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Approximate Counting and Mixing Time of Markov chains Fall 2024

Lecture 5&6: Spectral Graph Theory of MCs
Lecturer: Shayan Oveis Gharan 01/04/22

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

THroughout this lecture we study spectral properties of the Markov Kernel K for a reversible Markov chain.

5.1 Random Walk Operator

Recall that for a simple random walk on G says that if I am at vertex u, I choose an edge incident to u with
probability proportional to its weight. For any adjacent nodes u and v, let

K(x, y) =
w({x, y})
dw(x)

.

For a function f : V → R, define

Kf(y) :=
∑
x

K(x, y)f(y).

We equip the linear space RV with the following inner product: For two vectors f, g : V → R, define

〈f, g〉π = Ex∼π f(x)g(x) =
∑
x

π(x)f(x)g(v).

When clear from context, we drop the subscript π from the norm. This naturally defines a norm, where for
any such function f , ‖f‖ =

√
〈f, f〉.

Fact 5.1. K is self-adjoint with respect to the above inner product, i.e., for any two functions f, g : V → R,

Proof.

〈f,Kg〉 = Ex∼π [f(x)Kg(x)]

= Ex∼π

[
f(x)

∑
y∼x

w({x, y})
dw(x)

g(y)

]

=
∑
{x,y}

w({x, y})
W

f(x)g(y)

where W is the sum of weights of all edges. Similarly, you can verify that 〈Pf, g〉 is also equal to the RHS.

Fact 5.2. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of the K. It holds that λ1 = 1 and λn ≥ −1.
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Proof. First, observe that the all-ones function 1 is an eigenfunction,

P1 = 1.

Second, we show λi ≤ 1 for all i. For any eigenfunction f : V → R, with eigenvalue λ, i.e., Pf = λf , we
claim that λ ≤ 1. Say u = argmaxv |f(v)|. Then,

λf(u) = Pf(u) = E{u,v}|u f(v) ≤ E{u,v}|u |f(v)| ≤ E{u,v}|u |f(u)| = |f(u)|.

In the second inequality we used |f(v)| ≤ |f(u)| for all v ∈ V . So, we have λ ≤ 1 as desired. Also, observe
from the same inequality that |λ| ≤ 1 as desired.

5.2 Background on Spectral theorem for self-adjoint operators

For this section, we consider CV as a vector space.

Definition 5.3 (Inner Product). We say 〈., .〉 is an inner product if

• It is linear, i.e., for f, g, h ∈ CV , a ∈ C, 〈af + g, h〉 = a〈f, h〉+ 〈g, h〉.

• For any 〈f, f〉 ≥ 0, and

• For any f, g ∈ CV , we have 〈f, g〉 = 〈g, f〉.

Definition 5.4 (Self-adjoint Operators). We say an operator P is self-adjoint with respect to an inner
product 〈., .〉, if for any f, g ∈ CV , 〈Pf, g〉 = 〈f, Pg〉.

Theorem 5.5. Suppose P : CV → CV is a self-adjoint operator with respect to 〈., .〉. Then, there are
n = dim(CV ) = |V | real eigenvalues λ1 ≥ · · · ≥ λn with corresponding orthonormal eigenfunctions f1, . . . , fn
such that for any 1 ≤ i < j ≤ n,

〈fi, fj〉 = 0,

and for any i, ‖fi‖ = 1.

First, we show that any operator on CV has an eigenvalue:

Lemma 5.6. Let W ⊆ CV be a function/vector space and let P : W → W be a linear operator. Then, P
has an eigenvalue, Pf = λf for a function f ∈W .

Proof. Let f ∈W be an arbitrary non-zero function. Consider

f, Pf, P 2f, . . . Pnf

where n = dim(W ) is the dimension of our function space. It follows that there exists c0, . . . , cn ∈ C such
that

c0f + c1Pf + . . . cnP
nf = 0

Consider the polynomial p(x) = c0+c1x+· · ·+cnxn. By the fundamental theorem of algebra this polynomial
has n roots over the complex domain, λ1, . . . , λn ∈ C. So, we can write

p(x) = cn

n∏
i=1

(x− λi).
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Consider the operator pP : W →W where for g ∈W we have

pP g = c0g + c1Pg + · · ·+ cnP
ng,

and notice that by definition pP f = 0. Consequently,

pP f =

(
cn

n∏
i=1

(P − λiI)

)
f = 0

Consider the following sequence of vectors:

f0 = f, f1 = Pf − λ1f, f2 = Pf1 − λ2f1, . . . , fn = Pfn−1 − λnfn−1

But, cnfn = pP f = 0. Since f 6= 0, there must be an 0 ≤ i < n such that fi 6= 0 but Pfi − λfi = 0. But
then we get fi is an eigenfunction with eigenvalue λi.

