
Approximate Counting and Mixing Time of Markov chains Fall 2024

Lecture 8: An FPRAS for the Ferromagnetic Ising Model
Lecturer: Shayan Oveis Gharan Oct 23

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture, we will present a classic and fundamental result due to Jerrum and Sinclair[JS93] that shows
how to estimate the partition function of the ferromagnetic Ising model using the path technology.

These notes are heavily cribbed from notes written by Alistair Sinclair.1

Definition 1.1 (The Ferromagnetic Ising Model). Let G = (V,E) be an undirected graph, let β ≥ 0 (the
”inverse temperature”), and let h be any real number (the ”external field”) Associated with each vertex i ∈ V
is a spin in σi ∈ {−1,+1}; the set of spins constitutes a configuration σ ∈ ±1n. The weight of the
configuration is defined to be

w(σ) := exp






(i,j)∈E

βσiσj + βh


i∈V

σi



 .

The Gibbs distribution associates probability

π(σ) =
w(σ)

Z

to configuration σ, where

Z := Z(G, h,β) =


σ∈±1n

w(σ)

is the partition function of the ferromagnetic Ising model.

Our goal is to estimate the partition function Z, a quantity of fundamental importance in statistical physics,
and specifically, to prove the following theorem. This gives us another example of how to use the flow
encoding technique from the previous lecture.

Theorem 1.2. [JS93] There is an FPRAS for the ferromagnatic Ising partition function.

As we’ve seen for other problems, the first thing we might naturally try is to design a Markov chain on
configurations σ whose stationary distribution is π, show that this Markov chain is rapidly mixing, and then
use self-reducibility or some other technique to estimate the partition function given approximately random
samples.

Unfortunately, the natural Markov chain,i.e., the Glauber dynamics, in which we flip one spin at a time
is not rapidly mixing. For example, if β is very large and h = 0, then the distribution is concentrated on
configurations with almost all spins the same, either nearly all 1 or nearly all -1. As a consequence, it can
be shown that the time it takes to get from the all +1 configuration to the all -1 configuration using these
local dynamics is exponentially large. Therefore, at least if we want to devise a chain that works for any
ferromagnetic parameters, we will have to take a different route.

1Lecture 13 in CS294 at Berkeley from Fall 2023.
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1.0.1 Reduction to the subgraphs world

The approach will be to use a classical result [NM53] to develop a connection between the Ising model and
a seemingly unrelated model called the ”subgraphs world”, whose configurations are subgraphs of G, and
then show how to use samples from this other distribution to estimate Z. This

Definition 1.3 (The subgraphs world). Let 0 < η, ξ ≤ 1, G = (V,E) and let Ω = {A : A ⊆ E}. Define

ŵ(A) = ξ|odd(A)|η|A|,

where odd(A) is the set of vertices of odd degree in H = (V,A) and let

π̂(A) =
ŵ(A)

Ẑ
,

where
Ẑ := Ẑ(η, ξ) =



A⊆E

η|A|ξ|odd(A)|

is the partition function of the subgraphs world.

The next theorem shows that, somewhat surprisingly perhaps, up to an easily computable constant factor,
Z and Ẑ are the same and hence we can estimate Z using an estimate for Ẑ.

Theorem 1.4. Given the Ising model with graph G = (V,E) (with |V | = n) and parameters β and h, let
η := tanh(β), ξ := tanh(βh) and Cβ,h = cosh(β)|E| cosh(βh)|V |. Then

Z(G,β, h) = Cβ,h) · Ẑ(η, ξ)

Proof. Recalling that for any configuration of the Ising model, we have w(σ) := exp


(i,j)∈E βσiσj + βh


i∈V σi


,

we apply the identity
ex = cosh(x)(1 + tanh(x))

to rewrite w(σ) as follows:

w(σ) =


(i,j)∈E

cosh(βσiσj)


(i,j)∈E

(1 + tanh(βσiσj))


k∈V

cosh(βhσk)


k∈V

(1 + tanh(βhσk))

which, since cosh is an even function and tanh is an odd function, equals

= cosh(β)|E| cosh(βh)|V |


(i,j)∈E

(1 + σiσj tanh(β))


k∈V

(1 + σk tanh(βh))

