
Approximate Counting and Mixing Time of Markov Chains Fall 2024

Lecture 9: Spectral Independence
Lecturer: Shayan Oveis Gharan

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

For the next few lectures we study the Glauber dynamics on two state spin systems. In other words, suppose
we have a graph G = (V,E) we want sample from the state space {±1}V . We are going to see that if the
underlying distribution π on {±1}V exhibits limited ”spectral” correlations then the Glauber dynamics mies
in almost linear time (when G is bounded degree).

For σ ∈ {±1}V let

σ⊕i(j) =

!
−σj if j = i

σj otherwise

Recall that the Glauber dynamics works as follows: First we choose a u.r. vertex i then, with probability
π(σ⊕i)

π(σ)+π(σ⊕i) we move to σ⊕i and otherwise we stay.

It is also instructive to write down the Dirichlet form

EK(f, f) =
1

2

"

σ∈{±1}V

π(σ)
1

n

n"

i=1

π(σ⊕i)

π(σ) + π(σ⊕i)
(f(σ)− f(σ⊕i))2

Pinning. Let π be a distribution on {±1}V . For a any set of vertices i1, . . . , ik (for any 1 ≤ k < n) and
signs s1, . . . , sk we let

π(i1,s1),...,(ik,sk)) := π|σi1 = s1, . . . ,σik = sk.

In other words, this is the conditional measure on all vertices in V − {i1, . . . , ik} when we pin i1, . . . , ik to
signs s1, . . . , sk respectively.

Averaging / Projection. Conversely, given π and a set S ⊆ V we let πS to be distribution π projected
onto the set S when we average out all vertices outside of S. In other words,

πS(τ ∈ {±1}S) =
"

σ:σS=τ

π(σ).

Having that we can re-write the Dirichlet form as follows:

EK(f, f) =
1

2
Ei

"

σ∈{±1}V

(π(σ) + π(σ⊕i)) · π(σ⊕i)

π(σ) + π(σ⊕i)
· π(σ)

π(σ) + π(σ⊕i)
· (f(σ)− f(σ⊕i))2

= Ei

"

σ∈{±1}V

(π(σ) + π(σ⊕i)) ·Varπσ−i
(f)

= EiEτ∼πV −i Varπτ (f).

Note that πσ−i is the pinning of π on all vertices in V − i according to σ. It follows that to bound the
Poincare constant it is enough to relate the local variance to the global variance of f .

11-1
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11.1 Spectral Independence

Definition 11.1 (Spectral Independence). Let π be a probability distribution over {±1}V . Define the influ-
ence matrix Ψπ ∈ RV×V ,

Ψπ(i, j) = Pπ [σj = +1|σi = +1]− Pπ [σj = +1|σi = −1] .

If i = j we simply let Ψπ(i, i) = 1. We say π is η-spectrally independent if λmax(Ψπ) ≤ 1 + η.

Fact 11.2. Let Dπ be the diagonal matrix with Dπ(i, i) = Var(σi). Then,

Ψπ = D−1
π Cov(π)

In particular π is η-spectrally independent iff Cov(π) ≼ (1 + η)Dπ

Note that this fact in particular implies that Ψπ has real eigenvalues, as eigenvalues of Ψ is the same as

eigenvalues of the symmetric matrix D
−1/2
π CovD

−1/2
π .

Proof. The first observation is that

Var(σi) = P [σi = +1]P [σi = −1] (1− (−1))2 = 4P [σi = +1]P [σi = −1]

On the other hand, let pi = P [σi = 1] , pj = P [σj = 1]. Then,

Cov(i, j) = Eσiσj − EσiEσj

= Eσiσj − (2pi − 1)(2pj − 1)

= 4(P [σi = σj = +1]− P [σi = +1]P [σj = +1]).

