where Wu is the indicator variable for u ∈ AM . Now
|AM \ {0d}| = 2d/2 − 1 and every one of the 2d − 1 non-zero d-bit vectors is in AM with equal
probability so

E[Wu] = Pr[Wu = 1] =
2d/2 − 1
2d − 1

=
1

2d/2 + 1
.

Therefore E[W] = |U |/(2d/2 + 1)≥ 24d/7/(2d/2 + 1)< 2d/14−1. Similarly, for non-zero u ̸= u′ ∈
{0,1}d ,

E[WuWu′] = Pr[Wu =Wu′ = 1] =
�

2d/2 − 1
2

�

/

�

2d − 1
2

�

=
2d/2 − 1
2d − 1

·
2d/2 − 2
2d − 2

< E[Wu]E[Wu′].

Therefore since each Wu is an indicator variable.

E[W 2]<
∑

u∈U

E[W 2
u] +
∑

u̸=u′∈U

E[Wu]E[Wu′] =
∑

u∈U

E[Wu] +
∑

u̸=u′∈U

E[Wu]E[Wu′]

= E[W] +
∑

u̸=u′∈U

E[Wu]E[Wu′]< E[W] +E[W]2.

Therefore, the variance of W , E[W 2]−E[W]2 < E[W].

56

The probability that |AM ∩ U | = W = 0 is then at most the probability that W − E[W] >
E[W]. By Chebyshev’s inequality, this is at most 1/E[W] which is at most 2/2d/14. The same
argument in dual form says that the probability that BM ∩ V | = 0 is at most 2/2d/14 and the
probability that RM = AM ∩ BM does not hit U × V is at most 4/2d/14 as required.

To obtain the same result for c = 1, the distribution forR1 is similar except that the set AM

is the span of the affine subspace given by shifting the span of rows 2 through d/2 of M by the
first row of M and BM is given by shifting the span of columns d/2+2, . . . , d of M−1 by the first
column of M−1. Since the inner product of the first row of M and first column M−1 yields 1
and the other vectors are orthogonal, every (x , y) ∈ R∼R1 has an I Pd(x , y) = 1. Though the
dimensions of these affine subspaces are smaller by 1 than in the case that c = 0, we do not
need to deal with u= 0 or v = 0 separately and the same 2d/14−1 upper bounds the analogous
E[W].

57

13 Lifting with small deficiency/large min-entropy rate

It turns out that there are other measures of the quality of the rectangle A×B being maintained
that can help to prove lifting theorems. These measures are used in more powerful theorems
that allow us to lift randomized decision trees to randomized communication complexity and
even to extend this to DAG-like protocols, which allow us to extend lower bounds to circuits
and general unrestricted proofs rather than just tree proofs, both for Resolution and for a more
powerful system called Cutting Planes proofs that refutes CNF formulas using linear inequalities
over the reals with integer coefficients instead of clauses.

Definition 13.1. The entropy deficiency (sometimes simply deficiency) of a distribution X on
universe X , D∞(X), is log2 |X | − H2(X) where H2 is the Shannon entropy. In particular for a
subset A⊆ X , we write D∞(A) for the uniform distribution on A, which is then log2(|X |/|A|).

Intuitively if, as in the simulation steps for the lifting theorem in the previous section, we
move to the node vc with the larger of the two rectangles, we see that the deficiency of one
of A and B goes up by at most 1 per step of simulation and the other is unchanged. In the
typical simulation as we reduce the set S of unqueried variables, we focus on the deficiency of
AS, which will be uniform over AS when we retain only one extension for each element of AS.
We remove coordinate j from S when much of the deficiency for AS is due to missing values in
coordinate j, so the deficiency of AS− j will be less than that of AS.

Definition 13.2. The min-entropy of a distribution X on X , H∞(X), is

min
x∈X

log2(1/Pr
X
(x)).

For a distribution X on a set X S, the min-entropy rate of X is the maximum τ such that for
every J ⊆ S, H∞(XJ)≥ τ|J | log2 |X | or, equivalently, such that for all αJ ∈ X J ,

Pr
x∼X
[xJ = αJ]≤ 1/|X |τ |J |.

Typically, the distributions we obtain in simulation arguments for lifting, like those in defin-
ing min-entropy rate, are induced by a simple uniform distribution on a larger set of coordinates
and weighting projections from that set onto a smaller set of coordinates based on the number
of their extensions.

The general idea of this other class of lifting arguments is that if there is some αJ that
has become too likely, which indicates that too much information has been learned about the
coordinates in J , we should add queries to J to the tree T . These simulation algorithms will
query those coordinates and continue.

Improving values of m for lifting with Indexm?

There is an inherent limitation in the lower bounds proving using the Indexm gadget because
m is a large polynomial in n, n7 is the proof based on inner product so the best lower bound

58

possible is Θ̃(n) which is well below the number of input bits N = nm, namely N 1/8. The best
lower bound proven using thickness has m= n2 so the lower bound would be N 1/3.

We will now discuss an alternative approach based on robust sunflower theorems that works
when m is as small as Θ(n log n) which at best yields a roughly

p
N communication lower

bound. The lower bounds that we show for depth also be extended to monotone circuit size
lower bounds (not just formula size or depth) and the quality of those bounds are limited by
the having large values of n.

Open Problem 13.3. Can we prove lifting theorems with Indexm gadgets for m constant? What
about for m= logO(1) n?

Note that by the universality of Indexm, lifting with any constant-size gadget implies lifting
with constant-size Indexm gadgets. Such lifting lower bounds would give us much stronger
monotone depth lower bounds as well as stronger lifting theorems: There is an additional mk

factor that shows up in the number of input bits for the function fFn,m where k ≥ 3 is a fixed
constant that contributes to further degradation in the best current lower bounds possible
with m ≥ n. Lifting with constant m would yield near-optimal Ω(n) lower bounds and with
m= logO(1) n would yield Ω̃(n) lower bounds and many other consequences.

Lifting with Sunflowers

Theorem 13.4. Let m≥ n1+ϵ. For every search problem R defined on {0, 1}n we have

C cc(R ◦ Indexn
m) = Ω(C

d t(R) log m).

The basic structure of this sunflower-based lifting theorem due to Lovett, Meka, Mertz,
Pitassi, and Zhang is very similar to those other more advanced lifting theorems, despite its
unique use of a recently improved lemma about sunflowers. In the following we prove this for
m≥ n1.2.

