
CSE 599I Course Notes: Spring 2024

ETH, SETH and Fine-Grained Complexity, Lifting

Paul Beame

May 13, 2024

1

Overview

Exponential time hypotheses and fine-grain complexity: Beyond P vs NP Despite the best efforts
of researchers for over 50 years since the P vs NP question was formulated, the best algorithms we have
for SAT and other NP-complete problems are still exponential in the worst case and barely improve on
brute force. If these are representative of the correct level of complexity, which seems a reasonable
stronger conjecture than P̸=NP, our usual ways of proving relationships between NP problems need
to be rethought, both from a theoretical and practical point of view, and radically new relationships
between problems emerge, a subject termed “fine-grain complexity”. This yields surprising connections
that have produced a web of problem-solving relationships well beyond the usual resource-focused
complexity classes, for example, showing how improving existing polynomial-time algorithms for well-
known problems is tied to improving exponential-time algorithms for SAT.

In this part of the course we will first discuss algorithms with different approaches to SAT and the
best analysis with respect to their worst-case behavior. We will then consider the Exponential-Time
Hypothesis (ETH) for SAT originally formulated by Impagliazzo and Paturi, analyze its robustness and
implications for other NP problems.

After that we will then focus on a much more powerful Strong Exponential-Time Hypothesis (SETH)
which, though it not as robust as ETH, has nearly the same level of evidence, and has wide-ranging im-
plications that would allows to pinpoint the the complexity of many problems in P with a high degree of
accuracy, proving that current algorithms are not far from the best possible. This is based on so-called
fine-grained reductions and analysis of the complexity of these problems. (In general, fine-grained com-
plexity encompasses both the consequences of SETH, but also of a small number of other key hypotheses,
but in this course we will only focus on those that relate to SETH, or other closely related hypotheses.)

Depending on time we may also briefly discuss how even much smaller algorithmic improvements
over brute force in solving satisfiability for restricted classes of circuits yield circuit lower bounds – an
“ironic” consequence that algorithms imply lower bounds.

Lifting A number of longstanding problems in computational complexity have been resolved in the last
decade by showing how simple forms of function composition let us convert hardness results proven in
weak models of computation into hardness results for more powerful models of computation, a method-
ology that has been termed “lifting”. We discuss lifting techniques and the some of the longstanding
problems resolved using them. We then focus on a number of open problems and approaches to resolv-
ing them.

The main idea of lifting is conceptually simple: Given a Boolean function f or search problem
(relation) R defined on {0,1}n, one can take a simple Boolean function g (a “gadget”) and define the
composition f ◦ gn or R ◦ gn, by f (z1, . . . , zn) where zi = g(x i) or zi = g(x i , yi) depending on context
where x i and yi may involve multiple bits.

The resulting function f ◦ gn is called a “lift” of f . It can easily be computed in a composed manner
also: Given a computation of f , whenever f needs to access zi , the computation for the lift of f can
access the x i (possibly also yi) and compute g instead to produce the value for zi . The general idea is to
translate the complexity of computing f to its lifted version but in a stronger computational model for
example converting the complexity of computing f using queries (decision trees) to the complexity of
the lift of f in a communication complexity model. The simple algorithm of computing a zi each time
it is needed yields a communication protocol that has communication complexity equal to the product
of the query complexity of f and the communication complexity of g.

2

A key question is whether this can be improved. Lifting results have shown that under certain general
conditions it cannot be improved. Applications of this to circuit complexity and proof complexity follow
from the fact that lifting applies to search problems as well as to Boolean functions.

3

The worst-case complexity of SAT

We can ask this question for many different input formats, each a special case of CIRCUIT-SAT where
the input is a circuit C defined on Boolean variables in {0, 1}n.

The obvious brute force algorithm for CIRCUIT-SAT has complexity |C | · 2n.
All of the special cases of CIRCUIT-SAT we will discuss are NP-complete. We first focus on k-SAT for

k ≥ 3. How much can we improve on this brute force algorithm?

1 Best current SAT algorithms

We review the ideas behind the best current algorithms.

The PPZ Algorithm

The first is an extremely simple randomized algorithm, the PPZ algorithm of Paturi, Pudlak, and Zane.

Algorithm 1 The PPZ-algorithm.
Input k-CNF formula F in n Boolean variables x1, . . . , xn.

1: function PPZ(F)
2: repeat n22n−n/k times:
3: α← ;
4: F ′← F ▷ The current partial assignment
5: while F ′ ̸=⊥ and F ′ has an unassigned variable do ▷ F ′ is not identically false
6: Choose an unassigned variable x i uniformly at random
7: if F ′ contains the unit clause x i then
8: b← 1 ▷ x i ’s value is forced to 1.
9: else if F ′ contains the unit clause x i then

10: b← 0 ▷ x i ’s value is forced to 0.
11: else
12: Choose b ∈ {0, 1} uniformly at random

13: Add x i = b to α
14: F ′← F ′|x i←b ▷ Set x i to b in F ′ and simplify

15: if F ′ =⊤ then Halt and output satisfying assignment α ▷ F is satisfied

16: until

Theorem 1.1. If F is a satisfiable k-CNF formula, the PPZ algorithm finds a satisfying assignment for F
with probability 1− o(1).

Before we prove this, we need a few definitions.

Definition 1.2. For x ∈ {0, 1}n, write x⊕i for the element with the i-bit flipped. For a n-bit Boolean
function f , i ∈ [n], and x ∈ {0, 1}n, bit i is sensitive for f at x iff f (x⊕i) ̸= f (x). The sensitivity of f
at x is the number of bits i that are sensitive for f at x , denoted s f (x). We extend this to circuits and
formulas by applying the definition to the associated Boolean function.

4

Proposition 1.3. Suppose that x is a satisfying assignment for CNF formula F. Then there are sF (x)
distinct critical clauses of F, one clause Cx ,i for each sensitive bit i of F at x, such that Cx ,i(x) = 1 but
Cx ,i(x⊕i) = 0. In particular, Cx ,i contains x i or x i .

Proof. The existence of critical clauses is immediate from the definition. The fact that the clauses must
be distinct follows from the fact a clause containing both variables x i and x i′ for i and i′ sensitive on x
cannot be critical for either variable since the clause would have two true literals on input x .

Proposition 1.4. Let S be the set of satisfying assignments of F. Then
∑

x∈S 2sF (x) ≥ 2n.

Proof. By induction on n. For n = 0 there is exactly one string in {0,1}n which has sensitivity 0 so the
statement holds. Suppose it is true for n− 1 and consider the subsets Sb = {x ′ ∈ {0,1} | x ′b ∈ S} for
b = 0,1. Then Sb is the set of satisfying assignments of Fb = F |xn=b. If S0 is empty then S = {x ′1 | x ′ ∈
S1}. Then by definition sF (x ′1) = sF1

(x ′) + 1 and

∑

x∈S

2SF (x) =
∑

x ′∈S1

2sF (x ′1) =
∑

x∈S1

2sF1
(x ′)+1 ≥ 2 · 2n−1

by the induction hypothesis for F1. The same bound holds if S1 is empty. Finally, if both S0 and S1 are
non-empty, then
∑

x∈S

2SF (x) =
∑

x ′∈S0

2sF (x ′0) +
∑

x ′∈S1

2sF (x ′1) ≥
∑

x ′∈S0

2sF0
(x ′) +
∑

x ′∈S1

2sF (x ′) ≥ 2n−1 + 2n−1 = 2n

by the inductive hypothesis applied to F0 and F1.

Proof of Theorem 1.1. Let S be the set of satisfying assignments for F . Fix some x∗ ∈ S and let j = sF (x∗).
There are j critical clauses on input x∗. Each execution through the repeat loop of the PPZ algorithm
induces a uniformly random permutation π on the variables.

Define E1 be the event that for at least j/k of the j critical clauses Cx∗,i on input x∗, the critical
variable x i occurs last among the variables in the clause under the permutation π. Let ℓ be the random
variable for this number. For each critical clause, the critical variable occurs last with probability at
least 1/k since each clause has size at most k. Therefore E[ℓ] ≥ j/k. We claim that with probability
that E1 holds is at least 1/(k j − j + 1) ≥ 1/(kn): Since j, k, and ℓ are integers, a value of ℓ below j/k
must be most (j − 1)/k. Since ℓ is an integer bounded by j, the probability that ℓ < j/k is at most
the probability that applying Markov’s inequality to random variable j − ℓ, whose expected value is
≤ j− j/k = (k−1) j/k, is at least j− (j−1)/k = ((k−1) j+1)/k which is ((k−1) j+1)/k. This means
that if ℓ is below its expected value, then j − ℓ is at least ((k − 1) j + 1)/((k − 1) j) times its expected
value which, by Markov’s inequality, occurs with probability at most 1− 1/((k− 1) j + 1).

Now assume that E1 holds and consider the probability that the assignment chosen in the while loop
agrees with x∗. At each iteration, if the value of x i is forced then it certainly agrees with x∗; otherwise it
agrees with with x∗ with probability 1/2. Since E1 holds, there are at most n− j/k assignments to agree
with x∗ that are not forced since the ≥ j/k variables in the critical clauses witnessing event E1 will all
be forced. Therefore this occurs with probability at least 2 j/k−n = 2sF (x∗)/k−n and hence the probability
that a single iteration of the repeat loop finds satisfying assignment x∗ is at least 1

kn2sF (x∗)/k−n. Putting

5

it all together we have

Pr[a repeat iteration outputs a satisfying assignment]

=
∑

x∈S

Pr[a repeat iteration outputs satisfying assignment x]

≥
1
kn

∑

x∈S

2sF (x)/k−n

=
1
kn

2n/k−n
∑

x∈S

2(sF (x)−n)/k

≥
1
kn

2n/k−n
∑

x∈S

2sF (x)−n

≥
1
kn

2n/k−n by Proposition 1.4.

Since PPZ runs this n22n(1−1/k) times it succeeds with probability 1− o(1).

In particular when k = 3, PPZ has a running time of 22n/3+o(n) which is at most 1.5875n for large n.
PPZ also show how their randomized algorithm can be made deterministic with essentially the same

complexity but the details make the algorithm substantially messier.

The PPSZ algorithm

This algorithm was improved by Paturi, Pudlak, Saks, and Zane to yield the PPSZ algorithm, which
replaces the unit clause test for forced variables with a slightly different criterion tests than unit clauses.
It checks whether x i or x i can be derived by bounded resolution on constant-size clauses. The resolution
rule is given by

A∨ x , B ∨ x
A∨ B

and lets one add the new clause A∨B if both clauses A∨x and B∨x are known. This is a sound rule since
variable x connect make both of the original clauses true. In general, this can increase the sizes of the
derived clauses and have exponential size, but if there is a constant size limit on the size of the derived
clauses (e.g. a limit of 5 variables when k = 3) then all derived clauses can be found in polynomial
time.

The success probability of each iteration for PPSZ is 2cn/k−n−o(n) for c = π2/6 and hence the savings
in the exponent is roughly cn/k. The original PPSZ analysis only applied when the sensitivity of every
satisfying assignment was n (the satisfying assignments are all isolated). This was extended by Hertli
to the general case and subsequent papers have improved the analysis only very slightly. For the special
case that k = 3, the current best general bound due to Scheder is 1.306973n. Again this algorithm can
be determinized without significant loss.

Schöning’s Random Walk Algorithm

The basic idea of this algorithm is repeated local search starting from a random initial assignment.

Theorem 1.5. Suppose that F is a satisfiable k-CNF formula with each clause of size exactly k. Then
Schöning’s algorithm finds a satisfying assignment for F with probability 1− o(1).

6

Algorithm 2 Schöning’s algorithm.
Input k-CNF formula F in n Boolean variables x1, . . . , xn.

1: function SCHOENING(F)
2: repeat 30 · 2n

�

1− 1/k
�n

times:
3: Choose an assignment α ∈ {0,1}n uniformly at random
4: repeat 3n times
5: if F is satisfied by α then
6: Halt and return satisfying assignment α.
7: else
8: Let C be a clause of F such that C(α) = 0
9: Choose a uniformly random variable x i in C .

10: α← α⊕i ▷ Flip assignment αi to make C true.

11: until
12: until

Proof. Suppose that F has some satisfying assignment α∗. For each clause C of F , we identify one
special variable xC whose associated literal in C is set to true by assignment α∗. Each time Step 9 is
executed, since clause C has exactly k variables, the special variable xC in C is chosen with probability
exactly 1/k. Fix an iteration of the outer repeat loop. For t = 0, . . . , 3n let X t ∈ {0,1, . . . , n} be the
random variable counting the Hamming distance between the current assignment α and α∗. If X t is not
satisfying then X t+1 = X t − 1 with probability at least 1/k corresponding to the case that the special
variable is chosen. If some X t = 0 then the algorithm halts and succeeds. (It may also succeed if it finds
some other satisfying assignment.) Since the initial α is chosen uniformly at random:

Pr[X0 = j] =
�

n
j

�

2−n.

Define a Markov chain Yt such that Y0 = X0 and for 0< j satisfies

Pr[Yt+1 = j − 1 | Yt = j] =
1
k

and Pr[Yt+1 = j + 1 | Yt = j] = 1−
1
k

, (1)

and if Yt = 0 then Yt+1 = 0. Clearly X t ≤ Yt . so

Pr[∃t ∈ [0,3n], X t = 0]≥ Pr[∃t ∈ [0,3n], Yt = 0].

If k = 2 then the walk Yt is an unbiased random walk and will reach 0 with high probability in O(n2)
steps. For k ≥ 3, the walk is biased away from 0 and will be far away from 0 if we let it run too long,
but there is some probability of reaching 0 in the early stages. If Y0 = j then every i ≥ 0, if t = 2i + j
the probability that Yt = 0 and Yt ′ > 0 for t ′ < t is equal to the probability that the Markov chain has
i increasing steps and i + j decreasing steps. For each fixed pattern of increasing and decreasing steps
that does not have prefix that reaches 0, this occurs with probability

�1
k

�i+ j ·
�

1−
1
k

�i
.

If we didn’t have the condition that all proper prefixes have value > 0, there would be
�2i+ j

i

�

choices for
the pattern of increasing/decreasing steps.

A standard theorem called the Ballot Theorem gives the following:

7

Claim 1.6. The number of good sequences that have i increasing steps, i+ j decreasing steps and no proper
prefix with an excess of j decreasing steps is

�

2i + j
i

�

j
2i + j

.

Proof of Claim. The general idea to prove the claim is to show that for any particular vector v ∈
�2i+ j

i

�

exactly j of the cyclic shifts of v are good. We prove this by induction on i. For i = 0, all j of the shifts
of v are the same (and are good). We write +1 for each of the i increasing steps and −1 for each of the
i+ j decreasing steps. For i > 0, there must be some consecutive steps in cyclic order on v consisting of
an increasing step followed by a decreasing step. A good cyclic shift of v cannot end on either of these
two steps since for the first it would be less than − j one step before the end and for the second would
be equal to − j two steps before the end. If we let v′ be the string with these two steps removed, then
the end points of the good cyclic shifts of v′ are precisely those that are good for v. By induction exactly
j of the 2(i − 1) + j shifts of v′ are good and hence j shifts of v are good.

Therefore

Pr[∃t ∈ [0,3n], X t = 0]

≥ Pr[∃t ∈ [0,3n], Yt = 0]

=
n
∑

j=0

Pr[X0 = j] ·
∑

t=2i+ j≤3n

�

2i + j
i

�

j
2i + j

�1
k

�i+ j ·
�

1−
1
k

�i

≥
n
∑

j=0

Pr[X0 = j] ·
j
∑

i=0

�

2i + j
i

�

j
2i + j

�1
k

�i+ j ·
�

1−
1
k

�i

=
n
∑

j=0

Pr[X0 = j] ·
j
∑

i=0

�

2i + j
i

�

j
2i + j

�1
k

�i+ j ·
�

1−
1
k

�i

≥
1
3

n
∑

j=0

Pr[X0 = j] ·
j
∑

i=0

�

2i + j
i

�

�1
k

�i+ j ·
�

1−
1
k

�i
.

For k = 3 it turns out that the dominant term in

j
∑

i=0

�

2i + j
i

�

�1
k

�i+ j ·
�

1−
1
k

�i

occurs when i = j. That term is
�3 j

j

�

(1/3)2 j(2/3) j . Using Stirling’s formula
�3 j

j

�

is asymptotically
2p
3π j

33 j/22 j so the term is asymptotically equal to 2p
3π j

2− j ≥ 1p
5n

2− j . Plugging this in we get that

the probability of success is asymptotically at least

1

3
p

5n

n
∑

j=0

Pr[X0 = j] · 2− j =
2−n

3
p

5n

n
∑

j=0

�

n
j

�

2− j =
2−n

3
p

5n
(3/2)n.

which is roughly (3/4)n so the running time is roughly (4/3)n. The savings over brute force search is
roughly a (2/3)n factor.

