Exponential-Time Hypothesis (ETH)

The worst-case complexity of 3-SAT on n variables formula F is $\geq 2^{\delta n}$ for some $\delta > 0$.

Could have at most $m = O(n^2)$ clauses.

If graph G has $N = O(n^{3/2})$ nodes, then $2^{\Omega(n)} = 2^{2^{O(n^{1/2})}}$.

Space-Saving Lemma: Let $\varepsilon > 0$, $k > 3$ be a constant.

There is a 2^{ckn} poly-time that takes a k-CNF formula F and produces k-CNFs $F_1, \ldots, F_{2^{ckn}}$ such that $F \equiv v F_i$ and each F_i has $(k^{1/3})^{\Omega(n)}$ clauses.

See ETH \Rightarrow ETH for sparse formulas ($O(n)$ clauses).

Proof: Suppose ETH for sparse formulas is false.

For any $\varepsilon > 0$, we can solve sparse formulas in $2^{\varepsilon n}$ time.

Choose some $\varepsilon'' > 0$ and we'll solve several formulas in $2^{\varepsilon'' n}$ time.

Set $\varepsilon' = \varepsilon''/3$, $\varepsilon = \varepsilon''/3$.

$2^{\varepsilon''^{1/3} n}$ poly-time to create $F_1, \ldots, F_{2^{\varepsilon''^{1/3} n}}$.

Use our sparse alg. in $2^{\varepsilon''^{1/3} n} = 2^{\varepsilon'' n/3}$ time for formula...
poly(2^{\frac{2n}{3}}) \text{ this to decide sat is all of } F_1, \ldots, F_{2^n n} \text{. This contradicts ETH.}

Cor (1) ETH \implies \exists \text{ constant } S \geq 0 \text{ s.t. } \exists \text{ CNF}

formulas in } n \text{ vars requires time } \geq 2^{S^{n^2} \cdot \text{poly}(n)} \text{ from }

(1) \text{ ETH is equivalent to each of the following:}

(a) \text{ IS, VERTEX-COVER, DOMINATING SET on graphs with } n \text{ edges require time } \geq 2^{cn^{2/3}} \text{ for } c > 0

(b) \text{ CLIQUE on } n \text{-vertex graphs}

(c) \text{ SUBSET-SUM on } n \text{-bit integers}

(d) \text{ HAMILTONIAN-PATH, CIRCUIT-}

(e) \text{ 2-COLOR, R-COLOR on } n \text{-edge graphs}

Proof of Sparsified Lemma

Key idea: (chiral) flower

\text{ a collection of chiral-clauses, whose intersection has size } 4. \text{ heart H+}

\text{ Threshold } \Theta_p \text{ increases}

C_1 \ldots C_s \geq \Theta_p
\[P = \{ C_i : i \in S \} \]

If any subformula \(\phi \) of \(P \) or satisfies all clauses in \(P \)

Reduce if formula contains clause \(C \& D \), remove \(D \).

Function \(\text{Sparsity}(F') \)

\[F' = \text{reduce}(F') \]

If there is some \(F \) in \(F' \) (for any \(i \))

Choose the clause \(\phi \) to avoid \(\phi \) is minimized

and \(h \) is maximized

\(H \) be heart of \(F' \)

\(P \) be set of petals of \(F' \)

\[\text{Sparsity}(F' \cup H) \]

\[\text{Sparsity}(F' \cup P) \]

else

Append formula \(F' \) to the list of output formulas

\[F_r = \text{reduce}(F) \]

\[F_u \]

\[F_r = F_u \lor F_v \]

\[F_u \lor F_v \]

\[F_r \lor F_u \lor F_v \]
\[\begin{align*}
\beta_r &= 2 \\
\beta_j &= \sum_{i=1}^{j-1} \alpha \beta_i \beta_{j-i} \\
\theta_0 &= 2 \\
\theta_j &= \alpha \beta_j \\
\alpha &\geq 2 \\
\end{align*} \]

We say that \(F' \) is \(k' \)-saturated if for every \(j \leq k' \) no clause contains \(h+p=j \).