The invariant that this simulation maintains is based on the following definition:

Definition 13.5. For a restriction ρ defined on {0,1}n, a rectangle A× B ⊆ [m]n × {0, 1}nm is
ρ-structured iff for the set S of variables unset by ρ:

• For every i ∈ S, Ai×Bi contains precisely one pair of values (x i, yi) for which Indexm(x i, yi) =
ρ(i).

• AS has min-entropy rate at least 0.9.

• BS has deficiency at most 2n log m. That is, |BS| ≥ 2m|S|−2n log m.

In particular, when the simulation is being executed, if a rectangle is associated with a node
v′ of the decision tree being built for f and ρ is the restriction associated with the path from
the root to v′ in T , then the rectangle maintained in the simulation will be ρ-structured.

The outline of the algorithm is given below. The basic simulation does not require queries
when the min-entropy rate of AS is high. However, when that drops there is an entire subset

59

J of coordinates that is at risk and must be queried. The simulation algorithm chooses some
maximal subset J that violates the min-entropy rate condition for some fixed partial assignment
αJ . The algorithm adds queries for all of the elements of J to the tree T . Because of the
maximality of the set J being chosen, the min-entropy rate after AS is forced to αJ on J will
necessarily be be restored on the coordinates of S − J .

In order to continue, for every assignment β ∈ {0,1}J , we will need that the algorithm can
continue if the query answers give zJ = β . In particular, this will hold because of the conditions
on A and B in the previous step:

Lemma 13.6 (Full Range Lemma). Let c > 0 be a constant and m ≥ n1.2. Suppose that A′ × B′

is a ρ-structured rectangle with unset(ρ) = S and A× B ⊆ A′× B′ satisfies |A× B| ≥ |A′× B′|/2c.
Then for every J ⊆ S there exists an x∗J ∈ AJ such that for every β ∈ {0, 1}J there is a yβ ∈ BJ

with Index J
m(x

∗
J , yβ) = β .

We postpone the proof of the full range lemma (which is based on sunflower properties)
until after completing the description of the simulation.

However, in order to maintain the invariant that we have a ρβ-structured rectangle asso-
ciated with each leaf of the queries to ZJ in T , we also need that for every assignment β to J ,
the set of y ∈ BS for which Index J

m(αJ , yJ) = β not only is non-empty, it is roughly at a 2−|J |

fraction of the inputs in B; we can’t quite do that but we will guarantee that for every β , it is
at least an m−|J | fraction of Y . That condition is what we mean for the choice in Step 16 in the
outline of the simulation to be “good".

The fact that it is even possible to ensure that all 2|J | sets Bβ have small deficiency comes
from a key notion in the advanced lifting theorems: A density restoring rectangle partition. This
is achieved by the following algorithm that is executed as part of Step 16:

The following lemma which we use to analyze the progress is almost immediate:

Lemma 13.7. For all ℓ < L, the deficiency of AℓS−Jℓ
given by DENSITY-RESTORING-PARTITION is at

least 0.1|Jℓ| log m− 1 smaller than that of AS.

Proof. Aℓ = {x ∈ A≥ℓ | xJℓ = αJℓ} and we had |Aℓ| > |A≥ℓ|/m0.9|Jℓ| ≥ |A|/(2m0.9|Jℓ|). Since
|Aℓ|= |AℓS−Jℓ

, the deficiency of AℓS−Jℓ
is at most

(|S − Jℓ|) log m− (log2 |A| − 0.9|Jℓ| log m− 1) = |S| − log2 A− (0.1|Jℓ| log m− 1)

which is what we wanted to show since |A|S = |A|.

We now show that one of the choices of ℓ in the partition gives us rectangles that are good
enough to allow us to continue the simulation:

Lemma 13.8 (Worst-Case Size Lemma). Let c > 0 be a constant and m ≥ n1.2. Suppose
that A′ × B′ is a ρ-structured rectangle with unset(ρ) = S and that A× B ⊆ A′ × B′ satisfies
|A× B| ≥ |A′ × B′|/2c. Let F , (Aℓ)ℓ<L], (Bℓ,β)ℓ<L,β∈{0.1}Jℓ be the output of DENSITY-RESTORING-
PARTITION(A, B, S). Then there is a (Jℓ,αJℓ) ∈ F such that for every β ∈ Jℓ, |Bℓ,β | ≥ |B|/m|Jℓ|.

60

Algorithm 8 Outline of Deterministic min-entropy based simulation for Index lifting.
1: Initialize:
2: For every node u of P, let Ru = Au × Bu be the associated rectangle.
3: S← [n]
4: A← [m]n; B← ({0,1}m)n
5: v← root of P
6: Create T be a tree with one root node v′

7: procedure BUILD-TREE-INDEX(A, B, S, v, v′)
8: while S ̸=∅ and v is not a leaf of P do
9: ρ← label of path from root to v′ in T

10: if A has min-entropy rate ≥ 0.9 then
11: Let v0 and v1 be the children of v in P. ▷ Simulate another step of P.
12: Choose b ∈ {0, 1} for which |(A× B)∩ Rvb

| ≥ |A× B|/2.
13: v← vb

14: A← A∩ Avb
and B← B ∩ Bvb

15: else ▷ A has min-entropy rate < 0.9
16: Choose some "good" maximal subset J ⊆ S and αJ ∈ [m]J s.t. PrxJ∼AJ

[xJ = αJ]>
m−0.9|J |.

17: A← {x ∈ A | xJ = αJ}
18: Extend tree T from v′ by adding queries to all variables z j for j ∈ J .
19: for all assignments β ∈ {0,1}J do
20: v′

β
← the leaf of T following β from v′.

21: Bβ ← {y ∈ B | Index J
m(αJ , yJ) = β} ▷ Not obvious that this is non-empty

22: BUILD-TREE-INDEX(A, Bβ , S − J , v, v′
β
)

23: Make v′ a leaf labelled by the label of leaf v (or the value of f (ρ) or some element of
R(ρ) if S =∅).