8

More generally, the dominant term occurs when i is roughly j/(k− 2) so that i + j is roughly j(k−
1)/(k−2) and i is roughly j/(k−2) so the ratio of the two roughly matches the ratio of the corresponding
probabilities. For this dominant term, the Stirling approximation gives that

�2i+ j
i

�

is asymptotically at
least

1
Θ(
p

n)
· k2i+ j/(k− 1)i+ j

and the corresponding term is 1
Θ(
p

n) · (k − 1)− j . Plugging this in we get that the probability of success
is asymptotically at least

2−n

Θ(
p

n)

n
∑

j=0

�

n
j

�

(k− 1)− j =
2−n

Θ(
p

n)
(k/(k− 1))n.

With a bit more care, one can observe that the Θ(1/
p

j) factor (which became 1/
p

n) can be removed
because there are roughly Θ(

p

j) terms of roughly equal size. The savings over brute force is roughly
(1− 1/k)n.

Observe that as k grows 1−1/k is roughly e−1/k = 2−1/(k ln 2). Therefore the savings over brute force
for Shöning’s algorithm is a 2−n/(k ln2) ≥ 2−1.4427n/k factor. This is better than PPZ but not as good as
PPSZ since π2/6 is roughly 1.6645.

Better k-SAT algorithms?

In the three algorithms discussed so far, there is a running time savings of 2Θ(n/k) versus brute force
search. There is a later algorithm of Chan and Williams based on a completely different approach, that
de-randomizes probabilistic polynomials; it also gets savings of this character, though with a substan-
tially worse constant in the exponent. This algorithm not only determines satisfiability, it also computes
the exact number of satisfying assignments.

There is no general algorithm known that does better, though Viya and Williams have shown that
for random k-CNF formulas, the basic PPZ algorithm almost surely has savings at least 2Ω(log k)n/k. It is
not clear what the hardest instances would be for the PPZ algorithm.

9

2 The Exponential Time Hypothesis

The Exponential Time Hypothesis (ETH) of Impagliazzo and Paturi is simply the hypothesis that the
worst-case complexity of 3-SAT on formulas in n variables is at least 2δn for some constant δ > 0.

The ETH was motivated by the fact that the best algorithms for 3-SAT known at the time all had
running times at least cn for some constant c > 1. In the roughly 25 years since it was formulated, that
state of affairs has not changed. Impagliazzo and Paturi considered it a hypothesis rather a conjecture,
in that they simply found it plausible; they were most concerned about what its consequences would be
if it were true.

What does the ETH imply for NP-complete problems? Consider the implication for the problem
INDEPENDENT-SET. Consider the standard reduction 3-SAT≤P INDEPENDENT-SET which maps a 3-CNF
formula to a graph with 3m vertices, one per literal occurrence, with edges joining every pair of occur-
rences of the same variable with opposite sign.

Suppose that we tried to claim that ETH implies that INDEPENDENT-SET requires 2δ
′n time for some

δ′ > 0. We would need to show that it is impossible for INDEPENDENT-SET to be solved in time 2δN for
N -node graphs for some δ < δ′ given the ETH. However, the graph size in the reduction has N = 3m
where m could be as large as Θ(n3). A solution in time 2δN would then be in time 23δm which would be
much larger than the trivial SAT algorithm which runs in time 2npol y(m) and hence would not imply
anything new.

However ETH would imply that INDEPENDENT-SET on N -node graphs requires time 2Ω(N
1/3) using

the same reduction.

Sparsification

To get around this problem, Impagliazzo, Paturi, and Zane devised a way to sparsify formulas to show
that ETH is equivalent to ETH for sparse 3-SAT formulas with n variables and only O(n) clauses.

In general, one cannot reduce a 3-CNF formula F with n variables and m clauses to one with only
O(n) clauses, so one needs to reduce the formula F to multiple other formulas. The total work on
these formulas must also not be not too large. Impagliazzo, Paturi, and Zane showed that this approach
does work and Calabro, Impagliazzo, Paturi significantly improved the analysis (full details in Calabro’s
dissertation) yielding the following theorem:

Theorem 2.1 (Sparsification Lemma). Let ϵ > 0 and k ≥ 3 be a constant. There is a 2ϵnpol y(n) time
algorithm that takes a k-CNF formula F on n variables and produces 2ϵn k-CNF formulas, F1, . . . , F2ϵn , such

that F is satisfied if and only if
∨

i Fi is satisfied and each Fi has n variables and
�

k/ϵ
�O(k)

n clauses. In fact,
each variable is in at most pol y(1/ϵ) clauses, and the Fi are over the same variables as F.

Corollary 2.2. The ETH implies that there exist some constants c,δ > 0 such that satisfiability of 3-CNF
formulas in n variables and at most cn clauses (sparse formulas) requires time at least 2δn.

Proof. Each of the formulas Fi in the Sparsification Lemma has O(n) clauses in n variables and hence is
sparse. Suppose that the conclusion is false. If 3-SAT is easy for sparse formulas, say with running time
at most 2ϵ

′n for every ϵ′ > 0, then one could solve 3-SAT in time 2ϵ
′′n′ time for any ϵ′′ > 0 and arbitrary

clause density as follows:
Applying the Sparsification Lemma with ϵ = ϵ′ = ϵ′′/3, computing all the formulas Fi . Check the

satisfiability of each one in turn in time 2ϵ
′n and output YES iff all of the Fi are satisfied. The total

10

runtime would be pol y(n) · 22ϵ′ = pol y(n)22ϵ′′/3 < 2ϵ
′′
. This would violate the ETH, so it must be the

case that ETH is true even for sparse formulas.

Here is a sampling of the consequences/equivalent formulations of the ETH given the Sparsification
Lemma.

Corollary 2.3. The ETH is equivalent to the following:

• For every k ≥ 3 there is a constant sk > 0 such that k-SAT on n variable formulas requires time at
least 2skn−o(n).

• For each of the following NP-complete problems there is a constant c > 0 such that the problem
requires time at least 2cN :

– INDEPENDENT-SET, VERTEX-COVER and DOMINATING-SET on graphs with N edges,

– CLIQUE on N-node graphs,

– 3-COLOR on graphs with N edges,

– k-COLOR on graphs with N edges,

– SUBSET-SUM with N integers of at most N bits each,

– HAMILTONIAN-PATH, HAMILTONIAN-CYCLE on graphs with N edges.

We now focus on the proof of the Sparsification Lemma. The basic idea is a kind of tree search where
we branch on the value of variables (or subclauses), simplifying the formula on each branch as we go.
This will be effective in reducing the number and lengths of clauses while the simplified formulas are
not sparse, yielding a frontier where we stop where the formulas are all sparse. Each final Fi is the
conjunction of the path to the simplified formula at this frontier. It remains to argue that this frontier is
small and that all the formulas at the frontier are sparsified.

At each step the algorithm will introduce new short clauses that may subsume (imply) other longer
clauses that contain them. Whenever we do so we will reduce the formula by deleting all subsumed
clauses. We call this operation reduce(·). We will view each CNF formula as a set of clauses using an
implicit conjunction.

The key idea of the branching algorithm is that formulas with many clauses must have large sets
of clauses that share a non-trivial subclause on which they overlap and that this overlap can be pulled
out using the distributive law: either the common subclause is satisfied, which makes all of the clauses
true, or the remaining part of each clause must be satisfied.

This is related to but different from the kinds of intersections in the sunflower lemma, where the
core (common intersection) may be empty and the remaining sets (petals) must be disjoint.

Here we identify each clause with a set of literals and have the notion simply of an (h, p)-flower,
which is a collection ≥ θ ϵ,kp clauses of size exactly (h + p) that all share a common subclause H, the
heart of the flower, of size h ≥ 1. We write P, the set of petals of the flower, for the set of p-clauses
that remain from the flower when H is removed. The values θ ϵ,kp are parameters that we set later. We
identify an (h, p)-flower by its heart H.

At each stage, there may be many different flowers that can be branched on. The algorithm always
chooses to branch using flowers with the smallest current clause size that have that smallest petals
(largest heart) so that the potential subsumptions are maximized.

11

Algorithm 3 Sparsification algorithm.
Input a k-CNF formula F in n Boolean variables x1, . . . , xn.
Assumes a set of parameters θ ϵ,kp for p = 1, . . . , k that give the threshold for the number of petals of size
p at which subformulas F∗ are designated as (h, p)-flowers.
1: function SPARSIFY(F ′)
2: F ′← reduce(F ′) ▷ Remove subsumed clauses from F ′

3: if there is some (h, p)-flower F∗ in F ′ then
4: Choose an (h, p)-flower F∗ such that h+ p is minimized and then h is maximized.
5: Let H be the heart of F∗ and P be the set of petals of F∗.
6: Sparsify(F ′ ∪ {H}) ▷ First branch is the case that H is set to true.
7: Sparsify(F ′ ∪ P) ▷ Second branch is the case that all petals in P are set to true.
8: else
9: Append formula F ′ to the list of output formulas.

The values of the parameters θ ϵ,kp algorithms depend on k and ϵ solely via a parameter α= αε,k ≥ 2
that we will define later. For simplicity of notation, we will drop the k and ϵ and just write θp instead
of θ ϵ,kp . These are defined in terms of auxiliary parameters βk′ and are defined by

β1 = 2

βk′ =
k′−1
∑

h=1

4αβk′−hβh for 2≤ k′ < k

θ0 = 2

θk′ = αβk′ for 1≤ k′ < k.

Note that since θ0 = 2> 1, an (h, p)-flower must have p > 0.
For k′ ≤ k, we say that a formula F ′ is k′-sparsified iff for every j ≤ k′ and every h with 0 < h < j,

F ′ does not contain an (h, j − h)-flower.
The execution of the sparsification algorithm produces a binary tree with each node u labelled by

a formula Fu = reduce(F ′) where F ′ is the formula at which the node is called. By definition, u is a
leaf of this tree if and only if Fu is k-sparsified. We write Hu for the heart found during the call at node
u and Pu for the set of petals at node u. If u is not a leaf and v, w are the left and right children of u,
respectively, then Fv = reduce(Fu ∪ {Hu}) and Fw = reduce(Fu ∪ Pu).

The following proposition is immediate from the fact that the F ′ ≡ reduce(F ′) and that any truth
assignment that satisfies a flower satisfies its heart or satisfies all of its petals.

Proposition 2.4. Fu ≡ Fv ∨ Fw.

Lemma 2.5. Suppose that Fu is k′-sparsified.

(a) If C ′ is an arbitrary clause, with |C ′| = h < j ≤ k′, there are fewer than θ j−h j-clauses C ∈ Fu
containing C ′.

(b) For j ≤ k′, Fu contains fewer than 2θ j−1n/ j clauses of length j.

Proof. For (a), assume that there are at least θ j−h j-clauses in Fu that contain C ′. Let H be their common
intersection. Then C ′ ⊆ H so |H| ≥ h. Since θ j−|H| ≤ θ j−h, this would contradict the assumption that Fu
is k′-sparsified.

12

For (b), suppose that Fu contains at least 2n
j θ j−1 j-clauses. Therefore there are at least 2nθ j−1 total

literals occurring in these j-clauses. It follows that at least one literal occurs in at least θ j−1 clauses
which would be a (1, j − 1) flower contradicting the assumption that Fu is k′-sparsified.

Since the formulas output by the algorithm are k-sparsified, we can immediately apply part (b) of
the above lemma to obtain the following.

Corollary 2.6. Every formula output by the sparsification algorithm contains at most ck,ϵn clauses for

ck,ϵ =
∑k

j=1
2θ j−1

j .

It remains to show that the total number of leaves is small and to bound ck,ϵ... In any of the formulas
Fu, we say that a clause C ∈ Fu is new iff it is not in the original formula at the root; that is, it is either
the heart or one of the petals introduced along the path from the root to u. In moving from Fu to Fv or
Fw, the new clauses added may eliminate clauses from Fu when the reduce operation is applied.

Lemma 2.7. If a new clause C ′ with |C ′|= i < j eliminates any new j-clause from Fu then it eliminates at
most 2θ j−i − 2 total j-clauses, both original and new.

Proof. Suppose that C ′ eliminates some new j-clauses and at least 2θ j−i − 1 total j-clauses. Consider
the first node u′ along the path from the root to u that contains all of the eliminated j-clauses. The node
u′ cannot be the root since C ′ eliminates at least one new j-clause so it has some parent u′′ along the
path.

At that parent u′′, the formula Fu′′ must be j-sparsified since some new j-clause is added at u′ and
the sparsification procedure chooses the minimal clause size for the flowers it selects, which must have
been larger than j.

By Lemma 2.5(a), there are at most θ j−i−1 j-clauses of Fu′′ that contain C ′. Since there are at least
2θ j−i − 1 total j-clauses in Fu′ that contain C ′, at least θ j−1 of them must have been added in moving
from Fu′′ to Fu′ .

Now u′ cannot be a left child of u′′ since only a single clause Hu′′ is added to Fu′′ and θ j−i ≥ θ0 ≥ 2.
On the other hand, if u′ is a right child of u′′, we must have a set P ′ ⊆ Pu′′ of at least θ j−i petals that
contain C ′ and these petals in P ′ must have size j. Let h = |Hu′′ | so the ≥ θ j−i clauses F ′u′′ ⊆ Fu′′

corresponding to P ′ must have size exactly h+ j. All of these clauses contain H ′ = H ∪ C ′ which, since
H and C ′ must be disjoint, has size h + i. Therefore the subset F ′u′′ is an (h + i, j − i) flower in Fu′′

contradicting the maximality of h in choosing a flower at node u′′.

Lemma 2.8. For j < k, the number of new clauses of size ≤ j that ever get created on a root-leaf path is at
most β jn.

Proof. The proof is by induction on j. Let N j be number of such clauses. For j = 1, there are at most
2n 1-clauses that could possibly be created which is at most β1n since β1 = 2. Now suppose that it is
true for j − 1. The number of new clauses created on the path is at most the number of clauses at the
end plus the number that were created and then deleted, therefore, if we let E j,k′ be the number of k′

clauses on the path eliminated by j-clauses, we have

N j ≤ N j−1 +
j−1
∑

i=1

Ei, j +
2n
j
θ j−1 by Lemma 2.5(b)

≤ N j−1 +
j−1
∑

i=1

(2θ j−i − 2)Ni + 2θ j−1n/ j

since there are at most Ni new clauses of size i along the path and each eliminates at most 2θ j−1−2

13

j-clauses by Lemma 2.7,

≤ β j−1n+
j−1
∑

i=1

(2θ j−i − 2)βin+ 2θ j−1n/ j by induction hypothesis

< β j−1n+ 2
j−1
∑

i=1

αβ j−iβin+ 2αβ j−1n since θi = αβi for i ≥ 1

≤ 4
j−1
∑

i=1

αβiβ j−in since α≥ 2,

= β jn

as required.

Corollary 2.9. Every root-leaf path is of length at most βk−1n.

Proof. Each step creates at least one new clause.

Lemma 2.10. There are at most (k− 1)n/α petal steps on every root-leaf path.

Proof. By Lemma 2.8, for j ≤ k − 1, there are at most β jn total new j-clauses created along the path.
Each petal steps that creates j-clauses, creates θ j such j-clauses, so the number of petal steps that create
j-clauses is at most β jn/θ j = n/α. There are only k− 1 possibilities for j, which gives the bound.

Proof of Sparsification Lemma. We suppose that 0< ϵ ≤ 1 and k ≥ 3. Define α= 2(k−1)2
ϵ lg 32(k−1)2

ϵ ≥ 2.
Though it is a pain to actually argue, one can show that β j ≤ 4(32α) j−1. (This is not simply by induction
with this bound.) We can describe each path to a leaf by a sequence of at most βk−1n steps with at most
p ≤ (k−1)n/α petal moves. We use the fact that

∑ℓ
j=0

�n
j

�

≤ 2H2(ℓ/n)n where H2(γ) is the binary entropy
function equal to γ lg(1/γ) + (1− γ) lg(1/(1− γ)). It follows that the total number of leaves is at most

(k−1)n/α
∑

p=0

�

βk−1n
p

�

≤ 2H2(
k−1
αβk−1

)βk−1 n.