To see the last line observe that

−P [σi = 1,σj = −1] + pi = P [σi = σj = 1] ,

−P [σi = −1,σj = 1] + pj = P [σi = σj = 1]

P [σi = σj = −1] + pi + pj − 1 = P [σi = σj = 1]

Having this, we can write

D−1
π Cov(i, j) =

P [σi = σj = +1]− P [σi = +1]P [σj = +1]

P [σi = +1]P [σi = −1]

=
P [σj = 1|σi = 1]− P [σj = 1]

P [σi = −1]

=
P [σj = 1|σi = 1]− P [σj = 1,σi = −1]− P [σj = 1,σi = 1]

P [σi = −1]

=
P [σj = 1|σi = 1] (1− P [σi = 1])− P [σj = 1,σi = −1]

P [σi = −1]
= Ψπ(i, j).

Ex1: Independent Case. Suppose π is a product distribution. In that case for any i, j ∈ U , σj |σi is
distributed the same as σj . Therefore, all off-diagonal entries of Ψπ are zero. So, Ψπ = I and π is 0-spectrally
independent.
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Extreme Positively Correlation. Suppose there are only two sets in the support of π({+1, . . . ,+1})) =
π({−1, . . . ,−1} = 1/2. In this case the distribution is very positively correlated. It follows that Ψπ = JV ,
where J is the all-ones matrix. So, π is n− 1-spectrally independent. Note that in this case any local chain
which only flips the state of one particle is not irreducible (the chain has only two states and to mix one has
to change the state of all particles simultaneously).

Negatively Correlated Case. For another example, suppose π is a negatively correlated distribution over
{±1}V which is k-homogeneous, namely for any i, j ∈ [n], P [σi = +|σj = +] ≤ P [σi = +|σj = −] and that
every σ in the support of π has exactly k many +’s. It is welll-known that for any matrix M ,

λmax(M) ≤ max
i

"

j

|Mi,j |

In our setting, we get

λmax(Ψπ) ≤ max
i

1 +
"

j ∕=i

|P [σj = +|σi = +]− P [σj = +|σi = −] |

= 1 +max
i

######

"

j ∕=i

P [σj = +|σi = +]− P [σj = +|σi = −]

######
(negative correlation)

= 1 +max
i

|E[|σ|+ − 1|σi = +]− E[|σi|+|σi = −]| = 2

where |σ|+ is the number of +’s in σ. So, π is 2-spectrally independent.

By now there are various proofs of this theorem. However, this was first proven following a long line of works
on simplicial complexes started with works of [DK17; KO20; AL20; ALO21]

Theorem 11.3 (Mixing for Sparse Graphical Models). Let π be a probability measure on {±1}V . Suppose
π satisfies the following properties: (i) Spectral Independence: There exists η ≤ O(1) such that for every
S ⊆ [n] and every pinning τ : S{±1}, the conditional distribution πτ is η-spectrally independent. Then
Glauber dynamics has spectral gap at least ?.

11.2 Poincaré Inequality via Spectral Independence

In this section we prove Theorem 11.3. The main tool is the following tensorization of variance.

Lemma 11.4 (Approximate Tensorization of Variance). Let π be a distribution on {±1}V that is η-spectrally
independent. Then, for any function f : {±1}V → R,

(1− 1 + η

n
)Varπ(f) ≤ EiEσi∼πi Varπi,σi

(f) (11.1)
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Proof of Theorem 11.3. By repeatedly applying (11.1) we can write

Var(f) ≤
$
1− 1 + η

n

%−1

EiEσi∼πi Varπi,σi
(f) (spect Ind of π)

≤
$
1− 1 + η

n

%−1 $
1− 1 + η

n− 1

%−1

Ei,jEσi,σj∼πi,j Varπi,σi,j,σj
(f) (spect Ind of πi,σi)

. . .

≤
k−1&

j=0

$
1− 1 + η

n− j

%−1

ES∼(nk)
Eσ∼πS VarπS,σ

(f)

. . .

≤
n−1&

j=0

$
1− 1 + η

n− j

%−1

ES∼( V
n−1)

Eσ∼πS VarπS,σ
(f)

≲ exp

'
(1 + η)

n−1"

i=0

1

n− i

(
E(f, f) ≲ n1+ηE(f, f)

as desired.