61

Algorithm 9 Computes a partition

A× B =
⋃

(Jℓ,αJℓ
)∈F

⋃

β∈{0,1}Jℓ

(Aℓ × Bℓ,β)
⋃

(A≥L × B≥L)

such that |A≥L| ≥ |A|/2, every Aℓ is 0.9 dense, AℓJℓ = αJℓ and Index Jℓ
m (A

ℓ × Bℓ,β) = β

1: function DENSITY-RESTORING-PARTITION(A, B, S)
2: F ←∅; ℓ← 1; A≥1← A
3: while |A≥ℓ| ≥ |A|/2 do. ▷ Phase I
4: Let Jℓ ⊆ S be a maximal set for which the min-entropy of AJℓ is less than 0.9|S| log m.
5: Let αJℓ ∈ [m]

J witness this low min-entropy; that is, PrxJℓ
∼A≤ℓJℓ
[x jℓ = αJ]> m−0.9|Jℓ|.

6: F ←F ∪ {(Jℓ,αJℓ)}.
7: Aℓ← {x ∈ A≥ℓ | xJℓ = αJℓ}.
8: A≥ℓ+1← A≥t − Aℓ; ℓ← ℓ+ 1.
9: L← ℓ.

10: for all ℓ < L do. ▷ Phase II
11: for all β ∈ {0, 1}Jℓ do
12: Bℓ,β ← {y ∈ B | Index Jℓ

m (αJℓ , y) = β}.
return F , (Aℓ)ℓ<L, (Bℓ,β)ℓ<L,β∈{0.1}Jℓ

Proof. For contradiction, assume that for every ℓ ≤ L there is some βℓ ∈ {0, 1}Jℓ such that
|Bℓ,β

ℓ

S |< |BS|/m|Jℓ|. Define B= to be the union of these Bℓ,β
ℓ

and B ̸= = B − B=.
We first show that we must have |B=| < |B|/2: Consider the number of ℓ < L such that

|Jℓ|= k.
Trivially, this is at most

�n
k

�

≤ nk ≤ (m/3)k since m≥ n1.2, but this part of the proof doesn’t
actually need this constraint on m. The latter follows because, (By definition, since the set of
inputs in Aℓ are a violation of min-entropy rate 0.9 for A≥ℓ on the set Jℓ, for |Jℓ| = k we have
|Aℓ| > |A≥ℓ|/m0.9|Jℓ| = |A≥ℓ|/m0.9k ≥ |A|/(2m0.9k) and the sets Aℓ are disjoint. Therefore, we
have at most 2m0.9k ≤ (m/3)k such sets since m0.1/2≥ 3 for sufficiently large m.)

By our assumption that |Bℓ,βℓ |< |B|/m|Jℓ for each ℓ, we have

|B=|<
n
∑

k=1

(m/3)k|B|/mk =
n
∑

k=1

|B|/3k < |B|/2

Therefore |B ̸=| > |B|/2. Now define A<L =
⋃

ℓ<L Aℓ. By the condition of Step 3, we have
|A<L|> |A|/2, so |A<L × B̸=|> |A× B|/4. Therefore A<L × B ̸=|, which is contained in A′× B′, has
|A<L×B ̸=|> |A′×B′|/2c+2. In particular the Full Range Lemma says that there is some x∗J ∈ A<L

such that every β ∈ {0,1}J is a possible output in Index J
m({x

∗
J} × B̸=). However, x∗J ∈ Aℓ for

some ℓ which means that Index J
m({x

∗
J}×B ̸=) does not contain βℓ, which is a contradiction.

Lemma 13.9 (Simulation Invariant). At the t-th step of the simulation for t ≤ n log m, the
rectangle A× B is ρ-structured for some ρ whose unset bits are S and

62

Algorithm 10 Actual Deterministic min-entropy based simulation for Index lifting.
1: Initialize:
2: For every node u of P, let Ru = Au × Bu be the associated rectangle.
3: S← [n]
4: A← [m]n; B← ({0,1}m)n
5: v← root of P
6: Create T be a tree with one root node v′

7: procedure BUILD-TREE-INDEX(A, B, S, v, v′)
8: while S ̸=∅ and v is not a leaf of P do
9: ρ← label of path from root to v′ in T

10: if A has min-entropy rate ≥ 0.9 then
11: Let v0 and v1 be the children of v in P. ▷ Simulate another step of P.
12: Choose b ∈ {0, 1} for which |(A× B)∩ Rvb

| ≥ |A× B|/2.
13: v← vb

14: A← A∩ Avb
and B← B ∩ Bvb

15: else ▷ A has min-entropy rate < 0.9
16: (F , (Aℓ)ℓ<L, (Bℓ,β)ℓ<L,β∈{0,1}Jℓ)← DENSITY-RESTORING-PARTITION(A, B, S)
17: Let ℓ satisfy |Bℓ,β | ≥ |B|/mJℓ for all β ∈ {0, 1}Jℓ ▷ Exists by Lemma 13.8
18: A← Aℓ ⊆ {x ∈ A | xJℓ = αJℓ}
19: Extend tree T from v′ by adding queries to all variables z j for j ∈ J .
20: for all assignments β ∈ {0,1}Jℓ do
21: v′

β
← the leaf of T following β from v′.

22: Let γ ∈ ({0,1}m)Jℓ maximize |{y ∈ Bℓ,β | yJℓ = γ}|
23: Bβ ← {y ∈ Bℓ,β | yJℓ = γ}
24: BUILD-TREE-INDEX(A, Bβ , S − Jℓ, v, v′

β
)

25: Make v′ a leaf labelled by the label of leaf v (or the value of f (ρ) or some element of
R(ρ) if S =∅).

63

• AS has deficiency at most 2t − 0.1(n− |S|) log m,

• |BS| ≥ 2m|S|−t−(n−|S|) log m, and

• A× B ⊆ Rv where Rv is the rectangle associated with node v in P.

Proof. For the first part observe that for every simulate step, AS can increase deficiency at most
1. This might require an additional density restoration which would replace S by S − Jℓ for
some ℓ but by Lemma 13.7 would reduce the deficiency by 0.1|Jℓ| log m− 1. Together, these
yield the claimed bound.

For the second part observe that every simulate step can reduce the size of BS by at most 1
and Lemma 13.8 implies that each |Bℓ,β | ≥ |B|/mJℓ = |B|·2−|Jℓ| log m and hence |BℓS−Jℓ

| ≥ |B|S/mJℓ

since we defined Bℓ using the assignment γ ∈ ({0, 1}m)Jℓ giving the largest projection of Bℓ,β

on S − Jℓ.
Since t ≤ n log m we also have |BS| ≥ 2m|S|−2n log m as required to complete the proof that

A× B is ρ-structured, since the other properties have already been ensured by construction.
The last part follows from the simulation steps.