It therefore suffices to show that H2(
k−1
αβk−1

)βk−1 ≤ ϵ. For γ < 1/2, it isn’t hard to show that H2(γ) ≤
γ lg(4/γ), so

H2(
k− 1
αβk−1

)βk−1 ≤
k− 1
α

lg(
4αβk−1

k− 1
)

≤
ϵ

2(k− 1) lg 32(k−1)2
ϵ

· lg(
16 · 32k−2αk−1

k− 1
) by definition of α and the bound on βk−1

≤
ϵ

2 lg 32(k−1)2
ϵ

· lg(
32α
k− 1

)≤ ϵ since k− 1≥ 2

and hence the bound follows.

14

k-SUM

ETH has some surprising consequences inside P.
The k-SUM problem is a parameterized variant of SUBSET-SUM that given n integers of O(log n)

bits each and a target t asks whether or not there are k integers that sum to t.

Proposition 2.11. k-SUM can be solved in O(n⌈k/2⌉ log n) time.

Proof. Here is an algorithm: Compute the sums of all the
� n
⌈k/2⌉
�

subsets of the input list of size ⌈k/2⌉.
Sort these sums. For each of the

� n
⌊k/2⌋
�

subsets S of ⌊k/2⌋ input integers run binary search on the sorted
list for the value t −

∑

i∈S x i . The cost is dominated by the time to compute the sorted list.

Theorem 2.12. ETH implies that there is a constant ϵ > 0 such that k-SUM requires time Ω(nϵk).

Proof. The general idea of the argument is that we will see how to use algorithms for k-SUM to decide
3-SAT on formulas with n variables and O(n) clauses. To do this we first reduce 3-SAT to 1-in-3-SAT
which will be more convenient; A 3-CNF formula for 1-in-3-SAT will be a yes instance iff there is an
assignment that makes exactly one literal true in each clause. To reduce 3-SAT to 1-in-3-SAT we add 4
new variables for each original 3-clause and replace (x ∨ y ∨ z) by (¬x ∨ a ∨ b)(y ∨ b ∨ c)(¬z ∨ c ∨ d).
The resulting formula has O(n) variables and O(n) clauses.

(We have several cases: Suppose that the assignment satisfying x ∨ y ∨ z satisfies y; then we can
extend it by setting b and c to false and setting b = x and s = z. Suppose that the assignment does
not satisfy y; if it also does not satisfy x then we set a = b = 0, c = 1 and d = 0 since it must set
z to true. The subcase that z is not satisfied is symmetric. If both x and z are satisfied, then we set
a = 0, b = 1, c = 0, d = 1. Conversely consider any 1-in-3 satisfying assignment of the new formula.
If it sets b = c = 0 then y must be true which satisfies x ∨ y ∨ z. It it sets b = 1, then we must gave
¬x = 0 and hence x = 1 which satisfies x ∨ y ∨z. If it sets c = 1 then we must have ¬z = 0 which again
satisfies x ∨ y ∨ z.)

The main idea of the reduction is that we break up the n variables of the 1-in-3-SAT formula into k
chunks of n/k variables each, V1, . . . , Vk and have one integer corresponding to each partial assignment
to those n/k variables for a total of N = k2n/k integers. We think of each integer as being written in
base k+1 so there won’t be any carries when we add up k of these numbers. There will be one digit for
each of the m = O(n) clauses and k digits to correspond to which chunk a number corresponds to. For
each truth assignment to Vi the number will have the digit in chunk position i set to 1, with the rest of
the chunk bits 0, and will have a 0 or 1 for each clause digit depending on whether it sets 0 or 1 literals
in the clause to true. (If it sets more than one literal in a clause to true, we don’t include a number
for that partial truth assignment since it cannot possibly be extended to 1-in-3-satisfying.) The target
t will simply be the all 1’s string of length k +m in base k + 1. These numbers are easy to compute in
O(km2n/k) = O(Nm) = O(kN log N) time.

By construction, each number takes O(m log k) bits to represent which is O(k log k log N) bits and
hence O(log N) for k fixed.

It is easy to see by construction that there are k numbers that sum to t iff the original formula has
a 1-in-3-satisfying assignment iff the original formulas is satisfiable. A running time of N o(k) for k-SUM
would give a running time of (k2n/k)o(k) for n variable 3-SAT which would be 2o(n) contradicting the
ETH.

15

3 The Strong Exponential-Time Hypothesis (SETH)

The Strong Exponential-Time Hypothesis (SETH) is that the sequence of constants sk for k-SAT given by
Corollary 2.3 satisfies limk→∞ sk = 1 or, equivalently, that for every ϵ > 0 there is a k such that k-SAT
requires time at least 2(1−ϵ)n.

SETH was stated as a possibility at the end of the original Impagliazzo-Paturi paper that defined the
ETH. Since our best upper bounds on sk are at least 1−O(1/k), SETH seems consistent with the best
algorithms we know.

Unlike the ETH, which we have shown is very robust w.r.t. the choice of NP-complete problems,
SETH is specialized to satisfiability problems. Nonetheless, we will see that SETH has many strong and
surprising consequences.

Orthogonal Vectors

The (Boolean) Orthogonal Vectors (OV) problem takes as input a set of n vectors in {0,1}d and asks
whether there is a pair of vectors a, b in the set such that the inner product a · b = 0 over the integers.

The obvious algorithm for OV takes time Θ(n2d) by simply computing all of the
�n

2

�

inner products.
The following theorem of Ryan Williams shows that SETH implies that this is nearly optimal for vectors
of O(log n) bits each.

Theorem 3.1. SETH implies that for every ϵ > 0, there is a constant c > 0 such that OV with d ≤ c log2 n
requires time at least n2−ϵ.

Proof. By SETH, we can choose n and k sufficiently large that k-SAT on sparse n variable formulas
requires time at least 2(1−ϵ/3)n. We can assume that these hard formulas have m = Ok(n) clauses and
that n is even. The basic idea will be to split the variables of such a formula F into two parts V1 and V2
of size n/2 and associate one input vector with each partial truth assignment to V1 or V2 respectively.
Each input vector will have length m+ 2.

A vector will begin with 01 if it corresponds to an assignment to V1 and 10 if it corresponds to an
assignment to V2. For each of the remaining m positions, the vector will have a 0 in position j if the
partial assignment satisfies the j-th clause of F and will have a 1 in position j if it does not. Given a
formula F , the set of all such vectors can be computed in time O(Nm).

There are a total of N = 2n/2+1 vectors and m+ 2 is Ok(log N) and hence Oϵ(log N).
Correctness is easy to see: If there is a satisfying assignment to F then we choose the pair of vectors

corresponding to this assignment. Each clause will be satisfied by one or both halves of the assignment
so at least one of the two vectors must have a 0 in the clause position and the first two bits of the two
vectors each have one 0.

Conversely, if there are two orthogonal vectors, since there are no cancellations, they must corre-
spond to assignments to opposite halves of input bits and, because they are orthogonal, one or the other
half of the assignment (or both halves) must satisfy every clause.

An OV algorithm running in time N2−ϵ on these inputs would therefore give a k-SAT algorithm
running in time time (2n/2+1)2−ϵO(m) = 2n(1−ϵ/2)+2−ϵO(m) < 2n(1−ϵ/3) since n is sufficiently large,
contradicting our choice of k.

Though the Orthogonal Vectors problem appears to have nothing at all to do with k-SAT, this reduc-
tion shows that one can view any algorithm for OV as an algorithm for k-SAT.

16

Rather than having just one set, for OV, we often find it convenient to separate the two sets of
vectors into U and V of size N and m coordinates each and the problem asks whether there is a pair
of orthogonal vectors, one from U and one from V . Clearly the same reduction shows the same lower
bound based on SETH.

Approximating Diameter

We can use the two set variant of OV to get a lower bound for graph problems: Consider the problem of
computing the diameter of an undirected graph with n vertices and m edges. By computing BFS from
each vertex gives an O(mn) algorithm for diameter. Can we do better if we only want to approximate
it?

Theorem 3.2. SETH implies that one cannot decide diameter 2 versus diameter 3 on n vertex m-edge (for
m= O(n log n)) in less than mn1−ϵ time for any ϵ > 0.

Proof. We use the split version of OV with d = O(log n). We have one node for each element of U , one
for each element of V , one node for each of the set C of d coordinates and two extra nodes X and Y
that are neighbors. X is joined to every element of U and C . Y is joined to to every element of V and
C . So far the graph has diameter exactly 3 since U to V has exactly distance 3 and C has distance 2
from U and V . Now we join every vector u ∈ U with u j = 1 to node j in C and every vector v ∈ V with
v j = 1 to node j in C .

The resulting graph has O(n) vertices and m = O(nd) = O(n log n) edges. If every pair u ∈ U and
v ∈ V have a shared 1, the diameter will be 2; if there is an orthogonal pair u · v = 0, the diameter
will be 3. An algorithm deciding diameter 2 versus diameter 3 running in time mn1−ϵ would be time
O(n2−ϵ log n) algorithm for split OV, violating SETH.

Fine-grained reductions

The reduction from SETH to OV is of a radically different form from our usual format that involves
only small changes in input sizes based on complexity bounds. The Sparsification Lemma also involved
a very different form of reduction in that we took one problem instance, a n-variable m-clause k-CNF
formula and produced a larger number of n variable sparse k-CNF formulas in order to reduce ETH to
sparse ETH.

The notion of fine-grained reduction incorporates both of these ideas along with the idea that we
only care about the high-order part of the complexity for each problem:

Definition 3.3. Given computational problems A and B and complexity bounds a, b : N→ R+, we say
that A (a, b)-reduces to B iff for every ϵ > 0 there is a δ > 0 such that there is an O(a(n)1−δ) time
algorithm that takes an input x of size n, and produces y1, . . . , yk of sizes n1, . . . , nk such that x ∈ A iff
every y j ∈ B and

∑k
j=1 b(n j)1−ϵ ≤ a(n)1−δ.

The following is essentially immediate from the definition.

Proposition 3.4. If B can be solved in time b(n)1−ϵ for some ϵ > 0, and A (a, b)-reduces to B then A can
be solved in time O(a(n)1−δ) for some δ > 0.

In particular, we have shown that sparse CNF-SAT (2n, n2)-reduces to OV on O(log n)-bit words.

17

4 Algorithms for Orthogonal Vectors?

Write OVn,d for the split Orthogonal Vectors problem where we have two set U and V of n vectors
in {0,1}d . We’ve shown that for every ϵ > 0, SETH implies that OVn,d requires time n2−ϵ time for
d ≥ cϵ log n for some constant cϵ > 0. In particular SETH also implies that there is no n2−ϵpol y(d)
algorithm or indeed n2−ϵ2o(d) algorithm for OVn,d .

Other related problems: Subset-Query: Given a collection S1, . . . , Sn ⊆ [d] and a database D of n
subsets of [d], is there a set T ∈ D such that Si ⊆ T?

Partial-Match: Given n queries x1, . . . xn ∈ {0,1,⋆}d and a size n database D ⊆ {0, 1}d , is there a
y ∈ D that matches some x i in all of x i ’s non-⋆ positions.

Lemma 4.1. OV, Subset-Query, and Partial-Match problems are equivalent up to a factor 2 in d.

Proof. For the reductions between OV and Subset-Query, observe that we can identify the sets S1, . . . , Sn
with their characteristic vectors in the set U and identify the elements of D with their complement
vectors in V . The condition that u and v are orthogonal implies that whenever ui = 1, we must have vi =
0 and therefore the complement vector v has v i = 1, which is precisely the condition for containment.

We first reduce OV to Partial-Match, by replacing every 0 in a vector u ∈ U by ⋆ to get the corre-
sponding x j vector which is in {⋆, 1}d and replace each v ∈ V by v to get D. The OV property ensures
that some element of D has 1’s wherever the corresponding x j does which is a partial match.

Reducing Partial-Match to OV, we use two coordinates for each coordinate of each x j and each
element of D: A 0 in the x j in Partial-Match becomes 01, a 1 becomes 10 and a ⋆ becomes 00. On the
other hand, a 0 in D becomes 10 and a 1 becomes 01. This ensures that the ⋆ coordinates in Partial-
Match can never cause non-trivial inner product but that other values will match iff they do not cause
non-trivial inner product.

Lemma 4.2. Let ϵ > 0. For d ≤ (1− ϵ) log n, OVn,d can be solved in time Õ(n2−2ϵ).

Proof. With these parameters there are at most n1−ϵ distinct numbers in each of the lists. We simply
mark all elements of {0,1}d that appear in each list and compare the pairs. This takes time O(dn) to
compute the two lists and d · 22d to compare all the pairs which is O(22−2ϵ log n).

What if the dimension d is c(n) log n for some function c(n)≥ 0? The following is the best algorithm
known for OVn,d due to Abboud, Williams, and Yu. It uses some clever tricks to speed things up based
on probabilistic polynomials.

Theorem 4.3. OVn,d for d = c(n) log n can be solved in time n2−Θ(1/ log c(n)) by a randomized algorithm
with small error.

The algorithm will show that for sufficiently small sets of vectors, we can repeat the computation
of the solution of OVs,d so that the total cost is much less than doing it O(n2/s2) times. We split the
OVn,d problem into θ (n2/s2) subproblems of the form OVs,d as follows: Split U and V into q = ⌈n/s⌉
sets U1, . . . , Uq and V1, . . . , Vq where each Ui and Vi has size s and solve all q2 subproblems.

We can express the subproblem involving Ui and Vj as a depth 3 circuit involving the bits of the
vectors in the two sets: In particular there is a big OR of width s2 at the top, then an AND of width d
for the coordinates and a ¬uk ∨¬vk for each k ∈ [d] for each u ∈ Ui and v ∈ Vj .

The algorithm will first replace this depth 3 formula using low-degree polynomials and the following
result of Razborov that was used by Razborov and Smolensky to prove circuit lower bounds for AC0[2]
circuits.

18

Lemma 4.4. For ℓ > 0, and randomly chosen ri j ∈ {0,1} for i ∈ [t] and j ∈ [ℓ], define F2 polynomials

Ot(y1, . . . , yℓ) = 1+
∏t

i=1(1+
∑ℓ

j=1 ri j y j) and At(y1, . . . , yℓ) =
∏t

i=1(1+
∑ℓ

j=1 ri j(1+ y j)). Then for all

y1, . . . , yℓ, Prr[Ot(y1, . . . , yℓ) ̸=
∨ℓ

i=1 y j]≤ 2−t and Prr[At(y1, . . . , yℓ) ̸=
∧ℓ

i=1 y j]≤ 2−t .

Proof. If
∨ℓ

j=1 y j = 0 then Ot(y1, . . . yℓ) = 0 since every
∑ℓ

j=1 ri j y j = 0. Now suppose that
∨ℓ

j=1 y j = 1.
Then there is some j such that y j = 1. For each fixed rik for k ̸= j, exactly one of the two choices

of ri j will make
∑ℓ

k=1 rik yk = 1 since y j = 1, so a single term in the product will be 0 with probably
1/2. The t terms are independent so the probability that the product is not 0 will be 2−t and hence
the polynomial will be 1 with probability exactly 1− 2−t as required. The properties of polynomial At
follow since AN D(y1, . . . , yℓ) = OR(y1, . . . , yℓ) and y i = 1+ yi as an F2 polynomial.

We will choose a probabilistic polynomial approximating OVs,d as follows: For the bottom gates
¬u j∨¬v j , we write the polynomial 1+u j v j and feed this into the polynomials for the higher level gates.
For each of the fan-in d AND gates at level 2 of the circuit for OVs,d we choose t = ⌈3 log s⌉ and for the
fan-in s2 top gate we choose t = 2. There are s2 second level AND gates so by a union bound, for each
fixed set of inputs, the probability that there is an error in any second level gates is at most s2/s3 = 1/s.
The probability that the output gate computes an incorrect value given correct inputs is at most 1/4, so
the total error probability is at most 1/4+1/s ≤ 1/3 for s ≥ 12. (We can reduce this error probability to
polynomially small by repeating independent trials O(log n) times and take the majority answer. Note
that the errors go in both directions.)

When we expand the resulting polynomial for OVs,d , it will be important to understand the number
of monomials we get. When expanded, the polynomials At and Ot are multilinear and have degree t
in ℓ variables and therefore has at most

∑t
i=0

�

ℓ
i

�

≤ (ℓe/t)t distinct monomials. At the middle level we
observe that t = 3 log s and ℓ = d. The level 1 monomials are of the form 1+ u j v j which means that
there are still only (ed/3 log s)3 log s monomials in the resulting formula (since the u j and v j variables are
always paired with each other). Finally, these monomials are substituted into the top level polynomial
which has t = 2 and ℓ = s2 and only O(s4) monomials of degree 2. The final number of monomials
M(s, d) is therefore O(s4(de/(3 log s)6 log s)which is O(s4(d/ log s)6 log s)which is at most s5(d/ log s)6 log s.

