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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

1.1 Newton Polytope

Given a polynomial

p(z1, . . . , zn) =
∑

κ∈Z≥0

cp(κ)z
κ,

where cp(κ) is the coefficient of zκ in p, the Newton polytope of p is the convex hull of all integer vectors κ
with non-zero coefficient,

Newt(p) := conv{κ ∈ Z≥0 : cp(κ) ̸= 0}
For example, if p is the generating polynomial of all spanning trees of a graph G,

∑
T zT , then Newt(p) is

the spanning tree polytope of G, the convex hull of the indicator vectors of all spanning trees of G.

Lemma 1.1. For any polynomial p ∈ R≥0[z1, . . . , zn], and any α ∈ Rn
≥0, we have infz>0

p(z)
zα > 0 iff

α ∈ Newt(p).

Proof. ⇐: First, assume that α ∈ Newt(p). Then, there is a convex combination of the vertices of this
polytope that is equal to α,

α =
∑

κ:cp(κ) ̸=0

λκκ

where
∑

κ λκ = 1 and each λκ ≥ 0. Then, for any z > 0 we can write,

p(z) =
∑

κ∈Zn
≥0

λκ
cp(κ)z

κ

λκ
≥

∏
κ∈Zn

≥0

(
cp(κ)z

κ

λκ

)λκ

= zα
∏

κ∈Zn
≥0

(
cp(κ)

λκ

)λκ

,

where the inequality follows by the weighted AM-GM inequality and that cp(κ) ≥ 0 and z > 0. Therefore,

infz>0
p(z)
zα ≥

∏
κ∈Zn

(
cp(κ)
λκ

)λκ

> 0 as desired.

⇒: Conversely, suppose α /∈ Newt(p). Then, there exists a separating hyperplane, i.e., there exists c ∈ Rn

such that ⟨c, α⟩ > b and ⟨c, x⟩ ≤ b for any x ∈ Newt(p) for some b ∈ R. Suppose ⟨c, α⟩ ≥ b + ϵ for some
ϵ > 0. Now, let z∗ = exp(tc) where t > 0 is a sufficiently large number. Then,

inf
z>0

p(z)

zα
≤ p(z∗)

z∗α

=

∑
κ∈Zn

≥0
cp(κ)e

⟨log z∗,κ⟩

e⟨log z∗,α⟩

=

∑
κ∈Zn

≥0
cp(κ) exp(t⟨c, κ⟩)

exp(t⟨c, α⟩)
≤

∑
κ∈Zn

≥0
cp(κ) exp(tb)

exp(t(b+ ϵ)

Letting t→∞ the RHS converges to 0.
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1.2 Capacity Functions and Dual of Max Entropy Programs

Next, we prove the following theorem:

Theorem 1.2. Let µ : 2[n] → R≥0 be a probability distribution. Let α ∈ Newt(gµ). Then, there exists an
external field (λ1, . . . , λn) such that for any 1 ≤ i ≤ n,

Pλ∗µ [i] = αi,

i.e., the marginal probability of i under the distribution µ ∗ λ is αi.

The above theorem conceptually has a very important message. If µ is a family of probability distributions
which are closed under taking external fields such as strongly Rayleigh, sector stable or log-concave distri-
butions, then, given any point α in the Newton polytope of gµ, there is another distribution from the same
family µ′ such that the marginals of µ′ is equal to α.

Remark 1.3. We remark that if α is in the interior of the Newton polytope we can attain α exactly,
otherwise, we can only satisfy α as a marginal approximately, i.e., we can find a sequence of external field
vectors λ1, λ2, . . . such that the marginal vectors of the distributions µ ∗ λ1, µ ∗ λ2, . . . converge to α.

Recall that many of the probabilistic operations on µ can be translated to operations on the generating
polynomial gµ. To prove the theorem, it is natural to write down the marginal vector of a distribution µ:
For any 1 ≤ i ≤ n we can write

PS∼µ [i ∈ S] = ∂zigµ(z) |z=1 .