We now give the proof of the simulation theorem assuming the Full Range Lemma.

Proof of Theorem 13.4 for m≥ n1.2. Let P be a protocol for R ◦ Indexn
m of complexity C(P). By

the Simulation Invariant Lemma, the deficiency of AS when the simulation reaches a leaf of the
decision tree is precisely

2t − 0.1(n− |S|) log m≤ 2C(P)− 0.1(n− |S|) log m≥ 0

and the depth of the leaf of the decision tree is n− |S|. Therefore, the height of the decision
tree is at most 20C(P)/ log m.

Consider a leaf v′ of T : If S = ∅ then ρ is total and the output value is contained in R(ρ)
by definition. If v is a leaf of P and A× B ⊆ Rv. We need to argue that the label of v is a
possible output of R(z) for all z ∈ {0,1}n consistent with ρ. Since A× B ⊆ Rv is ρ-structured,
and satisfies the conditions of the Full Range Lemma, Indexn

m(A× B) contains all z ∈ {0,1}n
consistent with ρ and hence the correctness of the label of v on A×B implies that it is contained
in R(z) for all z consistent with ρ and hence is correct in T .

A slight variant of the argument can prove the following:

Theorem 13.10. Let m≥ 3n log m. For every search problem R defined on {0, 1}n we have

C cc(R ◦ Indexn
m) = Ω(C

d t(R)).

It only remains to prove the Full Range Lemma.

64

Proof of the Full Range Lemma

This is based on a newly improved Sunflower Lemma.

Definition 13.11. A collection of k-subsets of S1, . . . , Sp ⊆ U is a p-sunflower iff there is a
C ⊆ [n], the core such that for every i ̸= j, Si∩S j = C . For any i the sets Si \C are called petals.

Note that a collection of p disjoint sets is a r-sunflower with an empty core.

A Sunflower Lemma gives an upper bound t on the size of a collection of k-sets needs to
be in the worst case before it is guaranteed to contain some p-sunflower.

The original Sunflower Lemma of Erdös-Rado showed that this bound is at most (p−1)kk!
which is rk for r ∼ pk. Note that this is independent of the size of U .

It is conjectured that the bound is rk for r ∼ p. There was a recent breakthrough by
Alweiss, Lovett, Wu, and Zhang that reduced the dependence on k, with r ∼ p3 log k log log k.
Then Anup Rao improved this to r ∼ p log(pk) which is better than the Erdös-Rado bound for
a much wider range of p and Bell, Chueluecha and Warnke improved the bound to r ∼ p log k.
See the survey article by Anup Rao posted in the Bibliography.

Sketch of Sunflower Lemma argument

Definition 13.12. A family of k-sets in U is r-spread iff for every subset Z ⊆ U , at most a
1/r |Z | fraction of sets contains Z .

In proving an upper bound of the form rk for containing k-Sunflowers it suffices to consider
r-spread sets by the following reasoning: Suppose the family of sets of size rk is not r-spread.
Then there is a Z ⊆ U such that at least rk−|Z | sets all contain Z . Choose a maximal such set
Z . We apply the inductive hypothesis to find a sub-family of sets with Z removed, which is a
family of k′ = k− |Z | sets. Observe that since Z was maximal, this family of at least rk′ k′-sets
is r-spread. We apply the Sunflower Lemma for r-spread families to get a p-sunflower in this
family and add Z back to every set to get the p-sunflower in the original family.

The following is a trivial form with r = pk, which is slightly worse than the original Erdös-
Rado version; the new proofs are much more sophisticated but also yield families of p disjoint
sets for much smaller r.

Proposition 13.13. Suppose that a family of ≥ rk k-sets is r-spread for r = pk. Then the family
contains at least p disjoint sets.

Proof. Let t be the size of a maximal sub-collection of disjoint sets in the family (which together
include kt elements). Suppose that t < p. Then some element z ∈ U must be contained in at
least a 1/(tk) > 1/(pk) = 1/r fraction of sets in the family which contradicts the assumption
of r-spreadness with |Z |= {z}.

We now focus on the case thatU = [nm] consisting of n blocks, each of size m. We consider
the case that k = n and the sets in the family have exactly 1 element per block; that is, the sets
can be viewed as elements of [m]n.

65

What does it mean for the family (subset of [m]n) to be r-spread when we express the
condition in terms of elements of [m]n? It means that for every J ⊆ [n] and every partial
assignment αJ ∈ [m]J , at most a 1/r |J | fraction of elements in the family are consistent with
αJ . Choosing r = m0.9, we see that this is precisely the condition for the subset of [m]n to have
min-entropy rate at least 0.9!

The following is Lemma 4 in Anup Rao’s 2020 Coding for Sunflowers paper (specialized
for γ= 1/2).

Lemma 13.14. There is a K > 0 such that the following holds. Let ϵ > 0. Suppose that a family
of k-sets in U is r-spread for r ≥ K log(k/ϵ) and has size at least rk. Then a uniformly random
subset W of U contains an element of the family with probability at least 1− ϵ.

In our context, we will can think of U = [nm] and k = n. A uniformly random subset
W corresponds to a random vector in y ∈ ({0,1}m)n. The family of k-sets that is r-spread for
r = m0.9 with one element per block will be a set A of vectors in [m]n that has min-entropy
rate at least 0.9, and the event that the set W contains an element of the family is the same as
saying that ∃x ∈ A Indexn

m(x , y) = 1n. Lemma 13.14 says that if m0.9 ≥ K log(n/ϵ) then

Pr
y
[∃x ∈ A. Indexn

m(x , y) = 1n]≥ 1− ϵ.

It is pretty clear in this statement that 1n is not special and by symmetry the same statement
is true for every string β ∈ {0, 1}n. However, this is would be wasteful and not enough for the
Full Range Lemma, since it would allow the element x ∈ A to depend on β and we require
something more subtle.

Proof of the Full Range Lemma. Let c > 0 be a constant and m ≥ n1.2. Let A′ × B′ be a ρ-
structured rectangle with unset(ρ) = S and A× B ⊆ A′ × B′ satisfies |A× B| ≥ |A′ × B′|/c. Let
J ⊆ S.