This number of monomials can be much bigger than the original O(s2d) circuit size depending on
the relationship between s and d. How do we get a savings? The idea will be that computing this
polynomial on q2 pairs of inputs will be less expensive than simply repeating it q2 times.

The underlying idea of this algorithm will be to use a particular form of fast matrix multiplication
due to CopperSmith that we will use to multiply polynomials with few monomials quickly:

Theorem 4.5 (Coppersmith 1982). One can multiply an N × N0.172 matrix by an N0.172 × N matrix in
O(N2 log2 N) arithmetic operations.

Corollary 4.6. Given a polynomial P(x1, . . . , xℓ, y1, . . . , yℓ) over F2 with at most N0.1 monomials and two
list of vectors U = {u1, . . . , uN} ⊆ {0,1}ℓ and V = {v1, . . . , vN} ⊆ {0, 1}ℓ we can compute all the values
P(ui , v j) for ui ∈ V and v j ∈ V in time Õ(N2).

Proof. Let m be the number of monomials of P. Create an N ×m matrix with each row r corresponding
to an element of U with the value of the j-th entry equal to the value of the part of the j-th monomial
involving Ur . Similarly define an m×N matrix using the same monomial order for the rows and with c-th
column having entry j that is the value of the part of the j-th monomial involving Vc . The matrices can be
constructed in time Nmℓ. Using Coppersmith’s algorithm, their matrix-product can be produced in time
Õ(N2) and the entry (i, j) of their product taken modulo 2 clearly contains P(ui , v j) by construction.

19

In our calculations we will have N = q = ⌈n/s⌉ and the number of monomials m= M(s, d) which is
at most s5(d/3 log s)6 log s.

We set s = nδ/ log c(n) for some small δ > 0. Then log s is δ(log n)/ log c(n) = δd/(c(n) log c(n)).
Hence d/ log s is at most some constant times c(n) log c(n). When we raise this to the power 6 log s we
get some 2δ

′ log n for a small δ′ > 0 which is nδ
′
. Putting this all together, even when multiplied by s5

we get that the result is less than (n/s)0.1. By the lemma, the total cost is Õ(q2) = Õ(n2/s2) which is
n2−Θ(1/ log c(n).

Chan and Williams (SODA 2016, ACM ToA 2021) showed how to compute deterministic polynomials
that give correct modular counts of the sum of many OR functions and these polynomials can be used
instead of the probabilistic polynomials used here.

5 More on ETH and Parameterized Complexity

Many NP-complete problems have natural parameters in addition to the input size. For example, we can
consider the k-CLIQUE problem that asks whether there is a clique of size n in an input graph. We can do
the same thing with k-INDEPENDENT-SET, k-DOMINATING-SET, k-VERTEX-COVER. Each of these has
an O(nk) algorithm that is polynomial in n for each fixed value of k. We identify these parameterized
problems as fixed-parameter tractable iff there is an algorithm with running time f (k)nO(1) for some
function f . These algorithms will run efficiently even for large n when k is small.

Lemma 5.1. There is an algorithm for k-VERTEX-COVER with running time O(2kn).

Proof. We define a simple binary search tree of height k as follows:

If G has no edges halt and accept.
Else if k = 0 return (failed branch)
Else Choose some edge (u, v) in G.
Try vertex u in the cover: Recursively search for a vertex cover of size k− 1 in G \ N(u).
Try vertex v in the cover: Recursively search for a vertex cover of size k− 1 in G \ N(v).

Clearly this algorithm takes linear time to modify G at each step and has only O(2k) calls.

Exercise: Show that ETH implies that k-VERTEX-COVER cannot be solved in time 2o(k)nO(1).

On the other hand we can prove that ETH implies that k-CLIQUE is not fixed-parameter tractable in
a strong sense. This was shown by Chen, Chor, Fellows, Huang, Juedes, Kanj, and Xia:

Theorem 5.2 (Chen et al. 2004). ETH implies that there is no f (k)no(k) algorithm for k-CLIQUE.

Proof. We have seen that ETH implies that there is 2o(n) algorithm for 3-COLOR. Suppose that there
is an f (k)nk/α(k) algorithm for k-CLIQUE for some function α(k) that goes to infinity with k. Define
k(n) = the largest value of k such that f (k) ≤ n and kk/α(k) ≤ n. Clearly, k(n) is monotone increasing
goes to infinity with n. We will set k = k(n).

Given a graph G on n vertices, we split the vertices of G into k groups of size n/k. We define a new
graph H where each vertex of H corresponds to a 3-coloring of one of the k groups of vertices of G. H
has k3n/k vertices. We connect each pair of vertices of H iff the colorings don’t conflict with respect to

20

G. (Vertices for partial colorings that themselves are not consistent with G will be isolated.) It is easy
to see that H has a k clique iff G has a proper 3-coloring.

The running time of the presumed k-CLIQUE algorithm will be f (k)(k3n/k)k/α(k) ≤ nkk/α(k)3n/αk ≤
n23n/αk(n). Since k(n) goes to infinity with n, α(k(n)) goes to infinity with n so this is a 2o(n) algorithm
contradicting the ETH.

Using standard fixed-parameter reductions that are polynomial in the input size and change the
parameter by at most a constant factor, one can get lower bounds for other problems also.

Corollary 5.3. ETH implies that there is no f (k)no(k) algorithm for k-SET-COVER, k-HITTING-SET, k-
BIPARTITE-DOMINATING-SET, k-CONNECTED-DOMINATING-SET.

6 Longest-Common Subsequence

At STOC 2015, Backurs and Indyk showed that another problem that OV reduces to is is Edit Distance.
Later at FOCS 2015, Abboud, Backurs, and Vassilevska-Williams, and Bringman and Kunneman ex-
tended this to finding the length of the Longest Common Subsequence (LCS), with the latter showing
that this hardness extends to the case of the binary alphabet. LCS is equivalent to a special case of Edit
Distance in which the cost of insertion or deletion is 1 and the cost of substitution is 2. More formally,
given strings A, B ∈ Σ∗ define LCS(A, B) to be the maximum k such that there are sequences i1 < . . .< ik
and j1 < . . .< jk for which Ai1 = Bi1 , . . . , Aik = B jk .

There are simple natural dynamic programming algorithm for Edit Distance (and hence LCS) that
run in time O(n2) where |A|= |B| and the best algorithms known only shave off a log n factor.

Theorem 6.1. SETH implies that LCS over binary strings does not have an O(n2−δ) algorithmn for any
δ > 0.

The proof of this begins by looking at a problem closer to OV . Define LCS-PAIRN ,m to be the
problem: Given sequences a1, . . . , aN , b1, . . . , bN ∈ Σm, find the maxi, j LCS(ai , b j). We describe the
reduction from OVN ,m to LCS-Pair along the lines given by Bringman and Kunneman.

Lemma 6.2. OVN ,m reduces in linear time to LCS-PAIRN ,cm for some constant c.

Proof. The general idea is to produce a local substitution of each character of ui and v j according to
different substitutions.

Define the strings 0u = 10011, 1u = 11100, 0v = 11001, and 1v = 00111. Observe that
LCS(0u, 0v) = LCS(0u, 1v) = LCS(1u, 0v) = 4 but LCS(1u, 1v) = 3.

We want to ensure that any LCS for ai and b j involves a character-by-character match of ui and v j
in {0, 1}m. To do this we define codeu(ui) to be the string where we replace each 0 or 1 of ui by the
corresponding 0u or 1u and we separate each pair by, say, a string of three 2’s; do the same for codev(v j)
except we use 0v and 1v instead. Define ai = codeu(ui) and b j = codev(v j). In particular, if ui = 001
and v j = 011 then

ai = codeu(001) = 100112221001122211100

b j = codev(011) = 110012220011122200111

Therefore the total string length m′ is 8m− 3. It is clear that every LCS of ai and b j and must match
all the 2’s, which means that corresponding coordinates much be matched. If ui and v j are orthogonal

21

then LCS(ai , b j) = 4m+3(m−1) = 7m−3, which we denote by S. On the other hand, if ui and v j are
not orthogonal then the contribution is only 3 instead of 4 in all the coordinates with common 1’s and
hence LCS(ai , b j)≤ S − 1. The reduction simply compares the length of the LCS to S.

To obtain a lower bound for LCS, we will need to concatenate these strings to a single pair of strings A
and B so that the length of the LCS of the whole string will be larger iff there is some pair of orthogonal
ui and v j . To do this we need to control things so that we know the contribution of each the failed
matches also. With the above construction, the more overlapping 1’s, the worse the value. To fix this
we use a slight modification of the above construction that always guarantees a match of precisely 1
less than the maximum possible.

To do this we add an extra dummy coordinate to the encoding. Define code′u(ui) = code(ui0) and
code′v(v j) = code(v j1) as well as an extra “easy string” e = code(0m1). Observe that (ui , 0) and (v j , 1)
are orthogonal iff ui and v j are. Also every vector (v j , 1) has precisely one coordinate with overlapping
1’s with (0m, 1). Let m′′ = 8m+ 5 be the length of code′u(ui). Now define

a′i = code′u(ui)3
m′′e

b′j = 3m′′ code′v(v j)3
m′′

The total length of each of a′i and b′j is ℓ = 3m′′ = 24m+ 15. Observe that any LCS for the two strings
must match one of the two groups of 3’s in b j in its entirely to the middle group of 3’s in ai and then
include an LCS between code′v(v j) and either code′u(ui) of e. If ui and v j are orthogonal then we get
a total contribution of S′ = m′′ + S + 7 where S is the value from the above lemma since the extra
coordinate gives a total contribution of 7. In particular S′ = 8m+5+7m−3+7= 15m+9. In the latter
case there is precisely 1 segment where the contribution is 3 instead of 4 so we get m′′ + S + 6= S′ − 1
(there is a contribution of 3 for the matching 2’s and another 3 from the LCS between 1u and 1v).

We now are in a position to describe the construction of the strings A and B for the proof of the
theorem. The idea will be that the contribution will be to allow an arbitrary rotated alignment of the
combined string of encodings b1, . . . , bN , suitably separated, with the the string of encodings a1, . . . , aN .
This will necessitate two copies of one of the strings to allow for the orthogonal pair (ui , v j) to have
i > j as well as i ≤ j.

We define the strings

A= a′14ℓa′24ℓ . . . 4ℓa′N 4ℓa′14ℓa′24ℓ . . . 4ℓa′N
B = 4Nℓb′14ℓb′24ℓ . . . 4ℓb′N 4Nℓ.

In particular, both |A| = |B| = (4N − 1)ℓ which is O(Nm). A has (2N − 1)ℓ 4’s and 2Nℓ characters
from the a′i which is O(Nm), while B has has Nℓ characters from the b′j and (3N − 1)ℓ 4’s. Clearly one
can match all of the (2N − 1)ℓ 4’s in A in B.

If some pair ui and v j are orthogonal we can get a common subsequence as follows: Write∆= i− j+
1. We get a common subsequence by aligning the subsequence b14ℓ . . . 4ℓbN with some a∆4ℓ . . . 4ℓa∆−1
where we write ak = aN+k for k ≤ 0. and matching up all the 4’s outside of the subsequence in A with
the 4’s at the beginning and end of B. Observe that this aligns a′i and b′j . In total, this matches all

4(2N−1)ℓ 4’s in A plus S′ of the characters in a′i and b′j and at least S′−1 characters for each of the other
N − 1 positions for a total LCS length of ≥ S′′ = (2N − 1)ℓ+ NS′ − (N − 1).

On the other hand, suppose that there is no pair of orthogonal elements ui , v j . Consider any LCS of
A and B and consider how it matches up characters of B inside A. If there is some b′j that has characters

22

matching with more than one of the a′i strings then it must NOT match any of the ℓ 4’s in between them.
This costs ℓ in terms of the 4’s but could potentially increase the number of matches inside the string
b′j , but since matching b′j to just one of the a′i would already give S′ − 1 so in the best case the amount
of increase would be at most ℓ−S′+1 which is strictly less than the loss of 4’s. Therefore, any LCS of A
and B must match and (2N −1)ℓ 4’s in A and each b′j to at most one of the a′i strings. No matter which
i it is matched to, the longest part of the LCS inside b′j can be at most S′ − 1, so the the total length of
the LCS is at most (2N − 1)ℓ+ N(S′ − 1) = S′′ − 1. (This length is actually achievable.)

Therefore, OVN ,log2
2 n is reducible in time O(n) = O(N2 log2 n) to LCS on length n strings over

{0,1, 2,3, 4}. This proves the theorem except for the reduction of the alphabet size to binary. That
reduction requires a more subtle way to put the various strings in order to replace the symbols 2, 3,4
by binary strings.

Encoding LCS using binary strings instead

The idea, due to Bringman and Künneman, is quite general. It assumes that we have two sets of binary
codes, one for Cx and one for Cy with the following properties:

• Cx ⊂ {0,1}ℓx and has sx 1’s.

• every string in Cy ⊂ {0,1}ℓy and has sy 1’s.

For example, Cx = {0u, 1u} we have ℓx = 5 and sx = 3 and Cy = 0v , 1v has ℓy = 5 and sy = 3. We saw
that for single bits u and v, x = codeu(u) ∈ Cx and y = codev(v) ∈ Cy , LCS(x , y) = 4 if u · v = 0 but
LCS(x , y) = 3 if u · v = 1.

The general idea is to build an alignment gadget to encode longer strings of elements from Cx and
Cy such that the best way to build an LCS must involve matching individual codes. This will be done
by separating these codes using very long blocks of 0’s and very long blocks of 1’s.

Define γ1 = ℓx + ℓy , γ2 = 6(ℓx + ℓy), γ3 = 10(ℓx + ℓy) + 2sx − ℓx and γ4 = 13(ℓx + ℓy).
For a string z ∈ Cx ∪ Cy , we write G(z) = 1γ20γ1z0γ11γ2 . Observe that for x ∈ Cx and y ∈ Cy ,

LCS(G(x), G(y)) = LCS(x , y) + 2γ1 + 2γ2 = LCS(x , y) + 14(ℓx + ℓy). This follows because there is
no advantage to NOT matching the corresponding strings of 0’s and 1’s at the beginning and end of the
G(x) and G(y).

For n≥ m, x1, . . . , xn ∈ Cx and y1, . . . , ym ∈ Cy define

x = G(x1)0
γ3 G(x2)0

γ3 · · ·0γ3 G(xn) (2)

y = 0nγ4 G(y1)0
γ3 G(y2)0

γ3 · · ·0γ3 G(ym)0
nγ4 . (3)

Observe that since x i has sx 1’s so G(x i)0γ3 so it has 2γ2 + sx = 12(ℓx + ℓy) + sx 1’s. It also has
2γ1+ ℓx − sx +γ3 = 2(ℓx + ℓy)+ ℓ− sx +10(ℓx + ℓy)+2sx − ℓx = 12(ℓx + ℓy)+ sx 0’s, so it is balanced.
(Further observe that this is at most γ4.) Also, every prefix of G(x i)0γ3 has at least as many 1’s as 0’s
since G(x i) begins with γ2 1’s and G(x i) has at most 2γ1 + ℓx − sx < γ2 0’s.

By our observation, x has fewer than n[12(ℓx + ℓy) + sx] 0’s which is at most nγ4.
We want to claim that the best LCS of x and y is given by the max over all choices of 0≤∆≤ n−m

of the matching that aligns the G(x∆+1)0γ3 · · ·0γ3 G(x∆+m) with G(y1)0γ3 · · ·0γ3 ym and matches all the
remaining 0’s in x with the 0’s at the beginning and end of y , since there are enough of them in total.
That number of extra 0’s matched at the ends of such an alignment is independent of the choice of ∆,
since the number of 0’s in each x i is exactly the same, and the total length of the LCS is simply some

23

fixed value plus
∑m

k=1 LCS(x i+∆, yi), which is the sum of the shifted LCS alignments of the original
encodings.

It remains to show that no other alignment can give a better LCS than one of these alignments ∆.
Consider some other alignment of x with y . Now for each of the blocks G(y1), . . . , G(ym) of y we can
define x(j) to be a substring of the x string that contains the portion of the LCS that matches G(y j)
and z(j) for j = 1, . . . , m − 1 to be the substring of x that aligns with the 0γ3 after G(y j). Given this
alignment, if x(j) contains more than half of some x i string (a piece inside G(x i) then, since there might
be more than one such x i , define i∗(j) to be the leftmost such i. This function i∗ might not be defined
for some values of j but, if it is, then i∗(j)> i∗(j′) for j > j′. Thus i∗ is a partial increasing 1-1 function
from [m] to [n].