= C






A⊆E

tanh(β)|A|


(i,j)∈A

σiσj










S⊆V

tanh(βh)|S|


i∈S

σi





where C = cosh(β)|E| cosh(βh)|V |

= C


A⊆E,S⊆V

tanh(β)|A| tanh(βh)|S|


i∈odd(A)

σi



j∈S

σj since σ2
k = 1

= C


A⊆E,S⊆V

tanh(β)|A| tanh(βh)|S|


i∈odd(A)⊕S

σi
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Now, define η := tanh(β) and ξ := tanh(βh). Then

Ẑ =


σ∈{±1}n

C


A⊆E,S⊆V

η|A|ξ|S|


i∈odd(A)⊕S

σi

= C


A⊆E,S⊆V

η|A|ξ|S|


σ∈{±1}n



i∈odd(A)⊕S

σi (1.1)

= C


A⊆E

η|A|ξ|odd(A)|

since


σ∈{±1}V


i∈B σi is equal to 2n if B = ∅ and 0 otherwise. Thus the only choices of S that survive

the inner summation in (1.1) above are those with S = odd(A).

Thus, if we can estimate Ẑ, then we can estimate Z.

1.1 The algorithm for sampling from π̂.

We use the Metropolis Glauber dynamics to sample from π̂, where Ω = {A}A⊆E . We denote the state at
time t by Ft ⊆ E. The transitions are then defined as follows:

• With probability 1/2, Ft+1 := Ft.

• Otherwise, pick e ∈ E uniformly at random and set

Ft+1 :=


Ft ⊕ e with probability min


ŵ(F⊕e)
ŵ(Ft)

, 1


Ft otherwise.

It is immediate that this chain is irreducible, aperiodic and has stationary distribution π̂. We will prove the
following theorem.

Theorem 1.5. For every graph G = (V,E) with n vertices and m edges and every 0 < ξ, η ≤ 1, the Glauber
dynamics, starting from the empty graph, has mixing time

Tmix ≤ O


m3

ξ6


.

When we apply this theorem later, we will ensure that ξ = Ω(1/n).

1.2 Analysis of the Markov chain using path technology

We prove Theorem 1.5 using the path technology from the previous lecture. Let us review the basic defi-
nitions, assuming that we are analyzing a Markov chain with state space Ω, kernel K(·, ·) and stationary
distribution π.

• For each pair of states x, y ∈ Ω × Ω, we choose a path Px→y and route π(x)π(y) units of flow along
that path. We will call this path the canonical path for the pair x, y.
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• The total flow f(t) on transition t = (u, v) in the Markov chain is



(x,y)∈Ω2 s.t. u→v∈Px,y

π(x)π(y).

• Given the above paths, the congestion c(t) on the transition t = u → v is defined to be

c(t) =
f(t)

Q(t)
:=

1

π(u)K(u → v)



(x,y)∈Ω2 s.t. t=u→v∈Px,y

π(x)π(y).

• In the previous lecture, we proved the following bound due to Jerrum and Sinclair:

1

α
≤ ℓmax ·max

u→v
c(u → v) (1.2)

where α is the Poincare constant and ℓmax = maxx,y |Px,y|. Plugging this bound into the standard
bound on mixing time based on the Poincare’ constant, we obtain

Tmix(, s) ≤ ℓmax ·max
u→v

c(u → v)

log(4π(s))−1 + 2 log(−1)


. (1.3)

where Tmix(, s) is the number of steps to get the total variation distance from π down to  starting
from state s ∈ Ω.

Suppose, for example, that we wanted to use this technique to show that the mixing time of a Markov chain
is polynomial in parameter n. In most applications, the canonical paths are shortest paths, hence bounded
in length by the diameter of the Markov chain which is polynomial in n. Suppose also that π is uniform and
the transition probabilities are at least 1/poly(n). Then we would need to show that the number of canonical
paths that pass through any transition of the chain is at most |Ω| · (polynomial in n). This is particularly
challenging if we do not not even know what |Ω| is. To get around this, Jerrum and Sinclair came up with
an ingenious approach known as ”flow encodings”.