Sometimes, it is cleaner to assume gµ is not normalized to gµ(1) = 1. In such a case, we can write

PS∼µ [i ∈ S] =
∂zigµ(z)

gµ(z)

∣∣∣
z=1

= ∂zi log gµ(z) |z=1 . (1.1)

We write the following convex program (which turns out to be the dual of the maximum entropy convex
program):

inf
y
log

gµ(e
y1 , . . . , eyn)

e⟨y,α⟩
. (Max-Entropy CP)

In particular, the above program can be obtained by a change of variables zi ↔ eyi and taking log of the
objective value.

Since the above convex program has no constraints, the optimum solution is attained unless the optimum
value is −∞. In Lemma 1.1 we argued that the above infimum is −∞ iff α /∈ Newt(p). So, since α ∈ Newt(p),
the infimum is bounded and we assume y∗ is (an) optimum solution.

Since y∗ is an optimal solution, the Gradient of the convex function must be zero at y∗; so for each 1 ≤ i ≤ n
we can write

0 = ∂yi (log gµ(e
y1 , . . . , eyn)− ⟨y, α⟩) |y=y∗

Therefore,
∂yi

gµ(e
y1 , . . . , eyn)

gµ(ey1 , . . . , eyn)

∣∣∣
y=y∗

= αi (1.2)

Letting λ = ey
∗
, i.e., λi = ey

∗
i for all i, observe that

gµ(e
y1 , . . . , eyn)|y=y∗ = gµ(λ1z1, . . . , λnzn)z=1,

∂yi
gµ(e

y1 , . . . , eyn)|y=y∗ = ∂zigµ(λ1z1, . . . , λnzn)|z=1.
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Therefore, by (1.1) for any 1 ≤ i ≤ n,

PS∼λ∗µ [i] = ∂zi log gλ∗µ(z)|z=1 =
∂zigµ(λ1z1, . . . , λnzn)

g(λ1, . . . , λn)

∣∣∣
z=1

= αi,

as desired. The last identity follows by (1.2)

(Max-Entropy CP) is called the maximum entropy convex program. This can be seen as a generalization
of the convex program proposed by Gurvits that we discussed in Lecture 3. To computationally solve
(Max-Entropy CP) we need to be able to evaluate the generating polynomial of µ and evaluate its partial
derivatives. If µ is a strongly Rayleigh distribution, we can approximately evaluate gµ. To be precise, one
also needs to study the bit precision of the optimum solution y∗. It is a-priori unclear if the optimal solution
y∗ can be represented (or approximated) by polynomially (in n) many bits. This questions is well studied
[AGMOS17; SV14; SV19] and it is not in the scope of this course.

1.3 Max entropy programs

Let p ∈ R≥0[z1, . . . , zn] and let α = Newt(p). Consider the following convex program:

max
∑

κ∈Newt(p)

qκ log
cp(κ)

qκ

s.t.,
∑

κ∈Newt(p)

qκκi = αi ∀1 ≤ i ≤ n,

∑
κ

qκ = 1

qκ ≥ 0 ∀κ.

(Max-Entropy Dual)

Claim 1.4. The above program is the dual to (Max-Entropy CP).

We think of q as a distribution over integer points in Newt(p). To write the dual of this program, we first
need to write the Lagrangian:

max
q>0

inf
y∈Rn

L(q, γ) = max
q>0

inf
y

∑
κ∈Newt(p)

qκ log
cp(κ)

qκ
−

n∑
i=1

yi

αi −
∑

κ∈Newt(p)

qκκi

− s

1−
∑

κ∈Newt(p)

qκ


By strong duality we can substitute the max and inf, so

max
q>0

inf
y∈Rn,s

L(q, γ, s) = inf
y∈Rn,s

max
q>0

L(q, y, s) (1.3)

At optimality the gradient of the Lagrangian is zero, so for any κ,

∂qκL(q, y, s) = 0⇔ log
cp(κ)

qκ
− 1 = −

n∑
i=1

yiκi = −⟨y, κ⟩ − s.