Claim: If i∗(j) is defined then there are at least as many characters of not matched between x(j)
and G(y j) as there are not matched between G(x i∗(j)) and G(y j).

If x(j) touches some G(x i) other than G(x i∗(j)) then there was more than one candidate for i∗(j)
then there is huge number of unmatched characters in x(j) since it contains the intervening sequence
0γ11γ20γ31 if it is to the right or 10γ31γ20γ1 if it is to the left which yields a much greater distance number
than ℓx + ℓy which is an upper bound on the number of unmatched characters between G(x i∗(j)) and
G(y j).

If not, then the string x(j) is contained in 0γ3 G(x i∗(j))0γ3 . Since G(y j) begins and ends with γ2 >

ℓx + ℓy 1’s, x(j) must begin and end with 1’s or the LCS with G(y j) will have more than ℓx + ℓy
unmatched characters. Further x(j) must have more than |G(y j)| − γ2 characters or there will again
be more than γ2 unmatched characters. Note that the right substring x i∗(j)0

γ11γ2 or the left substring
1γ20γ1 x i∗(j) have length ℓx+γ1+γ2, they are too short, so the string x(j)must look like 1a0γ1 x i∗(j)0

γ11b

for some a and b. It is easy to see that the fewest mismatches would occur when a = b = γ2 which is
exactly the case of the claim.

Claim: If i∗(j) is not defined then x(j) and G(y j) have at least ℓx + ℓy mismatches which is at least
than the number of mismatches between G(y j) and any G(x i).

Since i∗(j) is not defined then there is some i such that x(j) is contained in x i0
γ11γ20γ31γ20|gamma1 x i+1

and contains less than half of x i and x i+1 (or an end case where it begins or ends with 1γ2). If x(j)
contains 1’s on both sides of the central 0γ3 then it contains γ3 0’s which exceeds the number in G(y j)
by more than ℓx + ℓy . If x(j) only contains 1’s on one side of the central)γ3 then it contains at most
sx + γ2 ≤ ℓx + γ2 1’s. However G(y j) contains at least 2γ2 1’s and γ2 − ℓx > ℓx + ℓy so there are more
than ℓx + ℓy unmatched characters.

Since the z(j) are perfectly aligned in the alignments based on∆, the middle sequence of y ignoring
the 0’s at the ends is always aligned at least as well as before. The bottom line from this is that the total
cost is at least as large as one of the consecutive alignments.

7 LCS is hard even given a very weak SETH

Abboud, Hansen, Vassilevska-Williams, and Williams at STOC 2016 showed that LCS is hard even if very
high complexity C IRCU I T -SAT is hard. We sketch a simpler proof of their theorem.

Theorem 7.1. If there is no 2n−o(n) algorithm to compute satisfiability for

• depth o(n) circuits,

• size 2o(n) Boolean formulas, or

24

• verifiers given by space o(
p

n) nondeterministic Turing machines,

then LCS over an alphabet of size no(1) does not have an O(n2−ϵ) algorithm for any ϵ > 0.

One key observation is that the previous construction did not make use of the full range of parameters
possible in constructing A and B. All we needed for the conclusion is that each ai for the LCS-PAIR
problem has size N o(1) rather than restricting it to O(log2 N).

We note that by the usual formula balancing construction, the first two classes are identical. The
third follows from the first by the fact that NSPACE(S(n)) ⊆ DEPTH(S2(n)).

Proof Sketch. We use the same framework to convert from LCS-PAIR to LCS so we just give the de-
scription for the ai and b j strings for LCS-PAIR. We use the same separation of the input variables into
U and V and N = 2n/2 assignments to each player as before. (We will index assignments by α and β so
as not to confuse notation.) We will define aα and bβ recursively. We will define a av

α and bv
β

for each
gate v in the circuit. We will first produce them as weight formulas and then argue that the weights can
be removed. We will assume wlog that the depth o(n) circuit has been converted to a balanced formula
in which all negations have been pushed to the leaves and each gate at depth k has two predecessors at
depth k− 1.

We create av
α and bv

β
by induction on k = depth(v). We will construct these so that LCS(av

α, bv
β
) is

maximal iff v evaluates to 1 on input (α,β).
Suppose that k = 0. Then u is labelled by a literal ℓi that is either x i or ¬x i . Set

au
α =

¨

∗ if i > n/2 or ℓi(α) = 1

$ otherwise,

and

bu
β =

¨

∗ if i ≤ n/2 or ℓi(β) = 1

otherwise,

We will ensure that none of the a strings contain # and none of the b strings contain $. Clearly both
will have a ∗ iff literal ℓi is set to true on assignment (α,β).

Now suppose that u has children v and w at depth k− 1.
If u= v ∧w then define

au
α = Pkav

αQkaw
α Pk

bu
β = Pk bv

βQk bw
β Pk

where Pk and Qk are new symbols of weight Wk = 3k. Clearly any optimal LCS for this pair must align
all of the Pk and Qk and hence will have a maximal LCS iff both LCS(av

α, bv
β
) and LCS(aw

α , bw
β
) are

maximal.
If u= v ∨w then define

au
α = Pkav

αQkaw
α Pk

bu
β =Qk bw

β Pk bv
βQk

In this second case, the optimal LCS must match precisely one Pk and one Qk and include the LCS
of precisely one of the two pairs (av

α, bv
β
) or (aw

α , bw
β
). Hence it will be maximal iff at least one of the

25

two matches is maximal. (Note that the target weight of the maximal match is different depending on
whether the gate is an ∨ or an ∧ gates, but this doesn’t matter since we know the target size from the
property of the circuit itself. We could alternatively simply use higher weight in the OR gadget to make
them equal. We end up with o(n) different symbols.

The weighted aα and bβ strings are the ones for the output gate of the circuit. We can remove all the
weights easily by replacing a symbol σ with weight w by w consecutive copies of σ without changing
the LCS size. Clearly we can just use entire blocks corresponding the weighted LCS. The claim is that
this is the best we can do. Suppose that we have an LCS that does not match things blockwise for σ
and consider the leftmost partial match of σ between A and B. That, say matches the i-th element in
the block in A to the j-th element in the block in B. This (i, j) match splits the LCS. Suppose wlog that
i ≤ j. Clearly that are at most w− i + 1 elements of the LCS that touch either of these two blocks since
there is no match in the block to the left of the (i, j) match and matches in the LCS cannot cross each
other. We can do at least well (obtaining w matched pairs in the blocks) by locally replacing all of those
edges by a full matching of the two blocks.

Note that the total weight for depth k is ck for some constant c, each resulting string has length
2o(n) = N o(1).

26

8 Circuit-SAT Algorithms Imply Lower Bounds

We consider Boolean circuits over the De Morgan basis consisting of binary ∧, ∨ and ¬.

Theorem 8.1 (Shannon). At least a 1 − o(1) fraction of Boolean functions require circuit size at least
2n/n− o(2n/n).

Proof. We will not optimize the constants and assume for convenience that the negations have been
pushed to the inputs via de Morgan’s Law so we have access to literal gates x1, . . . , xn, x1, . . . , xn and all
internal nodes are labelled via ∧ and ∨. We count the number of circuits with S ∧ and ∨ gates. We can
label each internal gate based on its two inputs which are each either gates or literals and its type. There
fewer than (S + 2n)2 choices of inputs per gate and 2 choices of gate label so there are [2(S + 2n)2]S

possible gates and S choices for the name of the output gate. In total, this is at most SO(S) = 2O(S log S)

different circuits of size at most S ≥ 2n. On the other hand, there are 22n
possible Boolean functions.

Therefore for some constant ϵ > 0 if S log S is at most ϵ2n, the number of circuits of size at most S is a
vanishingly small fraction of all functions. This implies that S is Ω(2n/n). The sharper bounds follows
from a more careful count since there are S! different ways of naming the internal gates; this shows
that the number of distinct functions computed by circuits of size at most S is SS+o(S).

This is matched by a result of Lupanov.

Theorem 8.2 (Lupanov). Every Boolean function f on n bits can be computed by a Boolean circuit of size
2n/n+ o(2n/n).

Sketch. Observe that over all assignment α to the last n−k variables there are only 22k
possible functions

among f (x1, . . . , xk,α). We can compute all such functions using dynamic programming in total size at
most 22k

.
We now build up the Boolean functions on longer prefixes that we need using F(x1, . . . , xm+1,β) =

¬xm+1 ∧ F(x1, . . . , xm, 0,β) ∨ xm+1 ∧ F(x1, . . . , xm, 1,β).) This add O(2n−k) = O(2n/2k) gates in total.
We choose k such that 22k

is roughly 2n/n. In that case 2k is n− log2 n and the total number of gates is
O(2n/n). Again, with a slightly sharper construction and analysis one can obtain the claimed bound.

Despite the fact that almost all functions are exponentially hard for circuits, getting our hands on
any hard functions is quite elusive.

The largest classes of circuits where we have very simple explicit functions with strong lower bounds
was the class AC0[p] for p prime which consists of constant-depth circuits with unbounded fan-in AND
gates, OR gates, and mod-p gates where a mod-p gate outputs 0 if the sum of its Boolean inputs is 0
modulo p and outputs 1, otherwise. (Alternatively, in the special case that p is a prime a mod-p gate
with inputs y1, . . . , yk computes the quantity (y1+. . . yk)p−1 mod p. This does not nicely extend to cases
of mod-m gates.) Razborov and Smolensky used the probabistic polynomials that we described before
(and its generalization to other moduli other than 2) to show that any such circuit that computes the
mod-q function for q ̸= p prime requires exponential size.

Though Shannon’s bounds are far from explicit, if we go to a sufficiently high complexity class, we
can find functions that require large circuits.

Proposition 8.3. There is a function family in EX PEX P (double exponential-time) that requires circuit
size Ω(2n/n).

27

Proof. The idea for an input x of size n is to search through all possible tables of Boolean functions on n
bits until we find one that has circuit complexity at least S(n) = ϵ2n/n. We search through all possible
22n

truth tables of such functions starting with the all 0’s table in lexicographic order. For each such
function we try all circuits of size < S(n) of which there are fewer than 22n

. For each such circuit, we
evaluate the function on all 2n inputs which takes only S(n)2n time. If we find a circuit that is correct
on all inputs we move on to the next truth table in order. The value of the function on input x is defined
to be the entry for x in the first truth table where all of the circuits fail.

It is known that for every integer k ≥ 0, the complexity class ΣP
2 = N PN P contains functions that

require size at least Ω(nk). Using an exponential translation of this result, we can obtain that the
complexity class EX PEX P in the above proposition can be reduced to EΣ

P
2 where E = DI I M E(2O(n)).

What about N EX P, nondeterministic exponential time? It is consistent with our knowledge that
every problem in N EX P has polynomial-size circuit. (despite the fact that we expect that there are
problems in N P that don’t have polynomial-size circuits - which would be stronger than P ̸= N P but
incomparable with ETH and SETH). Ryan Williams proved the following stronger result.

Theorem 8.4 (Williams). For any class of circuits C that is closed under ∨ and ∧ if C -SAT for circuits of
size nk for all k can be solved deterministically in time 2n/n10 then N EX P does not have polynomial-size
circuits in C .

Note that this is only a polynomials savings over brute force which would take time O(2nnk) using
standard CIRCUIT-SAT algorithms.

Theorem 8.5 (Murray-Williams). There is a ϵ > 0 such that for any class of circuits C that is closed
under ∨ and ∧ if C -SAT for circuits of size nk for all k can be solved deterministically in time 2n−nϵ then
N T I M E(npolylogn) does not have polynomial-size circuits in C .

Theorem 8.6 (Murray-Williams). If C -SETH is false then for every k, N P contains functions that require
C -circuits of size larger than nk.

In the following, we sketch the most basic of the ideas for the arguments which are quite involved.
Since the assumptions are algorithmic, we will need to leverage some lower bound. That lower bound
is the nondeterministic time hierarchy theorem.

Theorem 8.7 (Nondeterministic Time Hierarchy Theorem). For all T (n) that is the running time of some
TM and functions t such that t(n+ 1) is o(T (n)), N T I M E(T (n)) ̸⊆ N T I M E(t(n)).

The proof of this theorem which is covered in CSE 531 is much trickier than the one for the deter-
ministic time hierarchy theorem and it doesn’t work for very fast growing functions.

Corollary 8.8. N T I M E(2n) ̸⊆ N T I M E(o(2n)).

The general idea of the structure of the proof is to show that if we have both

1. N EX P has polynomial-size C circuits, and

2. There is a deterministic C -SAT algorithm with running time 2n/n10 for all polysize C circuits

then we can produce an N T I M E(o(2n)) algorithm for any L ∈ N T I M E(2n), which violates the nonde-
terministic time hierarchy theorem.

To use assumption 1, we apply the following result of Impagliazzo, Kabanets, and Wigderson.

28

Lemma 8.9 (Easy Witness Lemma). If N EX P has polynomial-size circuits then for every N EX P verifier
V for a language L ∈ N EX P (which runs in deterministic time 2nc

and given as input a string x of length n
and accepts iff there is a witness string y of length 2nc

such that V (x , y) accepts), then for all large enough
x ∈ L there is a circuit CV,x with nc inputs bits and size nd for some constant d computing a Boolean
function such that the truth table T of the function CV,x is a witness for x ∈ L, namely V (x , T) accepts.

This lemma can be specialized to specific circuit classes also. The general idea of its proof is very
complicated. The idea is that if it isn’t true then you can nondeterministically find truth tables of very
hard functions, then one can use this truth table as the basis of a pseudorandom generator (PRG). This
PRG can let you derandomize a PCP for NEXP and get that MA (Merlin-Arthur which is like NP but with
randomized verifiers) is in NSUBEXP (

⋂

ϵ>0 N T I M E(2nϵ)). The assumption that NEXP has polysize
circuits directly implies that everything in EXP has polysize circuits, which implies that EXP is the same
as MA via the Karp-Lipton theorem, which implies that EXP is in NSUBEXP. But the NEXP has polysize
circuits means that NSUBEXP only needs circuits of some fixed polynomial size nk for some fixed k.
That contradicts what we know; in particular, we know that EXP requires circuits of arbitrarily large
polynomial size since it contains ΣP

2 . Whew!
The point here is that we can reduce the amount of nondeterminism for N T I M E(2n) from 2nc

down
to nd , namely guessing the circuit that must exist. (Note that we only care that it is down to o(2n when
we started with c = 1.) This circuit gives us a nice efficient way to access any bits of the witness string
also. The construction gives a C -circuit of this size if NEXP has polynomial-size C -circuits.

We haven’t used the second of our assumptions yet, namely that there is a 2n/n10 deterministic
algorithm for C -CIRCUIT-SAT. We need to be able to replace the O(2n) time for the verifier V for L with
something shorter. If we don’t, we won’t save anything. To do this one needs a very special structured
PCP for NEXP. The general idea of a PCP is that rather than having a verifier V that looks at the whole
witness y , one encodes y in a larger string E(y) so that one can examine some small randomly chosen
portion of E(y) and be able to check that this should be accepted efficiently based on that small portion.
For NEXP, the standard PCPs examine only a polynomial size portion of the exponentially long string
E(y). These PCPs have the property that if x ∈ L then no matter what the portion examined in E(y)
will cause the verifier to accept and any x /∈ L, the string E will be rejected with constant probability.
In particular, we need to argue that the entire process of taking the random bits r that let one choose
which part of E(y) to look at, compute those bits based on the circuit that produces y , and make the
decision about whether to reject can be done in some nk size C -circuit for some k. It happens that such
very structured PCPs do exist once we know that we have an nd size circuit for the bits of y .

We just need to know whether there is an r that causes us to reject, which is where we use the
C-CIRCUIT-SAT algorithm. This runs in o(2n) deterministic time. Therefore, the whole algorithm, both
the guess and verifier run in o(2n) time, which contradicts the nondeterministic time hierarchy theorem.

In the application, we even know that, say, either all the r choices are bad (cause the PCP to accept)
or at least half of them cause the PCP to reject. In fact, we get the extra promise that if the circuit is
satisfiable then at least half the assignments are satisfying.

Therefore we can replace all the C -CIRCUIT-SAT problems with their "Gap" versions that have this
promise.

Williams gave a clever algorithm using the polynomial method for computing satisfiability of circuits
in the class ACC0 ⊃

⋃

m AC0[m] which consists of constant-depth unbounded fan-in circuits of AND,
OR, and mod-m gates for arbitrary many different m. (The ACC in ACC0 stands for Alternating Circuits
with Counters.)

29

Theorem 8.10. For ϵ > 0, there is a deterministic algorithm for satsfiability of n variable ACC0 circuits of
size at most 2nϵ in time 2n−nϵ .