Remark 11.5. Note that if η > 1, the quantity 1− 1+η
n−k < 0 for values of k very close to n. So, instead, one

needs a slightly different bound on spectral independence for such values of k. Typically just the connectivity
of the support of the Ψ is enough to show prove that λ(Ψπτ ) ≤ C(n − k) when we pin n − k coordinates in
τ . We ignore those details as they simply change the final bounds by constants.

Note that if we have a perfect independent distribution then we would have

Var(f) =
"

i

Eσ∼πV −i VarπV −i,σ
(f) = n · E(f, f).

In other words, the extra ”small” loss nη is due to small correlation/dependence between the particles in the
system.

Let me also formalize the following tensorization of variance for disconnected graphs:

Lemma 11.6. Suppose G is a disconnected graph with components S, S. So, π is a product measure where
σ(σS ,σS) = πG[S](σS)·πG[S](σS). Similarly, for a function f ∈ {±1}n → R let fS and fS be the specialization

of f to vertices in S, S respectively.

Varπ(f) = VarπG[S]
(fS) + VarπG[S]

(fS)

In the rest of this section we prove Lemma 11.4.

There is a well-known fact in probability called the law of total variance.

Lemma 11.7 (Law of Total Variance). For random variables X,Y jointly distributed we have

Var(Y ) = EVar(Y |X) + Var(E[Y |X])

We can use this lemma to write

Lemma 11.8. Let π1 : V × {±1} → R≥0 be the average of πi measures. Namely, π1(i, s) = 1
nP [σi = s].

and let f1(i, s) = Eσ[f(σ)|σi = s]. Then, by law of total variance,

Var(f) = EiEσi∼πi Varπi,σi
(f) + Varπ1(f1)
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Lemma 11.9.
Varπ1(f1)

Varπ(f)
≤ 1 + η

n

Lemma 11.4 simply follows from this and the law of total vriance.

Proof. For any i ∈ [n] and s ∈ {±1}, think of πi,s as a vector in R2n where

πi,s(σ) =

!
π(σ)

P[σi=s] if σi = s

0 otherwise
.

Similarly, let 1i,s = I [σi = s]. Then, observe that

Varπ1(f1) =
"

i,s

π1(i, s)f1(i, s)2 − 〈f, 1〉π

= f⊤

)

*
"

i,s

π1(i, s)πi,sπ
⊤
i,s

+

, f − 〈f, 1〉π =: 〈Pf, f〉π,

where P =
-

i,s
1
n1i,sπ

⊤
i,s. Note that P is a stochastic matrix.

Varπ(f) = 〈f, f〉π − 〈f, 1〉π.
It follows that

max
f

Varπ1(f1)

Var(f)
= max

f

〈Pf, f〉π − 〈f, 1〉π
〈f, f〉π − 〈f, 1〉π

= λ2(P )

So, to prove the lemma it is enough to show that λ2(P ) ≤ 1+η
n . The observation is that P is a low-rank

matrix. In particular, let U be the matrix with columns 1
n1i,s and R be the matrix with rows πi,s. Then,

P = UR, and λ2(P ) = λ2(UR) = λ2(RU). Let M = RU ∈ R2n×2n. In particular,

M(i, s1, j, s2) =
1

n

"

σ

π(σ)

P [σi = s1]
I [σi = s1,σj = s2] =

P [σi = s1,σj = s2]

nP [σi = s1]
=

1

n
P [σj = s2|σi = s1]

In fact if we take off the projection on the all-ones vector, we have

(nM − 1π⊤)(i, s1, j, s2) = (P [σj = s2|σi = s1]− P [σj = s2])

The above matrix is very similar to the co-variance/influence matrix. It turns out that

nM − 1π⊤ − I =

.
Aπ −Aπ

Bπ −Bπ

/

where Ψπ − I = Aπ −Bπ. It then follows that Ψπ − I has the same non-zero eigenvalues as nM − 1π⊤ − I.
This implies that λ2(M) = 1

nλmax(nM − 1π⊤) = 1
n (1 + λmax(Ψπ − I)) ≤ 1+η

n as desired.