Therefore, at optimality
cp(κ)

qκ
= e1−⟨y,κ⟩−s.
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Plugging this into (1.3), we can write the dual as follows:

inf
y,s

∑
κ∈Newt(p)

qκ(1− ⟨y, κ⟩ − s)− ⟨y, α⟩+
n∑

i=1

yi
∑

κ∈Newt(p)

qκκi − s+ s
∑

κ∈Newt(p)

qκ (1.4)

= inf
y,s

∑
κ∈Newt(p)

qκ − ⟨y, α⟩ − s (1.5)

= inf
y,s

∑
κ∈Newt(p)

cp(κ)e
s+⟨y,κ⟩−1 − ⟨y, α⟩ − s (1.6)

Optimizing the RHS over s we get

1 =
∑

κ∈Newt(p)

cp(κ)e
s+⟨y,κ⟩−1 ⇔ s = − log

∑
κ∈Newt(p)

cp(κ)e
⟨y,κ⟩−1

Plugging in the value of s, we can rewrite the dual as follows:

inf
y
1− ⟨y, α⟩+ log

∑
κ∈Newt(p)

cp(κ)e
⟨y,κ⟩−1 = inf

y
log

p(ey1 , . . . , eyn)

yα

as desired.

1.4 Entropy Contration

Lemma 1.5. Suppose gµ is log-concave. Then,

gµ(z1, ,̇zn)
1/k ≤

n∑
i=1

ziπ
1(i).

Note that in this proof we are using that gµ is log-concave in the entire positive orthant. The proof also
generalizes to sector stable polynomials and more generally it implies spectral independence with respect to
all external fields implies entropy contraction.

Lastly, this lemma implies that the MLSI constant for the Glauber dynamics for a k-homogeneous log-concave
distribution π is 1/k. So, the chain mixes in O(k log log n) steps.

This was first proved by Cryan-Guo-Mousa. The proof we give here is by Anari-Jain-Koehler-Pham-Vuong.

Proof. First, it turns out that if gπ is a k-homogeneous log-concave function then f := g
1/k
π is a concave

function. We leave this as an exercise. Therefore, by concavity,

∀z1, . . . , zn > 0 : f(z1, . . . , zk) ≤ f(1, 1, . . . , 1) +

n∑
i=1

∂zif(1, 1 . . . , 1) · (zi − 1)

= f(1, . . . , 1) +

n∑
i=1

π1(i)

k
(zi − 1) ()

=

n∑
i=1

ziπ
1(i).
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The second to last identity uses that gµ is k-homogeneous, so

∂zif(1) =
1

k
∂zigµ(1, . . . , 1)

1/k−1 = π1(i).

The last identity uses that f(1, ,̇1) = 1.

Lemma 1.6 (Entropy Contraction). Suppose π is a log-concave distribution Let f :
(
n
k

)
→ R≥0 be function.

Then,

Entπ1 f1 ≤ 1

k
Entπ f

Proof. As usual after re-scaling we assume that Eπf = 1. So, we can write f = µ/π. In such a case,

Entπ f = Ef log f =
∑
S

µ(S) log
µ(S)

π(S)
= D(µ∥π),

i.e., it is the KL-divergence of µ, π. Let µ1 be the marginals of µ. To prove the lemma, we fix the LHS, i.e.,
α := µ1 and we look for the distribution which maximizes the RHS, i.e., the KL-divergence. That means we
want to find a distribution ν such that D(ν∥π) is maximized subject to ν1 = α. This exactly corresponds
to the convex program in the previous section.

So, by Claim 1.4,

Entπ(f) ≥ − inf
z>0

log
gπ(z1, . . . , zn)∏

i z
αi
i

Now, we are ready to finish the proof: We specialize zi ← αi/π
1(i). Then,

− inf
z>0

log
gπ(z1, . . . , zn)∏

i z
αi
i

≥ − log
gπ(z1, . . . , zn)∏n
i=1(αi/π1(i))kαi

≥ − log

(∑
i

αi

π1(i)π
1(i)

)1/k

∏n
i=1(αi/π1(i))kαi

(Lemma 1.5)

= − log

n∏
i=1

(π1(i)/αi)
kαi

=

n∑
i=1

kαi log
αi

π1(i)
= k · Ent1π f1

as desired.
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