Now, we show that for self-adjoint operators this eigenvalue is real:

Fact 5.7. Let P be a self-adjoint operator CV → CV with an eigenvalue λ, i.e., Pf = λf Then, λ ∈ R. In
particular, if P : RV → RV then we can assume f is real, i.e., f ∈ RV .

Proof. Recall for any function f ∈ CV , ‖f‖2 = 〈f, f〉 ≥ 0. So,

‖Pf‖2 = 〈Pf, Pf〉 = 〈P 2f, f〉 = λ2 ‖f‖2 .

Since ‖Pf‖2 , ‖f‖2 ≥ 0 we must have, λ2 ≥ 0 and therefore λ ∈ R.

To see the second conclusion suppose f = ig + h for g, h ∈ RV . Then,

Pf = P (ig + h) = iPg + Ph = λf = iλg + λh

Since Pg, Ph, λg, λh ∈ RV we must have Pg = λg and Ph = λh.

Proof of Theorem 5.5. We prove this by induction on the dimension of the function space. By above lemmas
P has a real eigenvalue λ with corresponding eigenfunction f ∈ CV and without loss of generality assume
‖f‖ = 1.

Let W = {g : 〈g, f〉 = 0} be the set of vectors orthogonal to f . For any g ∈W , we have

〈Pg, f〉 = 〈g, Pf〉 = 〈g, λf〉 = λ〈g, f〉 = 0.

Therefore, P maps W → W . So, since W has one less dimension, by the IH P has n − 1 real eigenvalues
λ2, . . . , λn with corresponding orthonormal eigenfunctions f2, . . . , fn ∈W .

5.3 Functional Analysis of Markov Chains

Consider a Markov chain on a state space Ω with a (reversible) Markov kernel K. Let Φ be a convex function
that we choose later.

For a function f : Ω→ R, define
DΦ
π (f) = Eπ [Φ ◦ f ]− Φ(Eπ f)

Observe that, if Φ is convex, then by the Jensen’s inequality,

DΦ
π (f) ≥ 0

for all functions f . Furthermore, it is equal to zero if f is a constant function.
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Example 5.1. Let f = ν/π be the ratio of a probability distribution ν over Ω to π. For, Φ(x) = 1
2 |x − 1|,

we have

DΦ
π (f) = Eπ

1

2

∣∣∣ν
π

(x)− 1
∣∣∣− 1

2

∣∣∣Eπ ν
π
− 1
∣∣∣ =

∑
x

1

2
|ν(x)− π(x)| − 0 = ‖ν − π‖TV

Example 5.2 (Variance). Suppose Φ(x) = x2. Then,

DΦ
π (f) = Eπ[f2]− (E f)2 = ‖f − E f‖2π = Var(f)

It turns out that that this gives upper-bound on the total variation distance: For a probability distribution ν,
f = ν/π, by Cauchy-Schwartz inequality we have

‖ν − π‖TV = Eπ
1

2
|ν
π

(x)− 1|

≤ 1

2

√
Eπ(

ν

π
(x)− 1)2

=
1

2

√
Eπ(

ν

π
)2 − Eπ

ν

π

=
1

2

√
Eπ(

ν

π
)2 −

(
Eπ

ν

π

)2

=
1

2

√
DΦ
π (f)

where we used that Eπ ν
π =

∑
x ν(x) = 1.

Example 5.3 (Entropy). Now, suppose Φ(x) = x log x. Then,

DΦ
π (f) = Eπ[f log f ]− Eπ[f ] logEπ[f ]

In this case, DΦ
π (ν‖π) =

∑
x ν(x) log ν(x)

π(x) , is the KL-divergence of ν, φ where we again used that Eπ ν
π = 1.