1.2.1 Flow encodings

The idea is the following: for each transition u → v construct an injective mapping from the pairs (x, y)
whose canonical paths pass through transition u → v to the state space Ω. Since the map is injective, any
state z ∈ Ω picks out at most one path (x, y) that uses the transition t = u → v, namely the (x, y) that are
mapped to z by the mapping associated with transition t. Thus, z can be thought of as an ”encoding” of
the canonical path. The goal is to define this injective mapping so that the flow π(x)π(y) routed from x to y
is roughly proportional to π(z). This enables us to bound the total flow through each transition and hence
the congestion on any transition in the Markov chain.

In more detail, we need the following definitions and lemma.

Definition 1.6 (Qu→v). Denote by Qu→v the set of pairs (x, y) ∈ Ω2 such that path Px,y goes through the
transition u → v.

Definition 1.7 (Flow encoding). Given the set of canonical paths {Px→y}x,y∈Ω2 , and the induced sets
{Qu→v}, one per transition u → v of the Markov chain, a flow encoding for the set of canonical paths is
a collection of injective maps, one per transition of the Markov chain

{enct : Qt → Ω}t=(u,v).
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Lemma 1.8. Let {enct} be a flow encoding for the canonical paths, such that for some γ > 0, for all
x, y ∈ Ω2 and any transition t = u → v such that (x, y) ∈ Qu→v

π(x)π(y)

π(u)K(u → v)
≤ γ · π(encu→v(x, y)).

Then the maximum congestion maxu→v c(u → v) is at most γ.

Proof. Consider any transition u → v. Then

c(u → v) =
1

π(u)K(u → v)



x,y∈Ω2 : (x,y)∈Qu→v

π(x)π(y)

≤ γ ·


x,y∈Ω : (x,y)∈Qu→v

π(encu→v(x, y))

which by injectivity of the map encu→v

≤ γ ·


z∈Ω

π(z) ≤ γ.

1.2.2 Canonical paths for the subgraphs model

We now apply the canonical paths/flow encoding technique to the subgraphs model. To avoid confusion and
make it clear that states correspond to subsets of edges, we will name the states of the Markov Chain by
capital letters. (So concretely, what we might have called x and y above, we are now calling I and F , and
what we called u, v above, we are now calling A,B, where I, F,A,B ⊆ E.)

The first step is to define the canonical paths PI,F from any initial state I to any final state F .

Specifically, for a pair of states I, F (each corresponding to a subset of edges in E) let

∆ = I ⊕ F

be the symmetric difference of the set of edges in I and the set of edges in F . Suppose that ∆ has 2k vertices
of odd degree. (Necessarily there is an even number of vertices of odd degree.) Then the edges in ∆ can
be covered with a collection of edge-disjoint paths and circuits C1, . . . , Cr, where C1, . . . , Ck are paths that
start and end at a vertex of odd degree, and Ck+1, . . . , Cr are circuits.

To find these, simply pick an odd vertex in (V,∆) and walk without repeating edges until the first time
another odd vertex is encountered. Then delete all covered edges. Repeat until k paths have been found. At
this point, all remaining vertices in ∆ have even degree, so the remaining edges can be covered by a union
of Eulerian tours. Since the paths and circuits covering the edges in ∆ are not uniquely identified, use some
predefined rule to pick out a particular choice, that includes a distinguished initial vertex in each path or
circuit and a direction. For example, number the vertices, always start from the lowest numbered vertex and
choose the neighboring edge that connects to the lowest numbered vertex.

Definition 1.9 (The canonical paths). The canonical path from I to F consists of ”fixing” the paths and
circuits in sequence from C1 to Cr. To process a particular path or circuit Ci, with transitions in order
t1, . . . , tj, move along those edges, adding the corresponding edge if it’s in F and removing the edge if it’s in
I.
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Definition 1.10 (The flow encoding). For each (I, F ) ∈ QA→B, where B = A ⊕ e is a transition of the
Markov chain, define

encA→B(I, F ) = I ⊕ F ⊕ (A ∪B).

Lemma 1.11. The above flow encoding is injective. In other words, the transition A → B and z ∈ Ω (in
the range of encA→B) uniquely determine the pair I, F s.t. encA→B(I, F ) = z.

Proof. First observe that

encA→B(I, F )⊕ (A ∪B) = I ⊕ F ⊕ (A ∪B)⊕ (A ∪B) = I ⊕ F.