We want to prove that there is an x∗J ∈ AJ such that for every β ∈ {0,1}J we have β ∈
Index J

m({x
∗
J} × BJ).

We consider the negation of this Full Range property, which is that for every x ∈ AJ there
is some βx ∈ {0,1}J such that βx /∈ Index J

m({x} × BJ). We prove that the set E of all strings
y ∈ ({0,1}m)J such that Index J

m(x , y) ̸= βx for every x ∈ AJ is much smaller than BJ , which
ensures that the negation of the Full Range property is false.

More precisely, we will use Lemma 13.14 with k = |J | to show that for y chosen uniformly
at random from {0,1}m)J , the probability that y ∈ E is at most ϵ = 2−3n log m, a much smaller
fraction of such strings than the set BJ , which satisfies |BJ | ≥ |B′J |/2

c ≥ 2|J |m−2n log m−c, since B′S
has deficiency at most 2n log m+ c.

Since A′S has min-entropy rate 0.9 and A ⊆ A′ has |A| ≥ |A′|/2c, for every J ′ ⊆ J , AJ ′ has
min-entropy at least 0.9|J | log m− c which is min-entropy rate at least 0.9− c/ log m. It follows
that the family of |J |-sets in U = [|J |m] corresponding to AJ is r-spread for r = m0.9/2c and
contains at least r |J | sets. For sufficiently large n,

K log(|J |/ϵ)≤ K log(n23n log m)≤ 6n log m≤ m0.9/2c = r

66

since m ≥ n1.2, so the family of sets in U corresponding to AJ meets the pre-conditions of
Lemma 13.14. However, it is not obvious how the conclusion of Lemma 13.14 gives the claimed
bound on the size of E.

For each x ∈ AJ we define a |J |-term Dx in the bits of y indexed by x , which is true iff the
vector of bits indexed by x has values βx . By definition, the |J |-DNF formula D =

∨

x∈AJ
Dx

will be true on input y iff y /∈ E.
To prove the bound, we consider the values of βx that minimize the probability of satisfying

D (which maximizes the probability of E). Each term is individually satisfied with precisely the
same probability. If two terms Dx and Dx ′ are inconsistent with each other then they correspond
to disjoint assignments which means that Dx ∨ Dx ′ has more satisfying assignments than if Dx

and Dx ′ are consistent. Therefore, the probability of satisfying D is minimized when all the Dx

terms are consistent with a single γ ∈ ({0, 1}n)J .
By symmetry, the probability of satisfying such a D does not depend on the value of γ (it

only depends on which bits the elements x ∈ AJ index), so we can assume wlog that all of the
βx values are 1|J |. In particular, this means that y satisfies D iff for some x ∈ AJ all bits in y
indexed by x have value 1. This is precisely the condition that for some x ∈ AJ , the subset of
U = [|J |m] indexed by x is contained in the subset W of U for which y is the characteristic
function, which is precisely the event for which Lemma 13.14 yields a lower bound of 1− ϵ.
Therefore the probability that y satisfies D is at least 1 − ϵ and hence E contains at most a
ϵ = 2−3n log m fraction of elements y as required and hence the Full Range Lemma follows.

Limits of sunflower arguments

For the Full Range Lemma we can make it work for m ≥ n1+ϵ by replacing 0.9 by 1 − δ for
δ = ϵ/2. If we only requireΩ(1) simulation step per query step we can replace the min-entropy
required per block of A to log m− C for some large constant C (so that overall min-entropy of
AS goes up by a large constant per query). With this value it suffices for the Full Range Lemma
to have r = m/2C > 6Kn log m which holds when m is at least C ′n log n for some constant C ′.

:

14 Randomized Communication Complexity and Lifting

In communication complexity, lower bounds randomized strategies play an even larger role for
applications than lower bounds for deterministic ones.

Definition 14.1. A randomized decision tree is a probability distribution over deterministic
decision trees. Its cost is the maximum height over all (deterministic) decision treed in the
support of the distribution.

A randomized communication protocol (with shared randomness) is a probability distribu-
tion over deterministic protocols. The communication cost of a randomized protocol is the
maximum over all deterministic protocols in the support of the distribution.

67

We say that a randomized decision tree (randomized communication protocol) computes a
function f with error at most ϵ > 0 iff for each input (resp. pair of inputs) to f , the probability
that a tree (resp. protocol) chosen from the distribution produces the correct answer on that
input with probability at least 1− ϵ.

We write C d t
ϵ
(f) (resp. C cc

ϵ
(f)), respectively for the minimum cost of any randomized

decision tree (randomized protocol) that computes f with error at most ϵ.

Probably the most important and widely applicable theorem in communication complex-
ity is the following. Though there have been several improved and simpler proofs, none is
especially easy.

Theorem 14.2 (Kalyanasundaram-Schnitger). For any ϵ > 0, C cc(DISJn) is Ω(n).

The DISJn function is the composition ORn ◦ AN Dn
2 . One of the big goals of lifting would

be to prove a general result that gives this lower bound for disjointness as a special.
GöÖs, Pitassi, and Watson proved the following lifting theorem for randomized computa-

tion.

Theorem 14.3 (Göös-Pitassi-Watson). For c > 0 sufficiently large, ϵ > 0. and any Boolean
relation R on {0,1}n, if n≥ mc then C cc

ϵ
(R ◦ Indexn

m) is Ω(C d t
ϵ
(R) log m).

The basic idea involving simulation is similar to that of the deterministic case - in fact the
density-restoring partition method was first set up for this purpose. Since the randomized
protocol is a distribution over deterministic protocols, the random choice for the decision tree
first chooses one of these deterministic protocols but now does a further random simulation of
the branches of that deterministic protocol.

A key difference with the deterministic case is that in the simulation steps, the algorithm
cannot simply choose the larger set A× B of consistent inputs. Instead, the algorithm must
choose the bit to communicate according to something close to the probability that the original
randomized algorithm sends 0 or 1. The algorithm also can’t simply fix one of the choices in the
density-restoring partition; it must generate distributions that are close to what the randomized
algorithm does. To this end, it doesn’t stop in the decomposition at |A|/2 and only finishes when
there are no blocks with too little min-entropy.