Corollary 8.11 (Williams, Murray-Williams). N EX P does not have polynomial-size ACC0-circuits. In
fact, N T I M E(npolylogn) does not have such circuits.

30

9 SAT solvers

DPLL Algorithm

This basic algorithm is a simplified version of one by Davis, Logeman, and Loveland (CACM 1962),
modifying an approach of Davis and Putnam (CACM 1960) which was quite different. The original goal
of both was as a component of a decision procedure for first-order logic. Confusion over the terminology
and attribution for the algorithm in the 1990s was settled by agreement to reference all of the authors.

Algorithm 4 The DPLL algorithm for satisfiability search. This is invoked as DPLL(F ,nil). This is a
complete algorithm in that failure of the search implies that F is unsatisfiable.

1: function DPLL(F , A)
2: while F contains a clause x of size 1 do
3: F ← Fx←1; A← (A, x) ▷ Unit propagation

4: if F is empty then
5: Halt and output satisfying assignment A
6: if F contains the empty clause ⊥ then
7: return
8: else choose unset literal x ▷ Decision literal
9: DPLL(Fx←1 , (A, x))

10: DPLL(Fx←0 , (A,¬x))

The DPLL algorithm is closely related to a method for inferring new clauses from existing ones,
called Resolution. This has precisely one inference rule, the resolution rule:

A∨ x; B ∨ x
A∨ B

This rule is sound since any truth value of x cannot make both of the given clauses true, so one of A
or B must be made true. A Resolution refutation is a sequence of clauses ending in the empty clause ⊥,
each of which is either a given clause or follows from two prior clauses via the resolution rule.

Proposition 9.1. A given set F of clauses is unsatisfiable iff there is a Resolution refutation of F.

A Resolution refutation is tree-like iff each derived clause is used at most once in any resolution rule.

Proposition 9.2. The trace of every DPLL algorithm that fails to find a satisfying assignment for a CNF
formula F corresponds to a tree-like refutation of F.

Proof. At each of the leaves of the tree of partial assignments A explored, the empty clause⊥ corresponds
to an original clause falsified by the corresponding assignment A. The unit propagation nodes each only
have one child but we can make each such node a binary node by adding a leaf node for the alternative
polarity of the literal involved. That corresponds to falsifying the original clause that was a unit clause
under assignment A and therefore that leaf can also be labelled by an original clause that the partial
assignment that reaches it falsifies.

We now walk up the tree building the tree-resolution proof. Now consider the last decision literal
x at node u above two leaf nodes v where x is set to true and w where x is set to false. Let Cv and Cw
be the original clauses that are violated at nodes v and w. The partial assignment A that reaches node

31

u together with setting x to true. Then A together with x falsifies Cv and A together with x falsifies Cw.
Since u is not a leaf, A does not falsify either Cv or Cw. Therefore Cv = D ∨ x and Cw = D ∨ x , for some
clauses D and E where A falsifies D and A falsifies E. We can apply the resolution rule to Cv and Cw to
derive the clause Cu = D∨ E which we use to label node u. The assignment A falsifies Cu. Applying this
operation inductively up the tree, we can label every node by a clause such that the partial assignment
reaching the node falsifies the associated clause and each node is the resolvent of its two child, resolving
on the literal being branched on.

At the end we obtain a clause labelling the root of the tree that is falsified by the empty partial
assignment. This means that the clause labelling the root must be ⊥ and the whole thing is a tree-
resolution refutation. Observe that the tree-resolution refutation exactly follows the structure of the
DPLL execution.

Note that the above simulation works no matter how the decision literals are chosen. In fact, one can
show that for every tree-resolution refutation of F can be pruned and converted into a DPLL execution
of the same structure with some choice of decision literals the same size

CDCL SAT solvers

CDCL stands for Conflict-Directed Clause Learning. These are the most important practical algorithms
for SAT solving and formal reasoning. In DPLL, when the search fails because of a conflict in line 7,
the recursive calls simply backtrack and the last decision is simply undone. However, while the conflict
was found using the last branching decision, it may not depend on any other recent branching decision,
so changing those decisions may not impact the conflict. The general idea of conflict-directed clause
learning, is to record somewhat more about the decisions and unit propagations make during the proof
search, using a data structure called a conflict graph and replace line 7 of DPLL with a conflict analysis
step which adds a new learned clause to F , which summarizes the reason for the conflict and can be
used to simplify future searches:

The algorithm maintains the partial assignment A, which is called the trail. The conflict graph is a
directed graph with one vertex for each literal in the trail A. Decision literals are source nodes. For
every literal x in A assigned through propagation of a unit clause that was originally a clause C of F ,
all of the other literals z in C must have previously appeared as ¬z in A; in the conflict graph we put
an edge from each of these ¬z literals to x . It is possible that this unit propagation produces the empty
clause ⊥ rather than a literal, if a decision is made that causes an immediate contradiction.

Definition 9.3. Given a conflict graph G = (V, E), a source-sink cut in G is a set of vertices U ⊂ V such
that

• U contains all sources (decision literals) in G,

• U does not contain the sink node labeled ⊥.

• U there are no edges from V − U to U in G.

Given such a cut U , let EU be the set of edges that lead from U to V − U . Observe that EU is a set of
edges whose removal eliminates all paths from source nodes to⊥. Given such a cut U , we define conflict
clause CU to be the clause whose literals are negations of literals at tails of edges in EU .

32

CDCL solvers choose one of these clauses that is guaranteed to cause immediate unit propagation
at a level higher than the current level. Such a clause is called an asserting; the level where this unit
propagation takes place is call the assertion level of the clause. Note that the clause consisting of the
negations of all the decision literals will be asserting at a level one above the current level. If we add that
clause, this will be the equivalent to DPLL since unit propagation will switch to the other assignment of
the last decision literal.

Algorithm 5 Simplified CDCL ideas for satisfiability search.
1: function SIMPLE-CDCL(F)
2: Set A to nil and conflict graph to empty.
3: Set decision level to 0.
4: while true do
5: while F contains a clause consistent with A with only one literal x not set by A do
6: A← (A, x)
7: Propagate(x ,F) ▷ Unit propagation
8: Add x and edges to conflict graph

9: if F has no active clauses then Halt and output satisfying assignment A
10: if conflict graph has ⊥ then
11: if decision level=0 then Halt and output “unsatisfiable”.

12: Use conflict graph to find asserting conflict clause CU ▷ Analyze Conflict
13: Add CU to F
14: Set decision level to assertion level of CU , pruning A and the conflict graph.
15: else
16: Choose unset literal x according to decision heuristic ▷ Decision literal
17: Increment decision level.
18: A← (A, x).
19: Propagate(x ,F).
20: Add source x to conflict graph tagged with decision level.

The asserting learned clause is typically found by using the 1UIP (1st Unique Implication Point) cut
given by a single node (the first starting from ⊥) that separates ⊥ from the decision literal at the last
level. Example of a conflict graph and asserting learned clause (w ∨ v ∨ a) given by the 1UIP is the
following:

33

Proposition 9.4. Learned clauses are derivable using a number of steps of the resolution rule at most the
size of the last decision level.

Proof. We show the idea using the example. The conflict graph implies that clauses b∨c, y∨a∨ b, w∨c
must be part of the formula. Resolving the 1st with the 2nd gives y ∨ a ∨ c and resolving this with the
3rd gives the desired learned clause. The general case follows similarly working backwards from⊥.

There are a few optimizations that are critical for the good performance of CDCL. One is that the
algorithm only maintains the trail rather than the residual (simplified) formula at each step. All that is
required is that the algorithm be able to tell when a clause in the residual formula has at most one unset
literal outside of A. Learned clauses can also get quite long, even if the original formula was in 3-CNF.
To do this the algorithm maintains the names of just two watched literals for each original and learned
clause that has not been satisfied by A, as well as a list of which active clauses have these literals. Every
time that A sets a literal, each the watched literal pair for each in the list is updated. (If one of these
is falsified by the newly assigned literal, then another literal in the clause is chosen to be watched if
possible.) This has the advantage of being cache-efficient.

Another optimization is that the algorithm can periodically choose to restart from the root, but
keeping around learned clauses so that the algorithm doesn’t get stuck at large decision levels; a simple
example might be if a clause of size 1 is learned which enforces the assignment to one of the variables,
but it can also be useful if there simply have been a large number of decisions.

Good CDCL algorithms also use information about the conflict graph and learned clauses to help
with the decision heuristic for new literals is based on which literals have shown up in recent learned
clauses, using a tunable parameter. A popular one is called VSIDS, which uses multiplicative weight
updates for variables. Depending on the application, decisions about which polarity to use for each
literal may be to always try false first, or to use the same sign as was last used, or to randomize the
choice.

Also, it turns out that some frontier clauses include more literals than necessary because the nega-
tions of some of those literals are implied by the negations of other sets of literals in the clause. Simpli-
fying such clauses is call clause minimization.

Finally, the number of learned clauses can grow very quickly, which would overwhelm the storage.
To avoid this, CDCL algorithms usually have a cache pruning phase that periodically removes learned
clauses that have not been used recently. (Often this is in the form of a marking algorithm that periodi-
cally halves the number of learned clauses, removing old learned clauses that have not been used since
the last cache pruning.)

34

Algorithm 6 CDCL for satisfiability search.
1: function CDCL(F)
2: Choose two watched literals for each clause of F , if possible.
3: Set A to nil and conflict graph to empty.
4: Set decision level to 0.
5: while true do
6: while F contains a clause with only 1 watched literal x do
7: A← (A, x)
8: Propagate(x ,F) ▷ Unit propagation
9: Add x and edges to conflict graph

10: if F has no active clauses then Halt and output satisfying assignment A
11: if conflict graph has bot then
12: if decision level=0 then Halt and output “unsatisfiable”.

13: Use conflict graph to find asserting conflict clause CU ▷ Analyze Conflict
14: Minimize CU
15: Add CU to F and add two watched literals for CU
16: Update decision heuristic
17: if restart chosen then
18: Set A to nil and conflict graph to empty.
19: Set decision level to 0.
20: else if clause pruning chosen then
21: Remove oldest half of learned clauses unused since last pruning.
22: else
23: Set decision level to assertion level of CU , pruning A and the conflict graph.

24: Update watched literals.
25: else
26: Choose unset literal x according to decision heuristic ▷ Decision literal
27: Increment decision level.
28: A← (A, x).
29: Propagate(x ,F).
30: Add source x to conflict graph tagged with decision level.

35

Theorem 9.5. The trace of every CDCL SAT solver run on an unsatisfiable CNF formula F yields a Resolution
refutation of F of at most the same size.

36

10 Resolution Proofs

Definition 10.1. For a CNF formula F , we write Res(F) for the minimum number of clauses in any
Resolution refutation of F . If F is satisfiable then Res(F) =∞.

Definition 10.2. For a CNF formula F write w(F) =maxC∈F |C | and for a resolution proof P, define the
width of P, w(P) =maxC∈P |C |.

For a CNF formula F define width(F) to be the minimum width w(P) over all resolution refutations
P of F (and∞ if no such refutation exists).

Proposition 10.3. (a) Let P be a resolution derivation of a clause C from CNF formula F. For any
restriction ρ on the variables of F, P|ρ is a resolution derivation of C |ρ from F |ρ.

(b) For literal z, if width(Fz←1) ≤ w then either width(F) ≤ w or there is a resolution derivation of ¬z
from F of width at most w+ 1.

Proof. Part (a) is immediate. For part (b), let P ′ be a refutation of Fz←1 of width at most w. For the
new derivation, replace each input clause of Fz←1 by the corresponding clause of F and retain the same
sequence of resolution steps (which is possible since none of the resolution steps involve the literal z)
to yield a proof P. The replacement of input clauses of Fz←1 by those of F may add ¬z to some input
clauses. It is immediate, inductively, that every clause of proof P ′ either stays the same or has ¬z added
to it in P. If the output clause is still the empty clause ⊥, then all the clauses of Fz←1 leading to the
output clause of P ′ were in the original formula F , so P ′ is the required refutation. Otherwise, the clause
width of P is at most w+ 1 and the output clause is ¬z.

Theorem 10.4. Let F be a CNF formula in n variables. If Res(F)≤ S then

width(F)≤max(2
p

2n ln S,
p

2n ln S +w(F)).

Proof. Set W = ⌈
p

2n ln S⌉. We say that a clause C is wide iff w(C) ≥W . We prove the following claim
by induction on n and k:

CLAIM: If (1−W/2n)k S < 1 then any CNF formula F in n variables having a resolution refutation with
≤ S wide clauses has width(F)≤max(W, w(F)) + k.

Before proving the claim, we observe that the case k =W is sufficient to prove the statement, since
(1−W/2n)W < e−W 2/2n ≤ 1/S by the choice of W .

The case k = 0 is trivial, since a refutation with no wide clauses has width at most W .
For the general case, let P be a resolution refutation of F with n variable and ≤ S clauses of width

≥W and suppose that (1−W/2n)k S ≤ 1. Choose the literal z appearing in the most wide clauses of P.
Since there are ≤ 2n possible literals and ≥W distinct literals per wide clause, z appears in ≥WS/2n
wide clauses.

Consider the restrictions z ← 1 and z ← 0: Then Pz←1 is a resolution refutation of Fz←1 and every
clause of P containing z is satisfied and hence removed (and others are only shortened), so Pz←1 has
S′ ≤ S −WS/2n = (1−W/2n) S wide clauses. Therefore (1−W/2n)k−1 S′ ≤ (1−W/2n)k S ≤ 1. It
follows by our inductive hypothesis with k′ = k− 1, that

width(Fz←1)≤max(W,w(Fz←1)) + k− 1≤max(W,w(F)) + k− 1.

37

By Proposition 10.3(b), either width(F)≤max(W, w(F)) + k, and we are done, or there is a derivation
P ′ of ¬z from F of width ≤max(W,w(F)) + k.

Now, Pz←0 is a refutation of Fz←0. By the inductive hypothesis applied to Fz←0, which has n′ = n−1
variables, there is a refutation P ′′ of Fz←0 of width at most max(W, w(F)) + k. We next resolve ¬z with
clauses of F containing z to produce every clause of Fz←0 used in P ′′. This part requires width at most
w(F).

Putting the parts together we obtain a single refutation of F of width at most max(W, w(F)) + k as
required for the induction step.

Corollary 10.5. Let F be a CNF formula in n variables. If there is a resolution refutation of F or size at
most S then there is an algorithm running in time nO(

p
n log S+w(F)) that will find a resolution refutation of

F.

Proof. Apply a width-increasing search on proofs up to the width bound W ∗ given in Theorem 10.4. That
is, it applies all possible resolution inferences that yield clauses of width w beginning with w = w(F)
and increasing until a refutation is found. The number of distinct clauses up to this width bound W ∗ is
less than
∑W ∗

w=0

�2n
w

�

and the running time is polynomial in this number of potential clauses. Plugging
in the different values of W ∗ and using standard binomial bounds for the two cases yields the claimed
running times.

We restate Theorem 10.4 in the following convenient form:

Theorem 10.6. For any CNF formula F in n variables,

Res(F)≥ emin((width(F)−w(F))2/2n,width(F)2/8n).

This implies that sufficiently strong resolution width lower bounds suffice for proving resolution
size lower bounds. It is known that the width-size relationship in Theorems 10.4 and 10.6 cannot be
improved beyond a logarithmic factor in width or a polynomial factor in size.

Boundary expansion and resolution clause width

Definition 10.7. For a bipartite graph G = (L, R, E) and a set S ⊆ L, the boundary of S, denoted ∂ S, is
the set of all v ∈ R that have exactly one neighbor u ∈ S.

Graph G = (L, R, E) is an (r, c)-boundary expander iff for every S ⊂ L with |S| ≤ r, the boundary ∂ S
satisfies |∂ S| ≥ c|S|.

Definition 10.8. Any CNF formula F corresponds to a bipartite graph GF = (L, R, E) where L is the set
of clauses of F , R is the set of variables of F , and (C , x) ∈ E iff variable x appears in clause C .

Given a set of clauses S, the boundary of S, ∂ S, in GF is a set of variables, but since each occurs with
a unique sign in the clauses of S, we can also interpret ∂ S as a set of literals when it is convenient.

Lemma 10.9. If F is a CNF formula, C∗ is a clause and there is a resolution derivation of C∗ from F for
which S is the set of clauses of F that have a path to C∗, or then |C∗| ≥ |∂ S|.

Proof. Observe that the literals in the boundary variables of S pass through to C∗ without cancellation.

38

Boundary expansion plays a role in a wide variety of lower bound arguments in proof complexity.
In particular, it suffices to prove width lower bounds for resolution proofs and hence lower bounds on
resolution proof size using Theorem 10.6.