Moreover, since A ⊕ B = e is the edge that is added or deleted by the transition A → B, we know exactly
which portions of the paths/cycles have been ”processed” so far and where in the canonical path we are.
We also know that A agrees with F on the paths and circuits already processed and with I on the rest from
which we can uniquely reconstruct I and F .

Lemma 1.12. For any pair of states I, F and any transition t = A → B on the canonical path from I to
F , we have

ŵ(I)ŵ(F ) ≤ ξ−4 ŵ(A ∪B) · ŵ(enct(I, F )).

Proof. Recall that by definition ŵ(A) = ξ|odd(A)|η|A|, where odd(A) is the set of vertices of odd degree in
H = (V,A). Since the multiset of edges in I ⊎ F and and (A ∪ B) ⊎ enct(I, F ) are the same, η|I|η|F | =
η|A∪B|ηenct(I,F ), it suffices to show that

ξodd(I)ξodd(F ) ≤ ξ−4ξodd(A∪B)ξodd(enct(I,F )). (1.4)

We analyze the contribution to (1.4) from each vertex. Start with the observation that for any two sets of
edges C,D,

v ∈ odd(C)⊕ v ∈ odd(D) ≡ v ∈ odd(C ⊕D). (1.5)

Now, for a vertex v, let2

α(v) = 1v∈odd(A∪B) + 1v∈odd(enc) − 1v∈odd(I) − 1v∈odd(F ) ∈ {−2, . . . , 2}.

Let processed be the set of edges toggled in the prefix of the canonical path PI,F up to the point when the
state A ∪B is reached. Then

A ∪B = processed⊕ I and enc = processed⊕ F (1.6)

Now, suppose that v ∈ odd(I ⊕ F ). Then we get the following chain of implications:

v ∈ odd(I ⊕ F ) =⇒
1.5

v ∈ odd(I) iff v ∕∈ odd(F ) =⇒
1.6

v ∈ odd(A ∪B) iff v ∕∈ odd(enc)

Thus α(v) = 0.

Otherwise, v has even degree in I ⊕ F . Suppose first that v also has even degree in processed. Then:

v ∕∈ odd(I ⊕ F ) and v ∕∈ odd(processed) =⇒
1.6

v ∈ odd(I) iff v ∈ odd(A ∪B)

and =⇒
1.6

v ∈ odd(F ) iff v ∈ odd(enc)

2Note that henceforth we are writing enc := enct(I, F ).
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so again α(v) = 0.

It remains to consider the case where v ∕∈ odd(I ⊕ F ) and v ∈ odd(processed). But this implies that v is
either the final endpoint of the last edge flipped in A ∪B or the start vertex of the current circuit, if one is
being processed. In either of these cases, it could be that α(v) = 2, which altogether proves (1.4).

Putting it all together, we obtain the following bound:

Lemma 1.13. The mixing time starting from the empty set is

Tmix(, ∅) = O(m2ξ−6 log −1).

Proof. We need to find the γ s.t.
π(I)π(F )

π(A)P (A → B)
≤ γ · π(enc).

where enc = I ⊕ F ⊕ (A ∪B).

Now, we have B = A⊕ e and so by reversibility of the chain,

π(A)P (A → B) = π(A ∩B)P (A ∩B → A ∪B),

so

ŵ(A ∩B)P (A ∩B → A ∪B) = ŵ(A ∩B)
1

2m
min


ŵ(A ∪B)

ŵ(A ∩B)
, 1


=

1

2m
min(ŵ(A ∪B), ŵ(A ∩B))

so
π(I)π(F )

π(enc)π(A ∩B)P (A ∩B → A ∪B)
= 2m · ŵ(I)ŵ(F )

min(ŵ(A ∪B), ŵ(A ∩B))ŵ(enc)
≤

Lemma 1.12

2m

ξ6

In the final inequality, we also used the fact that η in [0, 1], and A ∪ B and A ∩ B differ on only one edge,
so min(ŵ(A ∪ B), ŵ(A ∩ B)) ≥ ξ2ŵ(A ∪ B) Finally, the canonical paths have length at most m, and we
start the walk from the empty set, which has maximum weight among states of the Markov chain and hence
π̂(∅) ≥ 2−m. Plugging into Lemma 1.3, we obtain

Tmix(, ∅) = O(m3ξ−6 log −1).