In this case it follows by the Pinsker’s inequality that

‖ν − π‖TV ≤
√

1

2
DΦ
π (
ν

π
)

5.4 Contraction

Lemma 5.8 (Data Processing Inequality). For any non-negative function f : Ω→ R≥0 and for any convex
Φ, we have

DΦ
π (Kf) ≤ DΦ

π (f)

Proof. First, observe that
EπKf = 〈Kf,1〉 = 〈f,K1〉 = 〈f,1〉 = Eπ f

where we used that K is self-adjoint. So, we have Φ(EπKf) = Φ(Eπ f). So, to prove the statement it is
enough to show that

Eπ[φ ◦Kf ] ≤ Eπ[φ ◦ f ]

First by non-negativity of D, for any x, we have

0 ≤ DΦ
K(x,.)(f) = EK(x,.) φ ◦ f − φ(EK(x,.) f)



Lecture 5&6: Spectral Graph Theory of MCs 5-5

Averaging out w.r.t., π we get

0 ≤ Ex∼π Ey∼K(x,.) φ ◦ f(y)− Ex∼π φ(EK(x,.) f)

= Ey∼π φ ◦ f(y)− Ex∼π φ(Kf(x))

= Eπ[φ ◦ f ]− Eπ[φ ◦Kf ]

as desired.

We say that a Markov Kernel K exhibits a contraction if for any non-negative function f : Ω→ R≥0,

DΦ
π (Kf) ≤ (1− ε) DΦ

π (f).

It follows that if K exhibits a (1− ε) contradiction w.r.t. Φ, then for any t and any state x,

DΦ
π

(
Kt 1x

π(x)

)
≤ (1− ε)t DΦ

π (
1x
π(x)

)

Lemma 5.9. If K exhibits 1−ε contraction w.r.t., any of the Variance, Entropy or linear distance functions,
then K mixes in

log(DΦ
π (1x/π(x))

ε

Proof. Let g = Kt 1x
π(x) . Then, by reversibility for any y,

g(y) = Kt 1x
π(x)

(y) =
Kt(y, x)

π(x)
=
Kt(x, y)

π(y)

Therefore,

‖Kt(x, .)− π‖TV . O(1)

√
DΦ
π (
Kt(x, .)

π
)

=

√
DΦ
π (g)

=

√
DΦ
π (Ktf)

≤ (1− ε)t/2
√

DΦ
π (

1x
π(x)

) ≤ 1/2

The last inequality follows by letting t = 2
ε ln DΦ

π ( 1x
π(x) ).

Notice that

D
1
2 |x−1|(1x) =

1

2
|1− π(x)|

Dx2

(1x) = (
1

π(x)
− 1)

Dx log x(1x) = log
1

π(x)

This implies that we get
log 1/π(x)

ε

-mixing time with a variance contraction whereas a log log 1/π(x)
ε -mixing time with an entropy contraction.
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5.5 Dirichlet Form and Poincaré Constant

Definition 5.10. The Dirichlet form of the Markov Kernel K with respect to two functions f, g is defined
as follows:

EK(f, g) =
1

2
〈(I −K)g, f〉π = Ex∼π

∑
y

K(x, y)(f(x)− f(y))(g(x)− g(y)).

The matrix I −K is the well-known normalized Laplacian matrix. In particular, since all eigenvalues of K
are in the range [−1,+1] it follows that the eigenvalues of I −K are in the range [0, 2] and thus I −K is a
PSD matrix. This can be seen immediately by writing the quadratic form w.r.t. an arbitrary function f . In
particular, in the special case that f = g the above equation is

EP (f, f) =
1

2
Ex∼π

∑
y

K(x, y)(f(x)− f(y))2. (5.1)

This Dirichlet form is also called the Local Variance, capturing how much the function f squared varies along
edges.

Some simple facts about the Dirichlet forms:

1. EK(f, f) ≥ 0.

2. For any constant c, we have EK(cf, cf) = c2EK(f, f).

3. For any constant c, we have EK(f + c, f + c) = cEK(f, f).

(The same facts hold for variance as well.)

The Poincaré constant of K is defined as

λ(K) := inf
f≥0

EK(f, f)

Var(f)

Note that the smallest eigenvalue of I −K, namely λ1(I −K) = 0 as (I −K)1 = 0. So, by the variational
characterization of eigenvalues, the second smallest eigenvalue satisfies

λ2(I −K) = min
f :〈f,1〉=0

〈(I −K)f, f〉
〈f, f〉

= min
f 6=constant

〈(I −K)f, f〉
Var(f)

= min
f 6=constant

EK(f, f)

Var(f)
(5.2)

Here the middle equality follows from the fact that the Dirichlet form is invariant over shift; so we can
replace a (non-constant f) with f − E f . It thus follows that λ(K) = λ2(I −K); this simply follows from
the fact that both Var and EK are shift-invariant, so one can assume f ≥ 0.