Instead of the Full Range Lemma, we need the following much stronger property of Indexm:

Lemma 14.4 (Uniform Marginals Lemma). Let A× B be ρ-structured and fix any total assign-
ment σ ∈ {0,1} that is consistent with ρ. Then the set of (A× B)γ of inputs in A× B such that
Indexn

m(x , y) = γ is non-empty, and the projections onto A and B of the uniform distribution on
(A× B)γ are within 1/n2 of the uniform distribution on A and on B, respectively.

The Uniform Marginals Lemma lets the simulation choose the bits for Alice and Bob to send
based on the probabilities within A and B separately and ignore the impact of the constraints
of matching the queries that the decision tree makes, except when fixing bits of Bob’s input
to match Alice’s input pointers that are fixed during density restoration. More precisely, when
Alice sends a bit that splits A into A0 and A1, the simulation chooses to send each value of b

68

with probability |Ab|/|A|; the simulation behaves similarly when Bob sends a bit. When running
the density-restoring partition the algorithm chooses the set Ai that fixes some xJ to αJ , with
probability proportional to its size and then fixes B to match the β ∈ {0, 1}J given by the query
answers in the decision tree.

Randomized Lifting with Inner Product

Chattopadhyay, Filmus, Koroth, Meir, and Pitassi extended the lower bound method for ran-
domized algorithms to any “low discrepancy” gadget such as I Pd for d = Θ(log n).

Theorem 14.5. For c > 0 sufficiently large, ϵ > 0. and any Boolean relation R on {0, 1}n, if
d ≥ c log n then C cc

ϵ
(R ◦ I Pn

d) is Ω(C d t
ϵ
(R)d).

The proof of this theorem is much more involved because we no longer have the asymmetry
with Bob’s input string being much larger than Alice’s input so that small deficiency suffices. In
this case one must keep track of the min-entropy rate for both Alice and Bob. Because of this,
there needs to be some back-and-forth between restoring Alice’s min-entropy rate and restoring
Bob’s, since fixing Alice’s may ruin Bob’s and vice versa. This requires a much stronger condition
than A×B being ρ-structured, and much more careful assessment of when coordinates become
risky and need to be queried. Alice

69

15 DAG-protocols

Definition 15.1. A subset C ⊆ {0,1}n is a cube iff there is a partial assignment ρ ∈ {0,1,∗}n
such that

C = {x ∈ {0,1}n | x i = ρ(i) for all i set by ρ}.

A cube DAG for a function f or relation R on {0,1}n is a directed acyclic graph G with out-degree
2, with each node u labelled by a cube Cu ⊆ {0, 1}n subject to the following conditions:

• The root is labelled by {0,1}n

• For every node u with children v and w the cube Cu ⊆ Cv ∪ Cw.

• Each sink w of G also has an output label ℓ that is an allowable output of f (or R) for
every x ∈ Cw.

A cube DAG is reduced iff the cube Cu for each node u is not contained in the cubes Cv or Cw

for its children v and w. The width of a cube DAG is the maximum number of fixed positions
in any cube in the DAG.

Note that any decision tree is a special case of a cube DAG where the cube associated with
node v is the set of inputs consistent with the partial assignment reaching node v. In that case
each Cu is the disjoint union of Cv and Cw.

In general, since Cu, Cv, and Cw are all cubes, if a cube DAG is reduced then there must be
precisely one bit where the partial assignments defining Cv and Cw take opposite signs.

If F is an unsatisfiable CNF formula with clauses D1, . . . , Dm, any Resolution refutation of F
yields a cube DAG for SearchF with the same DAG structure as follows: Let G be the DAG of
the Resolution refutation with

• The root is labelled by the empty clause

• Each internal node u is labelled by a clause Du that is the resolvent of the clauses Dv and
Dw labelling its children v and w on some variable x i.

• Each leaf node w is labelled by a clause Dj of F .

We define cube Cu on the same structure as the set of inputs that falsify clause Du (it is a
cube given by the partial assignment associated with the conjunction Cu and every leaf of the
refutation that is labelled by input clause Dj, is labelled by output j in the cube DAG. The
soundness of Resolution inference implies that Cu ⊆ Cv ∪ Cw.

Conversely, any cube DAG for SearchF yields a Resolution refutation of F where we are
allowed to freely add a weakening rule at the leaves that can add extra literals to an input
clause. The fact that it is a Resolution refutation follows from the one bit flipped property
between the child cubes of cube DAGs.

We therefore obtain the following:

70

Proposition 15.2. The minimum Resolution refutation size of an unsatisfiable CNF formula F is
precisely the size of the smallest cube DAG for SearchF . Moreover, the Resolution width of F is the
width of the narrowest cube DAG solving SearchF .

Definition 15.3. Given space X × Y a rectangle DAG (a.k.a. a 2-party DAG protocol) for a
function f or relation R on X × Y is a directed acyclic graph G with out-degree 2, with each
node u labelled by a rectangle Ru ⊆ X × Y subject to the following conditions:

• The root is labelled by X × Y

• For every node u with children v and w the cube Ru ⊆ Rv ∪ Rw.

• Each sink w of G also has an output label ℓ that is an allowable output of f (or R) for
every (x , y) ∈ Rw.

A rectangle DAG is reduced iff the cube Cu for each node u is not contained in the cubes Cv or
Cw for its children v and w; we assume that it is reduced w.l.o.g.

A 2-party communication protocol is a rectangle DAG (for G a tree) where Rv and Rw par-
tition Ru.

Write Ru = Au × Bu, Rv = Av × Bv and Rw = Aw × Bw. Since Ru ⊆ Rv ∪ Rw and all three are
rectangles, We must have either

• Au ⊆ Av ∪ Aw and Bu ⊆ Bv, Bw ("Alice speaks"), or

• Au ⊆ Av, Aw and Bu ⊆ Bv ∪ Bw ("Bob speaks").

In DAG protocols, players can “forget” some of the past and only keep what they need to
remember.

Rectangle DAGs were originally introduced by Razborov in order to extend Karchmer-
Wigderson games to analyze circuit size and not just formula size and depth.

Lemma 15.4. The circuit complexity over the binary ∧,∨ and ¬ basis for Boolean function f is
the size of the smallest rectangle (2-party DAG protocol) for KM f on f −1(1)× f −1(0).

The monotone circuit complexity over the ∧,∨ basis for monotone Boolean function f is the
size of the smallest rectangle DAG (2-party DAG protocol) for mKM f on f −1(1)× f −1(0).