1.2.3 From approximate sampling of π̂ to approximately estimating Z

We know how to get a good estimate of Z, the partition function of the ferromagnetic Ising model, given a
good estimate of Ẑ: simply multiply by C(β, h). What is less obvious is how to estimate Ẑ given approximate
samples from the subgraph world.

In particular, the subgraphs model is not trivially self-reducible, since once an edge has been set to be in
or out, that must be further considered when counting the number of odd degree vertices in the reduced
problem.

This can be handled, but we will take a different approach:
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Fix η and define Ẑ(ξ) := Ẑ(ξ, η). We will define a sequence of ξ values

1 = ξ0 > ξ1 > . . . > ξr = ξ

and then write

Ẑ(ξ) = Ẑ(ξ0)

r

i=1

Ẑ(ξi)

Ẑ(ξi−1)
.

Two easy observations:

1) Ẑ(ξi) is decreasing sequence.

2) Ẑ(ξ0) = Ẑ(1) =
|E|

ℓ=0

|E|
ℓ


ηℓ = (1 + η)|E| and therefore is trivially computable.

This leaves us with the job of figuring out how to estimate Ẑ(ξi)

Ẑ(ξi−1)
.

We will do this by sampling a subgraph A from the subgraphs model with parameters ξi−1 and η and then
evaluating the random variable X on that sample, defined as

X :=


ξi

ξi−1

|odd(A)|
.

Observe that

E(X) =
1

Ẑ(ξi−1)



A⊆E

ŵi−1(A)


ξi

ξi−1

|odd(A)|

=
1

Ẑ(ξi−1)



k even



A||odd(A)|=k

η|A|ξki−1


ξi

ξi−1

k

=
1

Ẑ(ξi−1)



k even



A||odd(A)|=k

η|A|ξki

=
Ẑ(ξi)

Ẑ(ξi−1)

Therefore, if we sample from the distribution π̂i−1 sufficiently many times, and average the values of X on
those samples, we will obtain a good estimate of E(X).

Of course, to make sure the number of samples t we need is not too small, and since X ≤ 1, we will need
the expected value of X not to be too small.

If we take
ξi

ξi−1
= 1− 1

n
,

then 
ξi

ξi−1

|odd(A)|
=


1− 1

n

|odd(A)|
∈ [1/e, 1]

so a polynomial number of samples suffices to get 1 + 1/poly(n) error. Thus, taking ξi = (1 − 1/n)i, for
i = 1, . . . , cn lnn, we can get down from ξ0 = 1 to any ξ ≥ 1/n. Moreover, from Theorem 1.13, the running
time to obtain each sample for values of ξ in this range is polynomial.
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Finally, for the case where 0 ≤ ξ < 1/n, we show that

Ẑ(0)

Ẑ(1/n)
≥ 1/e2.

which allows us to estimate Ẑ(ξ) for any ξ in this range by sampling at ξ = 1/n. (To estimate Ẑ(0), for
example, we sample at ξ = 1/n, and evaluate the random variable X = 0|odd(A)| = 1{odd(A) = ∅}.) It
remains to show:

Claim 1.14.
Ẑ(0)

Ẑ(1/n)
≥ 1/e2.

Proof. For this, we turn back to the Ising model and recall that ξ = tanh(βh). Since it holds that

x ≤ tanhx

1− tanh2 x
∀x ≥ 0

when tanh(βh) = ξ = 1/n, this inequality gives

βh ≤ 1/n

1− 1/n2
≤ 2

n
.

Now consider any configuration σ of the Ising model. and evaluate wβ,0(σ)/wβ,h(σ), where wβ,h is the weight
of σ in the Ising model with parameters β and h when βh ≤ 2/n and wβ,0 is the weight of σ for the Ising
model with the same β but h = 0. Then

wβ,0(σ)

wβ,h(σ)
= e−βh


u∈V σ(u) ≥ e−

2
n


u∈V σ(u) ≥ 1

e2
.

It follows that
Ẑ(0)

Ẑ(1/n)
=

Z(β, h = 0)

Z(β, h : βh ≤ 2/n)
× Cβ,h

Cβ,0
≥ 1

e2
,

since Cβ,h ≥ Cβ,0.
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