It is also instructive to compare with the contraction inequalities:

Lemma 5.11. For any function f : V → R, Var(f)−Var(Kf) = EK2(f, f). Consequently, for Φ = x2,

inf
f 6=constant

1− DΦ
π (Kf)

DΦ
π (f)

= inf
f 6=constant

1− Var(Kf)

Var(f)
= inf
f 6=constant

EK2(f, f)

Var(f)
= λ2(I −K2) = .

Proof. We can write

Var(Kf) = 〈Kf,Kf〉 − (EKf)2 = 〈K2f, f〉 − 〈Kf,1〉2 = 〈K2f, f〉 − (E f)2
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(since 〈Kf,1〉 = 〈f,K1〉 = 〈f,1〉.) Therefore,

Var(f)−Var(Kf) = 〈f, f〉 − 〈K2f, f〉 = 〈(I −K2)f, f〉 = EK2(f, f).

In short, note that Poincaré constant is slightly different from the contraction ratio that we studied in
the previous section, but they are closely related as one relates to eigenvalues of I − K and the other to
eigenvalues of I −K2.

5.6 MLS constants and the Continuous time chain

Let T1, T2, . . . be a sequence of independent and identically distributed exponential random variables of rate
1. That is, each Ti takes values in [0,∞) and has an exponential distribution

P [Ti ≤ t] =

{
1− e−t if t ≥ 0,

0 o.w.

Ti’s determine times of transitions of the chain. We start with Y0 to denote the starting state of our chain;
At transition times T1 + . . . Tk for any k ≥ 1 we make a jump (according to the discrete chain). Let
Sk = T1 + · · ·+Tk. In other words if X0 = Y0 and X1, . . . , is the sequence of steps of our discrete chain then
for any t ≥ 0,

Yt = Xk for t ∈ [Sk, Sk+1).

Let Y0 be distributed according ν. Let Nt be a Poisson random variable with rate t, then

Yt ∼
∑
x

ν(x)

∞∑
k=0

P [Nt = k]Kk(x, .)

Therefore, the transition probability of the continuous chain Ht is

∞∑
k=0

P [Nt = k]Kk =

∞∑
k=0

e−ttk

k!
Kk

= e−t
∞∑
k=0

(tK)k

k!

= exp(−t(I −K)) =: Ht

The contraction of the Entropy, i.e., Dx log x
π is often called the Modified log-Sobolev constant:

ξ(K) := inf
f≥0

EK(f, log f)

Dx log x
π (f)

Note that in the numerator we naturally want to write Dx log x(Kf). The Dirichlet form naturally appears
if we instead the rate of decrease of the entropy with respect to the continuous time chain (as opposed to
the discrete chain).

Lemma 5.12. For every distribution f on Ω we have,

d

dt
Dπ(Ktf) = −EK(ft, log ft).
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Proof. Let ft = Htf . Then, as usual E ft = 〈1, Htf〉 = 1. So, D(ft) = E ft log ft. It follows that,

d

dt
Dπ(ft) =

∑
x

π(x)
d

dt
Htf(x) logHtf(x)

= −
∑
x

π(x)(I −K)Htf(x) · logHtf(x)−
∑
x

π(x)(I −K)f(x)

= −
∑
x

π(x)(I −K)Htf(x) · logHtf(x) = −EK(ft, log ft).

The second identity uses that

d

dt
Ht = −e−t

∞∑
k=0

(tK)k

k!
+ e−t

∞∑
k=1

K · (tK)k−1

(k − 1)!
= −(I −K)Ht

The third identity uses that 〈1, (I −K)f〉 = 〈(I −K)1, f〉 = 0 as (I −K)1 = 0.

We don’t write the details but one can similarly bound the mixing time of the continuous time chain uses
the MLS constant and the contraction of entropy.

We conclude this section by recalling a classical theorem which relates the mixing time of the continuous
and discrete time chains.

Theorem 5.13 (Thm 20.3 Peres book). Let K be a half-lazy (not necessarily reversible) Markov chain. For
any k and state x we have, ∥∥K4k(x, .)− π

∥∥
TV
≤
∥∥∥e−k(I−K)(x, .)− π

∥∥∥
TV

+ εk

where εk → 0 as k →∞.