11.3 Shattering Lemma and Optimal Poincaré Constant

In this section, we sharpen our previous analysis in the setting of graphical models on bounded-degree
graphs. In particular, we assume that G is a graph with maximum degree ∆. and we prove an Ωη,∆(1/n)
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lower bound on the spectral gap of Glauber dynamics without assuming marginal boundedness. This implies
O(n2)-mixing. In future lectures we will bound the MLS constant by 1/n which gives the optimal O(n log n)
mixing.

First, recall that

Lemma 11.10. Let G be a graph with n vertices and maximum degree ∆. Then, for any any positive integer
ℓ ≥ 1, and for any vertex v ∈ V ,

PS∈( n
θn)

[|Sv| = ℓ] ≤ (2e∆θ)ℓ−1

Here Sv is the unique maximal connected component of the induced subgraph G[S] that contains v.

The main observation is the following lemma of Borgs-CHayes-Kahn-Lovász

Lemma 11.11. The number of connected induced subgraph of G that contains v is at most (e∆)ℓ−1.

Proof Sketch. Let T be the complete ∆-ary tree of depth ℓ rooted at r. The observation is that the number
of subtrees of T rooted at r with exactly ℓ vertices is exactly

1

ℓ

$
ℓ∆

ℓ− 1

%
≤ (e∆)ℓ−1

2

(see e.g., Stanley’s book for a proof). Now, the number of subtrees of G with ℓ nodes containing v is at most
that of T (one can give a one-to-one mapping of such subtrees of G to subtrees of T ).

Proof. Now, we are read to finish the proof. Let k = θn.

PS∼(nk)
[|Sv| = ℓ] ≤

"

U∈(Vℓ ),v∈U,G[U ] conn

PS [U ⊆ S] ≤
####

0
U ∈

$
V

ℓ

%
: v ∈ U,G[U ] conn

1#### · P [U ⊆ S]

≤ (e∆)ℓ−1θℓ (Lemma 11.11)

≤ (e∆θ)ℓ−1 (k = θn)

To see the second to the last line say U = {u1, . . . , uℓ}; then

P [U ⊆ S] = P [u1 ∈ S]P [u2 ∈ S|u1 ∈ S] . . .P [uℓ ∈ S|u1, . . . , uℓ−1 ∈ S] ≤ θℓ.

Theorem 11.12. If G has maximum degree ∆ (and π(σ) ≥ 1/Cn for a constant C and any σ then, the
Poincaré constant of the Glauber dynamics is at most Oη,∆(1/n).

Proof. Let k = (1− θ)n for a value of θ ≪ 1/∆ that we choose later. Similar to before, we can write

Var(f) ≤ θ−(1+η)ES∼(nk)
Eσ∼πS VarπS,σ

(f)

= θ−(1+η)ES∼(nk)

"

U comp of G\S

VarπG[U]
(fU ) (Independence of components)

≤ θ−(1+η)ES∼( n
n−k)

Eτ∼πS

"

v/∈S

Eσ∼πV −v
τ

λ|Sv| VarπV −v,τ,σ
(f)

≤ θ−(1+η)
"

v

Eσ∼πV −v VarπV −v,σ
(f) ·

"

ℓ

λℓ(2e∆θ)ℓ−1

≤ Oη,∆(n)EvmEσ∼πV −v VarπV −v,σ
(f)
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In third equation αℓ is the worst Poincaré constant over (connected) graphs of size ℓ constaining i. The
second to the last line uses that the probability that |Sv| has size ℓ for S of size |S| = n − k = θn is at
most 2e∆θ)ℓ−1. The last line simply uses that connectivity and that the Poincaré constant, λℓ is at most
exponentially large in ℓ.
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