Theorem 10.10. Any CNF formula F for which GF is an (r, c)-boundary expander requires resolution
refutation width > cr/2.

Proof. Without loss of generality we may assume that c > 0. Define the complexity of a clause C in the
refutation of F to be the size of the subset of clauses S of F that have a path to C in the proof. In particular,
since GF is an (r, c)-boundary expander, any set S of clauses of size at most r has |∂ S| > c|S| > 0 by
Lemma 10.9 and hence C ̸=⊥. Therefore, the empty clause at the root of the proof must have complexity
> r. The input clauses have complexity 1. By the soundness of the resolution rule, complexity is sub-
additive; that is, if C is derived from A and B, then the complexity of C is at most the sum of the
complexities of A and B.

We therefore follow the proof back from the root, always taking the branch of larger complexity,
which will be at least 1/2 of the previous complexity by sub-additivity. Eventually this must pass through
a clause C∗ with paths from a minimal subset S of clauses of F with r/2< |S| ≤ r that yields C∗. Since
GF is an (r, c)-bipartite expander, |C∗| ≥ |∂ S| ≥ c|S|> cr/2 as required.

ETH holds for Resolution proofs

Let F k,m
n be a distribution of random k-CNF formulas with m clauses chosen uniformly randomly and

independently from the set of 2k
�n

k

�

possible clauses on k distinct variables.

Lemma 10.11. For m≥ 2k ln2 · n, random k-CNF formulas are unsatisfiable with probability 1− o(1).

Proof. There are 2n possible assignments. For each such assignment, each clause is independently set
true with probability 1− 2−k so the probability that the assignment satisfies the entire formula is then
(1− 2−k)m ≤ (1− 2−k)2

k ln 2·n Since (1− 2−k)< e−2−k
this is o(e− ln2·n) and hence o(2−n). Therefore the

expected number of assignments that satisfy the formula is o(1) which upper bounds the probability
that the formula is satisfiable.

Lemma 10.12. Let∆> 0 and m=∆n. For some 1> c, c′ > 0, with probability 1−o(n) a random 3-CNF
formula with m= cn is an (r, c)-boundary expander for r = c′n with probability 1− o(1).

Proof. Fix a set of clauses C of size s. We want to argue that |∂C | ≥ c′n for some c′. Any variable
appearing in C that is not in boundary must appear at least 2 times among the 3s literals in C , so it
suffices to show that every subsetC of size s ≤ r = c′n contains more than q = (3+c)s/2 distinct literals
for some constant c > 0.

For a single C ∈ C , Let p =
�q

3

�

/
�n

3

�

≤ (q/n)3 be the probability that all variables of C are some fixed

39

subset Q of size q and there are
�n

q

�

such subsets. Now

Pr[|vars(C | ≤ q]≤
�

n
q

�

ps

≤
�

ne
q

�q �q
n

�3s

= eq ·
�q

n

�3s−q

= e(3+c)s/2 ·
�

(3+ c)s/2
n

�(3−c)s/2

= as ·
� s

n

�(3−c)s/2

for some constant a depending on c. Therefore, the probability that GF is not an (r, c)-boundary ex-
pander is at most

r
∑

s=1

�

∆n
s

�

as ·
� s

n

�(3−c)s/2
≤

r
∑

s=1

�

a · e ·∆n
s

�s

·
� s

n

�(3−c)s/2

=
r
∑

s=1

�

a · e ·∆ ·
� s

n

�(1−c)/2�s

=
r
∑

s=1

�

b ·∆ ·
� s

n

�(1−c)/2�s

for b = a · e which depends only on c.
To bound this quantity we split the sum into two cases depending on whether s is small or large.
We can choose constant c′ > 0, depending on ∆ and c so that the term in the sum for s ≤ r = c′n

is at most 2−s. We use this for any threshold t = t(n) that grows with n to bound the sum of all of the
terms for s > t(n) by 2−t(n), which goes to 0 with n. For definiteness we just choose t(n) = log n.

On the other hand, there are only log n terms for s ≤ t(n) and each is O((log n
n)

(1−c)/2) since s ≥ 1,
so that sum also is o(1) in n.

Theorem 10.13. There is a constant δ > 0 such that random 3-CNF formulas F with O(n) clauses with
probability 1− o(1), require Res(F)≥ 2δn.

Proof. By Lemma 10.12, there are constants c, c′ > 0 such that with probability 1 − o(1), GF is an
(r, c)=boundary expander for r = c′n and hence, by Theorem 10.10, width(F) > cr/2 = c′cn/2. Plug-
ging this width lower bound into Theorem 10.6 yields the claimed bound with δ = (c′c)2/32.

40

11 Communication Complexity and Lifting

Definition 11.1. A (deterministic) decision tree T with inputs in {0, 1}n is a rooted binary tree with each
internal node labeled by a variable x i for i ∈ [n], with the two out-edges labelled 0 and 1 indicating
the value of x i . Each root-leaf path in T defines a partial assignment that is the concatenation of the
assignments on all edges in the path. The output of the decision tree on a truth assignment x is the
label of the leaf reached by the unique root-leaf path whose associated partial assignment is consistent
with x .

For a function f defined on {0, 1}n, we write the decision tree complexity of f , Cd t(f) to be the
minimum height of any decision tree computing f and sized t(f) to be the minimum number of leaves
in any such decision tree,

Definition 11.2 (False Clause Search). Given an unsatisfiable CNF formula F in n variables with clauses
C1, . . . , Cm, we define the search problem SearchF which takes as input x ∈ {0,1}n, which must falsify
F , and outputs any index i ∈ [m] such that x falsifies clause C j .

SearchF is an example of a relation R. In general we write R(x) for the set of legal outputs of R on
input x . For any relation R, write Cd t(R) and sized t(R), for the minimum Cd t(f) and sized t(f) for any
function f that is consistent with R.

Proposition 11.3. DPLL run on an unsatisfiable input F is a decision tree for the search problem SearchF .
In particular sized t(SearchF) is the minimum number of nodes in any DPLL run on input F (equivalently
the minimum size of any tree-resolution refutation of F) and Cd t(SearchF) is the minimum height of the
DPLL search tree on input F.

(Two-Party) Communication Complexity

Here were have two players or parties, usually designated as Alice and Bob who cooperate in order to
compute based on shared inputs. Alice receives an input x ∈ X and Bob receives y ∈ Y .

A (deterministic) 2-party communication protocol on X ×Y is a rooted binary tree, with each internal
node v labelled either by a function αv : X → {0, 1}, or a function βv : Y → {0,1}. The two out-edges of
v are labelled 0 and 1 respectively. The root-leaf paths in a protocol followed on input x and y is given
by following the out-edges given by αv(x) (Alice speaks) or βv(y) (Bob speaks) depending on which
kind of function labels v. The output of the protocol on input (x , y) ∈ X × Y is the label of the leaf.

For a function f defined on X × Y , we write the deterministic communication complexity of f ,
CCc(f) to be the minimum height of any 2-party communication protocol computing f and sizecc(f) to
be the minimum number of nodes in any deterministic 2-party protocol computing f . We extend these
definitions to relations defined on X × Y also.

Examples: Consider X = Y = {0, 1}n. Then for any f on X × Y has C cc(f) ≤ n+ 1 since Alice can
simply send her entire input to Bob after which he computes the answer. Pari t yn(x , y) that gives the
total parity check for the string x y , has C cc(Pari t yn) = 2. Ma jn(x , y) which has value 1 if there are at
least as many 1’s as 0’s in x y has C cc(Ma jn) = O(log n).

What about EQn(x , y) which is 1 if x and y are equal and 0 otherwise?
In general given a function f defined on X ×Y , we define the communication matrix of f , M f as the

|X | × |Y | matrix whose (x , y) entry is f (x , y).
In particular MEQn

is the 2n × 2n identity matrix.

41

Definition 11.4. A (combinatorial) rectangle in X × Y is a set of the form A× B for A⊆ X and B ⊆ Y . A
rectangle R is 1-rectangle of f iff f evaluates to 1 on every element of R, and a 0-rectangle of f iff f is
always 0 on R. R is monochromatic iff f is constant on R.

Lemma 11.5. The set of inputs in X × Y that reach each node v of a communication protocol is a combi-
natorial rectangle.

Proof. We show this by induction starting at the root r which is rectangle Rr = X × Y . Suppose induc-
tively that Ru = Au × Bu is the rectangle of inputs reaching node v in the protocol tree and let the child
following outedge 0 be v0 and the one following out-edge 1 be v1.

Case Alice: If v is labelled by some αv : X → {0, 1}, then the set of nodes reaching v0 is precisely
Av0 × Bv0 where Av0 = Av ∩α−1

v (0) and Bv0 = Bv and reaching v1 is Av1 × Bv1 where Av1 = Av ∩α−1
v (1)

and Bv1 = Bv .
Case Bob: If v is labelled by some βv : X → {0,1}, then the set of nodes reaching v0 is precisely

Av0 × Bv0 where Av0 = Av and Bv0 = Bv ∩ β−1
v (0) and reaching v1 is Av1 × Bv1 where Av1 = Av and

Bv1 = Bv ∩ β−1
v (1).

Corollary 11.6. Let f be defined on X × Y . Then X × Y can be partitioned into at most 2C cc(f) monochro-
matic rectangles of f , corresponding to the leaves of a protocol with this complexity.

Corollary 11.7. C cc(EQn) = n+ 1

Proof. MEQn
is a 2n×2n diagonal matrix and no two entries on the diagonal can be in the same rectangle.

This gives 2n 1-rectangles, plus there is at least one 0-rectangle giving more than 2n such rectangles.
Taking logarithms and rounding up we obtain the lower bound; the upper bound is true for all n-bit
Boolean functions.

Other important problems of interest in communication complexity include

• Dis jn(x , y) =
∨n

i=1 x i ∧ yi , called the disjointness function. The terminology comes from viewing
x and y as characteristic functions of two subsets Sx , Ty ⊆ [n], since Dis jn(x , y) = 0 iff the sets
Sx and Sy are disjoint.

• I Pn(x , y) =
∑n

i=1 x i yi mod 2, the inner product function mod 2.

• Indexm : [m]× {0, 1}m where Indexm(x , y) = yx .

Proposition 11.8. C cc(Dis jn) = C cc(I Pn) = n+ 1 and C cc(Indexm) = m.

Karchmer-Wigderson Games

We now connect communication complexity of search problems to the complexity of Boolean circuits
over the De Morgan basis of binary ∧,∨ and ¬ gates. By De Morgan’s law we can push all of the
negations in a circuit or formula to the leaves so that we can assume that the inputs for a circuit are
literals and all interior gates are binary ∧ or ∨. We write C(f) for the minimum circuit size for Boolean
function f in that basis, D(f) for the minimum circuit depth for f and L(f) for the minimum number
of leaves in any Boolean formula for f .

We also will consider monotone circuits which do not use any negated literals. Monotone circuits
can only compute monotone Boolean functions, which are functions for which flipping any input bit
from 0 to 1 cannot decrease the function value. For monotone f , we write Cm(f), Dm(f), and Lm(f)
for the monotone circuit complexity, depth complexity, and formula size of f .

42

Definition 11.9. Given a Boolean function f : {0, 1}n → {0, 1} we define the Karchmer-Wigderson
relation KWf : X × Y to [n] where X = f −1(1) and Y = f −1(0) be the relation

KWf (x , y) = {i | x i ̸= yi}.

If f is monotone then we know that for any input x , y for which f (x) = 1 and f (y) = 0, there must
be some bit x i = 1 and yi = 0. We can therefore define the monotone Karchmer-Wigderson relation
mKWf : X × Y to [n] where

mKWf (x , y) = {i | x i > yi}.

Theorem 11.10. For every Boolean function f , C cc(KWf) = D(f) and sizecc(KWf) = L(f). For every
monotone Boolean function f , C cc(mKWf) = Dm(f) and sizecc(f) = Lm(f).

Proof. Without loss of generality the optimal circuit depth is given by a Boolean formula (a tree), since
we can simply replicate gates. There are two directions here:

Given a Boolean formula T for f , the protocol tree for KWf will have exactly the same structure as
T . For each gate of the circuit v, we write fv for the Boolean function computed at the node.

We maintain the invariant that the rectangle of inputs Ru that reaches node u is contained in f −1
u (1)×

f =1
u (0). To do this, every ∨ gate becomes a node for Alice and every ∧ gate becomes a node for Bob. If

gate u is an ∨ gate, where fu = fv ∨ fw, since any string y reaching this node has fu(y) = 0, we know
that fv(y) = f (w) = 0. On the other hand any string x reaching it has fu(x) = 1 so at least one of
fv(x) = 1 or fw(x) = 1. We define the function αu(x) is 0 if fv(x)− 1 and 1 otherwise.

The situation if the gate if ∧ is dual: Alice’s input x evaluates to 1 on both children, while Bob has
to indicate one of v or w such that fu(y) = 0.

Applying this at a leaf we reach a literal or its negation. We label the leaf by the index i of that
literal, which must be correct for KWf since x and y evaluate differently on that literal. If the circuit is
monotone we must have x i = 1 and yi = 0 as required for mKWf .

Hence the complexities of the Karchmer-Wigderson relations are at most that of the corresponding
depth and size measures.

We now do the reverse simulation to show the other direction. We convert the protocol trees for KWf
or mKWf to Boolean formulas with exactly the same structure as the protocol trees, replacing every node
where Alice speaks by ∨ and every node where Bob speaks by ∧. We work bottom-up arguing that we
can maintain the property that the function fu satisfies Ru ⊆ f −1

u (1)× f −1
u (0) where Ru is the rectangle

of inputs reaching node u.
To get started we need to specify the leaf labels. At the leaves of the protocol for KWf with output i,

every input (x , y) in the rectangle Rℓ associated with that leaf ℓmust have x i and yi must have opposite
values. The values of both must be unique since this is a rectangle. If x i = 1 and yi = 0 in the rectangle
then the circuit has the positive literal i at ℓ and if x i = 0 and yi = 1 then we have the negation of literal
i at ℓ. This ensures that the property holds for fℓ.

Suppose that we have the property for children v and w of node u at which Alice speaks; then
fu = fv ∨ fw by construction. Suppose that Ru = Au × Bu. Then Rv = Av × Bu and Rw = Aw × Bu with
Au = Av ∪Aw where fv(Av) = 1 and fw(Aw) = 1 by the inductive property so therefore fu(Au) = 1. Since
both fv(Bu) = 0 and fw(Bu) = 0, we have fu(Bu) = 0. The same applies dually to the nodes where Bob
speaks. The fact that this correctly computes f follows from the inductive hypothesis applied to the
root.

43

12 Deterministic Lifting

Definition 12.1. Given a Boolean function f or search problem (relation) R defined on {0, 1}n, and a
Boolean function g : X × Y → {0, 1} (called the gadget function). We define the composition f ◦ gn or
R ◦ gn on the set X n × Y n by f ◦ gn(x , y) = f (z1, . . . , zn) where zi = g(x i , yi) for (x i , yi) ∈ X × Y .

Note that in the composed function f ◦ gn, Alice receives all of x1, . . . , xn and Bob receives all of
y1, . . . , yn.

Proposition 12.2. Let f : {0, 1}n→ {0,1}. Then

C cc(f ◦ gn)≤ Cd t(f) · C cc(g).

More generally if R is a search problem defined on {0, 1} then

C cc(R ◦ gn)≤ Cd t(R) · C cc(g).

Proof. The communication protocols are simple: The two players simulate the best decision tree protocol
for f (or R) on input z1, . . . , zn; whenever that protocol queries zi , the players compute it using the best
communication protocol for g using C cc(f) bits of communication.

Key lifting question: Find broad circumstances in which the above algorithm is (close to) optimal;
that is, when C cc(f ◦ gn) is Ω(Cd t(f)) or Ω(Cd t(f) C cc(g)).

There are simple examples of f and g where the protocol of Proposition 12.2 is very far from optimal:
Suppose that both functions are parity functions; that is, f = ⊕n and g(x , y) = Pari t ym(x , y) on
{0,1}m × {0,1}m. In that case, Cd t(f) = n and C cc(g) = 2 so the upper bound from Proposition 12.2
would be 2n. However, the function f ◦ gn is simply Pari t ynm so C cc(f ◦ gn) = 2.

Our focus will be on general theorems showing that for some function g, Proposition 12.2 holds for
all functions f and all relations R. We clearly cannot do this if g is Pari t ym.

The first such general lifting theorem was proved by Raz and McKenzie was proven in order to derive
lower bounds on the depth complexity of monotone circuits by showing lower bounds on monotone
Karchmer-Wigderson game mKW of the composed function f ◦ gn. It therefore was important that the
gadget g be monotone.