Lemma 5.14 (Bobkov-Tetali’03). For every reversible Markov chain, we have ξ(K) ≤ O(λ(K)).

So, in principal MLSI constant may not necessarily give the faster mixing time if is much smaller than λ(K).

5.7 Concentration Inequalities

For a function f : Ω→ R, let

v(f) := max
x∈Ω

∑
y∈Ω

K(x, y)(f(x)− f(y))2

This function quantifies how Lipschitz f is w.r.t. the underlying graph of K. For example, if f is 1-Lipschitz,
i.e,. |f(x)− f(y)| ≤ 1 for all x, y with K(x, y) 6= 0, then v(f) ≤ 1.

Theorem 5.15 (Modified Log-Sobolev Implies Concentration). If K is reversible, then for any ε ≥ 0 and
f : Ω→ R, we have

P [|f(x)− Eπ f | ≥ ε] ≤ 2 exp

(
−ξ(K)ε2

2v(f)

)
where ξ(K) is the MLS of K.

Before proving this let us explain some applications for this inequality: Let Ω be the space of all spanning
trees of a given graph G and π be the uniform distribution. Consider the following neighborhood structure:



Lecture 5&6: Spectral Graph Theory of MCs 5-9

two spanning trees T, T ′ are neighbors if |T⊕T ′| = 2, i.e., if they differ in exactly two edges. In future lectures
we will see a metropolis filter supported on this neighborhood structure with MLS constant ξ(K) ≥ 1/n
(the statement holds more generally for matroids). This implies concentration inequality for any Lipschitz
function of spanning trees. For example, let f(T ) be the number of even degree vertices in T . Observe that
for any two neighbor trees T, T ′, |f(T )− f(T ′)| ≤ 4. So, v(f) ≤ 4. This implies that

P
[
|f(T )− E f | ≥ c

√
n
]
≤ 2 exp(−c2/8),

i.e., the number of even degree vertices in a random spanning tree is tightly concentrated around its expec-
tation. Such events has been used in analyzing algorithms for TSP.

Let me explain the main idea of the proof:

Definition 5.16. A random variable X ∈ R is said to be sub-Gaussian with variance proxy α2 if its moment
generating function satisfis

E et(X−EX) ≤ et
2α2/2

for all t ∈ R.

It follows that if X is sub-Gaussian then P [X − EX ≥ ε] ≤ e−
ε2

2σ2 . So, to prove the theorem it is enough to

show that the random variable f(x) is sub-Gaussian with σ2 = ξ(K)
2v(f)

The proof has two steps: The first step is the Herbst argument which says the following:

Lemma 5.17 (Herbst argument). Let X be a random variable such that for all t ≥ 0,

Dx log x(etX) ≤ t2ξ2

2
E[etX ]

Then, for all t ≥ 0

logE exp(t(X − E[X])) ≤ 1

2
t2ξ2

i.e., X is sub-Guassian.

Then, we observe that
D(etf )

t2 E etf
≤ EK(tf, etf )

t2ξ(K)E etf

The last step is to use (5.3) to bound the RHS by v(f)
2ξ(K) as desired. Below we give a self-contained proof in

case you are interested.

We start by bounding the expectation of the moment generating function.

Proposition 5.18. For any t ≥ 0,

Eπ etf ≤ exp

(
t · Eπ f + t2

v(f)

2ξ(K)

)
Proof of Theorem 5.15.

P [f(x) > Eπ f + ε] = P
[
etf(x) > etE f+tε

]
≤ E etf

etE f+tε
(Markov’s Inequality)

≤ exp

(
t2

v(f)

2ξ(K)
− tε

)
≤ exp

(
ξ(K)ε2

2v(f)

)
(Proposition 5.18)

where the last inequality follows by letting t = ξ(K)ε
v(f)
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It remains to prove Proposition 5.18.

Lemma 5.19. For any t ≥ 0,
d

dt

logEπ etf

t
≤ v(f)

2ξ(K)

Having this to prove the proposition it is enough to integrate from 0 to t we get

logEπ etf − lim
s→0

logEπ esf

s
≤ tv(f)

2ξ(K)

where by the Hopital rule, the above limit is exactly Eπ f . Re-arranging we get

logEπ etf

t
≤ tv(f)

2ξ(K)
+ E f

So,

Eπ etf ≤ exp

(
t2v(f)

2ξ(K)
+ tE f

)
which finishes the proof of Proposition 5.18.