Proof. The structure of the rectangle DAG (and that of the circuit match exactly. The corre-
spondences are exactly the same as in the regular Karchmer-Widgerson games with ordinary
protocols.

Definition 15.5. A set T ⊆ X ×Y is a triangle iff there are functions aT : X → R and bt : Y → R
such that T = {(x , y) ∈ X × Y | aT (x)> bT (y)}.

The motivation for the term triangle is that we can sort the elements of X by decreasing aT

values and sort the elements of y by increasing bT value and set T looks like a stepped triangle
inside X × Y : The entries of T are shifted to the upper left in the array, with each row have a
number of entries at most that of the previous row.

71

Definition 15.6. We can define a triangle DAGs that computes a Boolean function f or relation
R on X × Y just as we have done for Rectangle DAGs. Each node u of the out-degree 2 DAG is
labelled by a triangle Tu such that:

• The root is labelled by the triangle X × Y

• For node u with children Tv and Tw, we have Tu ⊆ Tv ∪ Tw

• Each sink w of G has a label that is an allowable answer for all inputs in Tw.

We will see that triangle DAGs are related to a much more powerful class of proofs than
Resolution proofs:

Definition 15.7. Given a CNF formula F we can translate each clause of F into an integer linear
inequality: For example, clause x1∨ x2∨ x3 becomes the linear inequality x1+1− x2+ x3 ≥ 1
or, in standard form x1 − x2 + x3 ≥ 1.

Given an unsatisfiable CNF formula F , a (semantic) Cutting Planes refutation of F is a se-
quence of inequalities for the form a1 x1 + · · ·+ an xn ≥ D for a1, . . . , an, D all integers, ending
in the inequality 0 ≥ 1, each of which is either a translation of an input clause of F or is a
logical consequence of two prior inequalities. The sequence of inferences yields a refutation
DAG with root 0≥ 1.

Consider an arbitrary partition of the variables of an unsatisfiable CNF F into two groups:
x variables and y variables, so we can write each line ℓ of the Cutting Planes refutation as
aℓ(x)+bℓ(y)≥ D. We can associate a triangle T on X×Y with the set of assignments that falsify
line ℓ by setting aT (x) = D − aℓ(x) and bT (y) = bℓ(y). Then aT (x) > bT (y) iff D − aℓ(x) >
bℓ(y) iff aℓ(x) + bℓ(y)< D.

Following the same ideas as the previous arguments, we obtain the following:

Lemma 15.8. For every partition of the assignments of the variables of unsatisfiable CNF formula
F into disjoint parts X and Y , the size of a (semantic) Cutting Planes refutation of is at least the
size of the smallest triangle DAG for SearchF on X × Y .

Proof. The triangle Tu on X ×Y labelling each node u in the refutation will be the set of inputs
falsifying the inequality at u, as described above. The fact that Tu ⊆ Tv ∪ Tw at a node u with
children u and v the the requires only the soundness of Cutting Planes inference, which is the
“easy” direction in the previous arguments. The rest is as before.

Definition 15.9. A monotone real gate is any function g : R × R → R such that for any real
inputs (x , y) and (x ′, y ′) with x ≥ x ′ and y ≥ y ′ we have g(x , y) ≥ g(x ′, y ′). A monotone
real circuit is a circuit composed of (two-input) monotone real gates, where the (monotone)
function computed at each node is the composition of the gate function with the functions at
its children.

Monotone real circuits carry real values along their wires, but we will be interested in how
they can compute monotone Boolean functions that start at end with Boolean values.

72

Theorem 15.10. The size of the smallest monotone real circuit computing a monotone Boolean
function f is the size of the smallest triangle DAG computing mKWf on f −1(1)× f −1(0).

Proof. There are two directions to the argument as before.
Suppose that we have a monotone real circuit. We normally think of a circuit as directed

towards the output but we reverse the edges. For each gate u let fu be the function computed at
u. Beginning at the root we maintain the property that at each node u, the triangle Tu consists
of the set of (x , y) such that fu(x)> fu(y), which is a triangle by definition. This is clearly true
at the root. Each sink corresponds to some input zi to f so we give it output label i. We now
have to show that Tu ⊆ Tv ∪ Tw where v and w are the children of (input gates to) u. We have
fu(z) = gu(fv(z), fw(z)) where gu is a monotone real gate. Let (x , y) ∈ Tu. Then fu(x) > fu(y)
by definition. Therefore gu(fv(x), fw(x)) > gu(fv(y), fw(y)). Since gu is a monotone function
we must have fv(x) > fv(y) or fw(x) > fw(y) (or both). This is equivalent to (x , y) ∈ Tv or
(x , y) ∈ Tw.

For the other direction, suppose that we have a triangle DAG solving mKWf where each
node u has Tu is the set of inputs (x , y) ∈ X × Y such that au(x) > bu(y). We build the circuit
bottom up maintaining the invariant that for the function fu computed at u, fu(x) > fv(y)
for every (x , y) ∈ Tu. We will maintain a stronger invariant, namely that for every node u,
fu(x) ≥ au(x) and bu(y) ≥ fu(y) for all x ∈ f −1(1) and y ∈ f −1(0). For (x , y) ∈ Tu we have
au(x)> bu(y) and hence fu(x)> fv(y) holds for all (x , y) ∈ Tu.

Each sink w of the DAG is labelled by some i ∈ [n]. Since i is a correct answer to mKWf

Tw is contained in the set {x ∈ f −1(1) : x i = 1} × {y ∈ f −1(0) : yi = 0}, which is a triangle.
We can replace each sink triangle with this potentially larger triangle and assume without loss

of generality that aw(z) = bw(z) =

¨

1 zi = 1

0 zi = 0
, since aw(x) > bw(y) implies that x i = 1 and

yi = 0. The function fw will be fw(z) = zi which satisfies the inductive conditions.
Now suppose that node u has children v and w and Tu ⊆ Tv ∪ Tw.
We define the gate gu based on the functions au, av, aw as

gu(α,β) = max
s∈ f −1(1)

{au(s) | av(s)≤ α and aw(s)≤ β}.

Clearly gu is a monotone real-valued function in α and β since increasing α or β only allows
more values to be considered for the max. Then fu(z) = gu(fv(z), fw(z)).