Theorem 12.3 (Raz-McKenzie 1999). For every search problem R defined on {0,1}n and m that is a
sufficiently large polynomial in n we have

C cc(R ◦ Indexn
m) = Ω(C

d t(R) log m).

Recall that Indexm : [m]× {0,1}m is given by g(x , y) = yx so it is a monotone function and hence
yields a monotone function for every monotone function f . It has C cc(Indexm) = log m+1 so it shows
that Proposition 12.2 is asymptotically tight for Indexm.

Before proving this theorem we discuss one of its applications.
Raz and McKenzie used Theorem 12.3 together with an explicit sequence Fn of unsatisfiable 4-

CNF formulas (based on pebbling pyramid graphs) that was known to require large depth Resolution
refutations and defined a monotone Boolean function based on f = Fn ◦ Indexn

m such that the relation
mKWf is precisely SearchFn

◦ Indexn
m and used the above theorem to derive new depth lower bounds

on monotone circuits.

44

Given an unsatisfiable k-CNF formula Fn with n variables, for the 2-party communication problem
SearchFn

◦ Indexn
m, Alice gets x1, . . . , xn ∈ [m]n, Bob gets y1, . . . , yn ∈ {0, 1}n and the goal is to output

the index i of some clause of Fn that evaluates to false on the input Indexm(x1, y1), . . . , Indexm(xn, yn)) =
(y1x1

, . . . , ynxn
). In other words, this just a protocol for SearchFn

with each of whose input bits being
determined by the vector of pointers x1, . . . , xn.

A general form of the Raz-McKenzie construction of a monotone Boolean function was given by
Göös and Pitassi as follows:

Lemma 12.4 (Göös-Pitassi 2012). Let Fn be an unsatisfiable k-CNF formula in n variables with t clauses
and let m≥ 2 be an integer. There is an explicit monotone Boolean function fFn,m with N = tmk input bits
such that the communication complexity of SearchF ◦ Indexn

m is at most that of mKWfFn ,m
.

Proof. The function fFn,m takes as an input a string α that is thought of as describing an k-CSP (constraint
satisfaction problem with constraint size k) on the input space [m][n] using the variable structure of the
formula Fn. Each clause Cℓ for ℓ ∈ [t] involves some subset Sℓ of indices in [n]. Fix such an ℓ. The
string α will have one bit for each way of choosing the k elements in [m]Sℓ indicating the truth table of
the constraint indexed by ℓ in the k-CSP.

Sometimes the k-CSP defined by αwill be satisfiable and sometimes it is not. We define fFn,m(α) = 1
iff the k-CSP defined by α is satisfiable. Clearly changing 0’s to 1’s in α can only make the k-CSP defined
by α more satisfiable so fFn,m is a monotone function of α.

In order to simulate an algorithm for SearchFn
◦ Indexn

m, on input assignment (x , y) ∈ [m]n ×
({0,1}m)n with x = (x1, . . . , xn) ∈ [m]n and y = (y1, . . . , yn) ∈ ({0, 1}m)n, Alice creates the string αx
corresponding to the k-CSP whose ℓ-th constraint is 1 iff for every i ∈ Sℓ, the input is consistent with
x i . The k-CSP given by αx is satisfied by x so fFn,m(αx) = 1. On the other hand, Bob creates the
string αy corresponding to the unsatisfiable k-CSP whose ℓ-th constraint evaluates to 1 iff for the vector
x ′Sℓ ∈ [m]

Sℓ , the partial assignment (yi x ′i
)i∈Sℓ satisfies Cℓ. Since Fn is unsatisfiable, for every x ′ ∈ [m]n,

the formula on Fn with inputs y1x ′1
, . . . , ynx ′n

is not satisfied by y and hence the k-CSP in given by αy is
unsatisfiable so fFn,m(αy) = 0.

The mKWfFn ,m
protocol for input pair (αx ,αy) produces some index (ℓ, x ′Sℓ) ∈ [t]× [m]

k such that
αx has value 1 and αy has value 0. Since αx has value 1, by definition x ′Sℓ = xSℓ . However, since αy
has value 0, by definition of αy , the partial assignment (yi x i

)i∈Sℓ does not satisfy Cℓ which means that
ℓ is a correct output for SearchFn

◦ Indexn
m.

Corollary 12.5. If Fn is an unsatisfiable family of k-CNF formulas requiring Resolution refutation depth D
then for m= nc for sufficiently large c, fFn,m requires monotone circuit depth Ω(D log n).

Proof. The assumption implies that Cd t(SearchFn
) ≥ D. By Theorem 12.3, C cc(SearchFn

◦ Indexn
m)

is Ω(D log n). By Lemma 12.4, this implies that C cc(mKWfFn ,m
) is Ω(D log n) which implies that fFn,m,

requires monotone circuit depth Ω(D log n).

Note that when k is constant and we can prove some Resolution depth lower bound of the form
D = nε for ε > 0 then by choosing some m= nc we obtain a lower bound of the form Nδ for some δ > 0
on the explicit monotone Boolean function f defined by this construction.

Göös, Pitassi, and Watson improved the lower bound in Theorem 12.3 using a refined version of
the argument to show that one can take m as small as n2 log n. One can find explicit 3-CNF Boolean
formulas in n-variables and a linear number of clauses that require Resolution depth Ω(n/ log n) but
this still yields a monotone function f with a fixed polynomial blow-up in n and so the lower bound is
only of the form nδ for some small δ < 1.

45

A Deterministic Lifting Theorem We first observe that Indexm is a universal gadget.

Proposition 12.6. Any function g : [m]× [m]→ {0,1} is a subfunction of Indexm.

Proof. On input (x , y) ∈ [m]×[m], define y ′ ∈ {0,1}m by y ′i = g(i, y). Then by definition Indexm(x , y ′) =
y ′x = g(x , y).

Therefore, any lifting theorem involving such a gadget g that has communication complexity Ω(m)
yields a lifting theorem for Indexm.

Rather than proving the version of the lifting theorem given by Raz-McKenzie and Göös-Pitassi-
Watson using Indexm, we prove the following lifting theorem using the Inner Product function I Pd for
d = O(log n) which was proved independently by Chattopadhyay, Koucký, Loff, and Mukhopadhyay and
by Wu, Yao, and Yuen. The description of the argument is based on a version due to Rao and Yehudayoff,
but the key ideas are the same as all of the other proofs.

Theorem 12.7. Let f : {0, 1}n→ {0,1} for n≥ 16 and d ≥ 7 log n, then

C cc(f ◦ I Pn
d) = Ω(C

d t(f) d).

Similarly, if R is a relation on {0, 1}n then

C cc(R ◦ I Pn
d) = Ω(C

d t(R) d).

By the universality of Indexm, this implies Theorem 12.3 for m≥ n7. The method of proof of Theo-
rem 12.7 is constructive. In particular, we show how to take any communication protocol P computing
f ◦ I Pn

d with C bits of communication and produces a decision tree T for f of height at most 20C/d.
In particular, the protocol P operates on inputs x , y ∈ ({0,1}d)n, while the decision tree T built from

P operates on inputs z ∈ {0, 1}n. T is built from P by simulation.
The general idea is that we begin the simulation at the root of both the protocol P and the as-yet-

unbuilt tree T . At each node v in P and the corresponding nodes v′ of T we maintain sets A= X v,v′ ⊆ X
and B = Yv,v′ ⊆ Y such that the rectangle A× B of inputs consistent with the current simulation. We
follow a path in P until the protocol P has "learned too much" about the portion of x and y in some
coordinate j ∈ [n]. At that point we label the current node v′ in T by a query to z j and create two child
nodes in T , v′0 for the answer z=0 and v′1 for the answer zi = 1. For b ∈ {0,1} and each node v′b we
find some fixed pair of strings (x b

j , y b
j) ∈ I P−1

d (b) and define X v,v′b
= X v,v′ |x j=x b

j
and Yv,v′b

= Yv,v′b
|y j=y b

j

and continue the simulation. The goal is to show that Ω(d) steps of the protocol P are required per
coordinate queried.

The simulation keeps track of a set S ⊆ [n] of unqueried coordinates. We maintain the invariant
that |A| = |AS| and |B| = |BS|. The simulation depends on the sizes of the projections AS′ and BS′ of A
and B on subsets S′ ⊆ S of unqueried coordinates. In particular, the simulation focuses on the sets of
cases S′ = S \ { j} which we write as S − j for simplicity.

We say that A is j-abundant iff |AS|/|AS− j| ≥ 26d/7 and j-sparse otherwise. B is j-abundant iff
|BS|/|BS− j| ≥ 26d/7 and j-sparse otherwise. For a ∈ AS− j we say that a is thin iff a has < 24d/7 ex-
tensions in AS . Similarly for b ∈ BS− j we say that b is thin iff b has < 24d/7 extensions in BS . We say
that A and B are thick iff there are no thin a or thin b for either A or B.

Note that A being j-abundant is about the average number of extensions for elements a ∈ AS− j ,
whereas being thick bounds the worst-case number of number of extensions for all a ∈ AS− j .

46

For a coordinate j ∈ S, and a value b ∈ {0,1} we that a pair of values (x b
j , y b

j) is b-good iff

I Pd(x b
j , y b

j) = b and the set Ab × Bb consisting of the elements (x , y) ∈ A× B such that x j = x b
j and

y j = y b
j . satisfies |Ab

S− j × Bb
S− j| ≥ |AS− j × BS− j|/2.

Algorithm 7 Deterministic simulation for IP lifting.
1: Initialize:
2: S← [n]
3: A, B← ({0, 1}d)n

4: v← root of P
5: Create T be a tree with one root node v′

6: procedure BUILD-TREE(A, B, S, v, v′)
7: while S ̸=∅ and v is not a leaf of P do
8: Rv = (Av , Bv)← rectangle at node v of protocol P.
9: if for every j ∈ S, A and B are both j-abundant then

10: Let v0 and v1 be the children of v in P. ▷ Simulate another step of P.
11: Choose b ∈ {0, 1} for which |(A× B)∩ Rvb

| ≥ |A× B|/2.
12: v← vb
13: A← A∩ Avb

and B← B ∩ Bvb

14: else if there is some j ∈ S and thin a ∈ AS− j or thin b ∈ BS− j then
15: while there is a thin a for A or thin b for B do ▷ Prune the sets A and B
16: Remove all elements of A that extend a.
17: Remove all elements of B that extend b.
18: else ▷ Both A and B are thick but at least one is j-sparse
19: Create a query to z j at node v′, adding children v′0 and v′1 for query answers 0 and 1.
20: Let (x0

j , y0
j) be 0-good values in (A× B) j such that I Pd(x0

j , y0
j) = 0. ▷ Requires proof

21: A0← A with j-th coordinate fixed to x0
j .

22: B0← B with j-th coordinate fixed to y0
j .

23: BUILD-TREE(A0, B0, S − j, v, v′0).
24: Let (x1

j , y1
j) be 1-good values in (A× B) j such that I Pd(x1

j , y1
j) = 1. ▷ Requires proof

25: A1← A with j-th coordinate fixed to x1
j .

26: B1← B with j-th coordinate fixed to y1
j .

27: BUILD-TREE(A1, B1, S − j, v, v′1).

28: Make v′ a leaf labelled by the label of leaf v (or the value of f (z) or some element of R(z) if
S =∅).

Analyzing the simulation Observe that when the procedure BUILD-TREE is called initially, both A and
B are thick, every a ∈ AS− j and b ∈ BS− j has 2d extensions in AS and BS respectively and AS/AS− j =
BS/BS− j = 2d . Therefore, A and B are both j-abundant and thick. This will cause the procedure to do
simulation according to steps 10-13. At each step either A and B will decrease by a factor of at most
2 and this will change both the abundance and thickness properties by at most a factor of 2 per bit of
communication. Therefore, it will take Ω(d) steps of communication in order to create a thin a or b or
to make A or B j-sparse. Therefore it takes Ω(d) communication steps before the first query.

47

We need to keep versions of this property in order to allocate the cost of each query to Ω(d) bits
of communication. Moreover, in the simulation in addition to ensuring this allocation that the values
(x0

j , y0
j) and (x1

j , y1
j) in steps 20 and 24 both exist and have good properties assuming that both A and

B are thick and either A or B is j-sparse. In particular, we will insist

Lemma 12.8. Let A and B be the sets before a prune step and A′ and B′ be the sets after the prune step.
Then |AS × BS| ≥ (7/8)2|A′S × B′S|.

Proof. Observe that the only way that a prune step occurs in the simulation is if the preceding step
was a simulation step because prune steps don’t follow each other and query steps only reduce A× B
based on coordinates j that are removed from S and so don’t contribute to the creation of thin a or
b. Let A− and B− be the sets prior to that preceding simulation step. Then |A−S |/|A

−
S− j| ≥ 26d/7 and

|B−S |/|B
−
S− j| ≥ 26d/7 for all j ∈ S. The simulation step implies that either |A| ≥ |A−|/2, B = B− or

A= A− and |B| ≥ |B−|/2. In particular, |AS|/|AS− j| ≥ 26d/7/2 and |BS|/|BS− j| ≥ 26d/7/2. Rewriting, we
obtain that |AS− j| ≤ 2|AS|/26d/7 and |BS− j| ≤ 2|BS|/26d/7. Each thin a (respectively b) defined on S − j
results in the removal of fewer than 24d/7 elements of A (respectively B). Therefore the total number of
elements removed from A is less than
∑

j∈S

|AS− j|24d/7 ≤
∑

j∈S

2|AS|/22d/7 ≤ 2n|AS|/22d/7 = 2n|AS|/n2 = 2|AS|/n≤ |AS|/8

since d ≥ 7 log n and n≥ 16. Similarly we have the total number of elements removed from B being at
most |BS|/8. In particular, this implies that |A′S| ≥ 7|AS|/8 and |B′S| ≥ 7|BS|/8 which yields the claimed
property.

Corollary 12.9. Assume that elements in steps 20 and 24 can always be found. For every step of the BUILD-
TREE procedure, if A, B and S are the values at the beginning of the step and A′, B′ and S′ are the values at
the end of the step, then |A′S′ × B′S′ | ≥ |AS′ × BS′ |/2.

Proof. In the simulate step, the value of S does not change and the property holds by construction in
Step 11. In the prune step the set S also does not change, and the property holds by Lemma 12.8,
Finally, in each of the branches of the query step, the condition of the values found in Steps 20 and 24
being 0-good and 1-good respectively ensure that the property holds on both branches.

Lemma 12.10. Assuming that Steps 20 and 24 always are achievable the depth of the decision tree T is at
most 20C(P)/d.

Proof. The measure of progress at each step will be based on

Φ=
|AS × BS|

22|S|d ≤ 1.

At the start, Φ = 1. Observe that if A is j-sparse then |AS− j| > |AS|/26d/7 and we always have that
|AS− j| ≥ |AS|/2d ; analogous properties hold for B. Therefore after a query step to z j , the new value of

48

Φ is

|Ab
S− j × Bb

S− j|

22(|S|−1)d
≥
|AS− j × BS− j|
22(|S|−1)d+1

since the restrictions on coordinate j are b-good

=
|AS− j| · |BS− j|
22(|S|−1)d+1

>
|AS| · |BS|

26d/7 · 2d · 22(|S|−1)d+1
since one of A or B is j-sparse

= 2d/7−1 |AS × BS|
22|S|d .

Therefore, each query step increases the progress measure Φ by a factor of at least 2d/7−1. Note that
since d = 7 log n and n≥ 16, we have d/7−1≥ d/7− d/28= 3d/28. There are at most C(P) simulate
steps and at most C(P) prune steps in the course of the algorithm. Each simulate step or prune step
leaves the set S unchanged and therefore reduces Φ by at most a factor of 2. Therefore there must be
at most 2C(P)/(d/7− 1) query steps in total which is at most 56C/(3d) < 20C/d query steps on any
root-leaf path.

Clearly, by construction every input in the set A× B always is consistent with the partial assignment
to the variables zi for i ∈ [n] \ S and therefore the construction yields a correct decision tree for f .

It merely remains to prove that 0-good and 1-good inputs can be found in Steps 20 and 24. This
relies on a certain disperser property of the inner product function I Pd .

49

	Best current SAT algorithms
	The Exponential Time Hypothesis
	The Strong Exponential-Time Hypothesis (SETH)
	Algorithms for Orthogonal Vectors?
	More on ETH and Parameterized Complexity
	Longest-Common Subsequence
	LCS is hard even given a very weak SETH
	Circuit-SAT Algorithms Imply Lower Bounds
	SAT solvers
	Resolution Proofs
	Communication Complexity and Lifting
	Deterministic Lifting