Proof. Proof of Lemma 5.19

d

dt

logEπ etf

t
=

Eπ[fetf ]

tEπ etf
− logEπ etf

t2

=
Eπ[tfetf ]− Eπ etf · logEπ etf

t2 E etf

=
DΦ(etf )

t2 E etf
≤ EK(tf, etf )

ξ(K)t2 E etf

So, to prove the lemma it is enough to show that 2
t EK(tf, etf ) ≤ t · E etfv(f)

2

t
EK(tf, etf ) = Ex∼π

∑
y

K(x, y)(f(x)− f(y))(etf(x) − etf(y))

= Ex∼π
∑
y

K(x, y)(f(x)− f(y))2 · e
tf(x) − etf(y)

f(x)− f(y)

≤ Ex∼π

(∑
y

K(x, y)(f(x)− f(y))2

)
·max
y∈Ω

etf(x) − etf(y)

f(x)− f(y)

≤ v(f)Ex∼π etf(x) ·max
y

1− e−(tf(x)−tf(y))

f(x)− f(y)

≤ t · v(f) · E etf ·max
z∈R

1− e−z

z
(renaming z = t(f(x)− f(y))

≤ t · v(f) · E etf (5.3)

The last equation uses that 1− z ≤ e−z for all z ∈ R.
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5.8 Cheeger’s Inequality

Given a graph G = (V,E) with a the MC kernel K. For a set S ⊆ V define

φ(S) =
EK(1S ,1S)

π0(S)
=

1
2π1(E(S, S))

π0(S)
=

1
2 Eu∼π0 E{u,v}|u P [|{u, v} ∩ S| = 1]

π0(S)
= Eu∼π0(S) P{u,v}|u [v /∈ S]

where E(S, S) is the set of edges in the cut (S, S). In other words, φ(S) is the probability that a walk started
at a vertex of S chosen with probability proportional π0(.) leaves S in one step.

Lemma 5.20 (Cheeger’s Inequality). Given a graph G = (V,E), a set S ⊆ V with π0(S) ≤ 1/2. Then,

1

2
min

f :S→R≥0

E(f, f)

Var(f)
≤ min
T⊆S

φ(T ) ≤ min
f :S→R≥0

√
2E(f, f)

Var(f)

Proof. First, we prove the left side. Fix a set T ⊆ S whit minimum conductance. Let f = 1T . Then, since
π0(T ) ≤ π0(S) ≤ 1/2,

Var(1T ) = π0(T )− π0(T )2 ≥ π0(T )/2.

This proves the left inequality.

Next, we prove the harder direction. Fix a non-zero function f : S → R≥0, we find a set T ⊆ supp(f) such
that

φ(T ) ≤ 2

√
E(f, f)

Var(f)

Perhaps after renormalization, assume f ≤ 1. For a threshold t ≥ 0, define St = {v : f2(v) ≥ t}. Choose a
threshold t ∼ [0, 1] uniformly at random. Then,

Et π1(E(St, St)) = Et E{u,v}∼π1
P
[
(f2(u) < t ∧ f2(v) > t) ∨ (f2(v) < t ∧ f2(u) > t)

]
=

1

2
E{u,v}∼π1

|f2(u)− f2(v)|

≤ 1

2
E{u,v}∼π1

|f(u)− f(v)| · |f(u) + f(v)|

≤
Cauchy−Schwarz

√
1

2
E{u,v}∼π1

(f(u)− f(v))2 ·
√

1

2
E{u,v}∼π1

(f(u) + f(v))2

≤
√
E(f, f) ·

√
E{u,v}∼π1

f(u)2 + f(v)2

Furthermore, notice

E{u,v}∼π1
f(u)2 + f(v)2 = E{u,v}∼π1

Eu|{u,v} 2f(u)2 = Eu∼π0
E{u,v}|u 2f(u)2 = 2E f2.

On the other hand,

Et π0(St) = Et Eu∼π0
P
[
t < f(u)2

]
= E f(u)2.

Putting these together there must exist a value of t, say t∗ such that

φ(St∗) ≤ Et π1(E(St, St)

Et π0(St)
≤
√

2E(f, f)√
E f2

≤

√
2E(f, f)

Var(f)

where the last inequality uses that Var(f) = E f2 − (E f)2 ≤ E f2.
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