Suppose that x ∈ f −1(1) which has

fu(x) = max
s∈ f −1(1)

{au(s) | av(s)≤ fv(x) and aw(s)≤ fw(x)}. (4)

By the inductive hypothesis applied to v and w, av(x) ≤ fv(x) and aw(x) ≤ fw(x). Therefore
both conditions in (4) hold for s = x and we have au(x) as one of the candidate values in the
max for fu(x), so we obtain fu(x)≥ au(x). Similarly for y ∈ f −1(0) we have

fu(y) = max
z′∈ f −1(1)

{au(s) | av(s)≤ fv(y) and aw(s)≤ fw(y)}. (5)

73

Suppose that fu(y)> bu(y). Then there must be some s ∈ f −1(1) with au(s)> bu(y) such that
av(s) ≤ fv(y) and aw(s) ≤ fw(y). The first condition implies that the pair (s, y) must be in Tu

by definition so (s, y) ∈ Tv or (s, y) ∈ Tw. W.l.o.g. suppose that (s, y) ∈ Tv. Then av(s)> bv(y).
By the inductive hypothesis for v since y ∈ f −1(0) we must have bv(y)≥ fv(y), which implies
that av(s) > fv(y) contradicting the requirement that av(s) ≤ fv(y) in the definition of fu. It
follows that fu(y)≤ bu(y) as required.

When we reach the root r we obtain that every (x , y) ∈ f −1(1)× f −1(0), fr(x) ≥ ar(x) >
br(y) ≥ fr(y). This means that there is some threshold τ such that fr(x) > τ if x ∈ f −1(1)
and fr(y)< τ if y ∈ f −1(0). For the final circuit we replace the output gate gr by g ′r = thτ ◦ gr

where thτ(a) =

¨

1 a ≥ τ
0 a < τ

. g ′r is monotone since it is the composition of monotone functions

and the function computed at the output gate is now f .

Lifted CNF formulas with Index

Given an unsatisfiable k-CNF formula F in variables z1, . . . , zn, there is a natural unsatisfiable
CNF formula F ◦ Indexn

m in 2nm variables, nm x variables and nm y variables. as follows: Add
clauses x i1 ∨ · · · ∨ x im and x i j ∨ x i j′ for each i ̸= k. Now replace each k-clause

(zb1
i1
∨ · · · ∨ zbk

ik
)

where z0
i = zi and z1

i = Z i, by the mk 2k-clauses of the form

(x i1 j1 ∨ · · · ∨ x ik jk ∨ y b1
i1 j1
∨ · · · ∨ y bk

ik jk
)

which say that for each possible setting of pointers, if the the pointers are set that way then
the clause in the y vectors pointed to must hold.

Lifting DAG protocols

Garg, Göös, Kamath and Sokolov proved a powrful lifting theorem for DAG protocols that lets
one go from cube DAGs to rectangle DAGs and triangle DAGs using density-restoring partitions.
There is an improved and simplified version of this proof in the Lifting with Sunflowers paper.

Theorem 15.11. For every ϵ > 0, there are constants c, c′ > 0 such that for m = n1+ϵ and any
relation R on {0,1}n that requires cube DAG width at least w

• R ◦ Indexn
m requires rectangle DAG size at least ncw, and

• R ◦ Indexn
m requires triangle DAG size at least nc′w.

Corollary 15.12. If F is an unsatisfiable k-CNF formula in n variables requiring Resolution width
w, then for m = nϵ, F ◦ Indexn

m is an unsatisfiable 2k-CNF formula requiring size nΩ(w) Cutting
Planes refutations. Further fF,m requires monotone real circuit size nΩ(w).

74

Given the large number of unsatisfiable k-CNF formulas with Ω(n) Resolution width lower
bounds, this gives many lower bounds of the form 2nδ on Cutting Planes proof size and on the
size of monotone real circuits.

A particularly simple explicit example is the following: Define the 3XOR-SAT problem on at
most 8n3/3 bits as follows: The input has one bit for each of the 16

�n
3

�

≤ 8n3/3 possible parity
constraints of size at most 3, which defines a formula given by the constraints where there is
a 1. The output is 1 iff the formula is unsatisfiable. This is clearly monotone since additional
constraints can only make things more unsatisfiable

Corollary 15.13. 3XOR-SAT requires monotone (real) circuits of size at least 2nδ .

In the rectangle DAG case the ideas of the proof need to change by a lot since it is critical
that the decision DAG being build does NOT remember the entire history and only retains
the O(w) bits defining the cube associated with the current node. Rather than working with
the ρ-structured rectangle at each step, the algorithm works relative to the actual rectangle
Rv = Av × Bv of the protocol itself. It fully partitions Rv using the density-restoring ideas as
before (not stopping at 1/2) but with a twist, and shows that if that rectangle is large enough
2−2w log m then one can partition it rectangles defined by various ρ of size O(w) and high min-
entropy (but not necessarily of low deficiency) with some nice consistency properties. It would
at first seem that this would add the new ρ to the existing one, but these consistency properties
all one to drop a similar number of coordinates defining the rectangle at the previous step.

The whole argument is all about finding big enough good rectangles as one goes down the
protocol DAG. The key to extending this to triangle DAGs is that every triangle contains a fairly
large rectangle of about 1/2 the total number of points and the proof proceeds by maintaining
rectangles as it navigates the protocol DAG.

Open Problem 15.14. The following are open (in addition to improving m):

• Extend the arguments to randomized or nondeterministic DAG lifting. (This is mostly of
technical interest.)

• Extend any lifting argument to 3 player communication complexity. (The number on fore-
head version for DAG lifting would give lower bounds on degree 2 proofs.)

• Extend lifting to DAGs where objects are defined by constraints (x , y) ∈ S iff a(x) > b(y)
and c(x) > d(y). This would give lower bounds on proof sizes involving conjunctions of
linear constraints.

75

	Best current SAT algorithms
	The Exponential Time Hypothesis
	The Strong Exponential-Time Hypothesis (SETH)
	Algorithms for Orthogonal Vectors?
	More on ETH and Parameterized Complexity
	Longest-Common Subsequence
	LCS is hard even given a very weak SETH
	Circuit-SAT Algorithms Imply Lower Bounds
	SAT solvers
	Resolution Proofs
	Communication Complexity and Lifting
	Deterministic Lifting
	Lifting with small deficiency/large min-entropy rate
	Randomized Communication Complexity and Lifting
	DAG-protocols