Lemma

Suppose that \(F' \) is \(k' \)-saturated.

(a) If \(|C'| = h < j \leq k' \) there are fewer than \(\theta_j \) \(j \)-clauses (counted w.r.t. \(C' \) only).

(b) For \(j \leq k' \) \(F' \) has fewer than \(2\theta_j - 1 \) \(h+j \)-clauses.

2n literals among the \(j \)-clauses.

If not, two are 2n \(\theta_{j-1} \) literal occurrences.
\[\exists \text{ one literal in at least } \Omega_{j-1} \text{-clause} \]

That would be a \((1, j-1)\)-clause contradiction, contradicting \(\text{ every leaf has at most } C_{x, j} \text{ \(j\)-clause} \)

\[C_{x, j} = \frac{2\Omega_{j-1}}{j} \]

Proof: Every leaf is \(k\)-spanned

Lemma: If a new clause \(C' \) with \(|C'| = i < j \) eliminates any \(j\)-clause from \(F_j \), then it eliminates at most \(2\Omega_{j-i-2} \) total \(j\)-clauses, both old and new.
Suppose that \(\Delta(2(i-1)) \) total \(j \)-clauses, and at least one new \(j \)-clause.

\(j \)-spans \(u \) added a \(j \)-clause.

not at the root

\(u \) first node where all \(j \)-clauses were cleared.

\(u \neq \emptyset \) parent of \(u' \)

\(u'' \) parent of \(u' \)

\(\Theta j-i-1 \)

\(C' \) cluster contains \(C \)

\(\emptyset \) Added \(\geq \Theta j-i \) new \(j \)-clauses.

\(\emptyset \) going from \(u'' \) to \(u' \)

\(\emptyset \) that contain \(C' \)

\(\emptyset \) \(\Theta j-i \) petal contains \(C' \)

\(\emptyset \) at node \(u'' \)

let \(H_{u''} \) be center of node

all these petals contain \(H_{u''} \cup C' \)

\(H_{u''} \cup C' \) is disjoint

\(h+i \) (cluster) domain

\((h+i, j-i) \)

\(H_{u''} \) (domain)
of new clauses on any path \(N_j \) \[\geq \text{# of steps on a path} \]

\[\leq \text{# of clauses at end} \quad 2n \Theta_{j-1} \]

\[+ \text{# of new clauses eliminated along path} \]

\[N_j \leq N_{j-1} + \sum_{i=1}^{2^{j-1}} (2^{(2j-i-2)}N_i + 2n\Theta_i) \]

\[\quad \text{end} \]

\[N_j \leq \beta j n \]

\[\Rightarrow \text{path of length } \leq \beta j n \]

petal steps on a path is not too big

\[(k-1)n/d \]

For \(j \) count # of petals
\[\alpha = \left(\frac{k-1}{2} \right)^2 \log \left(\frac{32(k+1)^2}{c} \right) \]

Steps of size j-clauses:

\[\frac{n}{\Delta} \]

\# of new j-clauses:

\[\leq \beta \cdot n \]

Each petal step creates j-clause:

\[\geq \Theta \text{ petal} \]

\[\frac{\beta \cdot n}{\Theta} = \frac{n}{\Delta} \]

\[\text{ETH} \rightarrow \text{polym} \]

\[\text{SETH} \rightarrow \text{polym} \]

Fine-grained reductions:

\[\frac{h}{2} \left(\binom{\frac{n}{h}}{i} \right) \leq 2 \frac{h}{2} \left(\frac{n}{h} \right)^{2i} \]

\[h_2 \left(\frac{1}{b} \right) \]

Binary entropy:

\[h_2 \left(\frac{1}{b} \right) = b \log \left(\frac{1}{b} \right) + c \]
\(R = \frac{-1}{\ln(1 - P)} \)