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Lecture 13: Matroids
Lecturer: Shayan Oveis Gharan

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we discuss applications of the spectral independence machinery to sampling bases of matroids.
AmatroidM = ([n], I) is defined on a ground set of elements, say [n] = {1, . . . , n} and a family of independent
sets I ⊆ 2[n] that satisfies the following properties:

Downward Closed: If A ∈ I then for any B ⊆ A, we have B ∈ I.

Exchange Property: If A,B ∈ I and |A| > |B| then there is an element i ∈ B 󰄀A such that A∪ {i} ∈ I.

It follows from the exchange property that all maximal independent sets of a matroid M have the same size.
Any maximal independent set of a matroid is called a base of the matroid.

Given any S ⊆ [n], the rank of S, r(S) is defined as follows:

r(S) = max
I⊆S,I∈I

|I|,

i.e., it is the size of the largest independent set in S. So, if S is an independent set, then r(S) = |S|.

Matroids were defined and studied by Whitney around one hundred years ago in order to generalize the
notion of linear independence in vector spaces. It is not hard to see that for any set of vectors v1, . . . , vn
over a field F we can define a matroid, where any sets A ⊆ [n] is an independent set if the corresponding
set of vectors are linearly independent. The notion of rank in this case is the same as the rank of the vector
space defined by of v1, . . . , vn. Such a matroid is called a linear matroid.

Another famous example of matroids is the graphic matroid. Here, [n] is the set of edges of a graph G and a
set of edges form an independent set if they do not induce a cycle. It is not hard to see that graphic matroids
are special cases of linear matroids. If G is connected, then bases of its graphic matroid are exactly spanning
trees of G.

Bases Generating Polynomial. Given a matroid M = ([n], I) of rank r, the bases generating polynomial
of M is defined as follows:

gM (z1, . . . , zn) =
󰁛

B: base of M

zB ,

where as usual, zB =
󰁔

i∈B zi. One of the goals of this course is to study properties of this polynomial.

Kruskal’s Algorithm. Given a matroid M and a weight function w : [n] → R≥0 we can run the following
Greedy algorithm (which is analogue of the Kruskal’s algorithm) to find the maximum weight base of M :
Sort elements of M with respect to w and without loss of generality assume w1 ≥ w2 ≥ · · · ≥ wn. Let S = ∅.
For i = 1 → n, if S ∪ {i} ∈ I then set S ← S ∪ {i}.

As we see in the next paragraph in fact we can optimize any convex function over the convex combination
of bases of M .
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Matroid Base Polytope. Given a matroid M , the matroid base polytope, PM is the convex hull of the
indicator vectors of all bases of M . In other words, it is the Newton polytope of gM . Edmonds proved a
simple nice characterization of the matroid base polytope:

󰁛

i∈S

xi ≤ r(S), ∀S ⊆ [n]

n󰁛

i=1

xi = r(M),

xi ≥ 0, ∀1 ≤ i ≤ n.

(13.1)

Note that the above linear program has exponentially many constraints. But it has an efficient separation
oracle, i.e., given any x ∈ Rn we can check in polynomial whether x is feasible and if not exhibit a violating
constraint in polynomial time1. Because of that we can minimize any convex function over this polytope.

Although most of the matroids that we know can be represented by a linear matroid over a field F , it is
proved that almost all matroids are not linear [Nel18]. Nonetheless, one can define and study many geometric
structures based on this abstract structures. That is why Rota calls matroids combinatorial geometries.

Gelfand, Goresky, MacPherson and Serganova [GGMS87] proved the following characterization of the ma-
troid base polytope:

Theorem 13.1 ([GGMS87]). For any integer 1 ≤ k ≤ n, given a k-homogeneous set system B ⊆ ∈[\], i.e.,
|S| = k for any S ∈ B, B is the set of bases of a matroid iff every edge of the polytope conv{1B : B ∈ B} is
parallel to 1i − 1j for some 1 ≤ i < j ≤ n.

In other words, the above theorem shows that every edge of the matroid base poltyope PM is of the form
1i−1j corresponding to exchanging elements i, j between two bases of M , and vice versa, any homogeneous
0/1 polytope whose edges have this property corresponds to bases of a matroid.

Note that if we had defined matroids as the discrete objects which are representable over a field (i.e., only
linear matroid case) then the above theorem would not be true. So, the above theorem shows that in a
geometric sense matroids are the right generalization of linear vector spaces. We don’t prove this theorem
in this note and leave it as an exercise.

13.1 Bases Exchange Graph and the Mihail-Vazirani’s conjecture

Given a matroid M = ([n], I) consider the following simple walk on 1-skeleton of the matroid base polytope
PM: Construct a graph GM = (B, E) with a vertex corresponding to each base of M and two bases B,B′

are connected by an edge if there is an edge between them in PM. By Theorem 13.1, B,B′ are connected
by an edge in G iff |B∆B′| = |B \ B′| + |B′ \ B| = 2. Mihail and Vazirani conjectured that this graph has
expansion 1 for any matroid M :

Conjecture 13.2 (Mihail-Vazriani’89). Let GM = (B, E) be the bases exchange graph of a matroid M . For
any S ⊆ B,

h(S) =
|E(S, S)|

|S| ≥ 1.

In this lecture we prove that the uniform distribution over the bases of any matroid is 1-spectrally indepen-
dent.

1This follows from the fact that we can optimize any linear function over the bases of M .
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Theorem 13.3. For any matroid M , the uniform distribution π over all bases of M and all of its pinnings
are 0-spectrally independent. Therefore, the corresponding Glauber-dynamics mixes in polynomial time.

In particular, the above theorem implies that the following Markov chain mixes in polynomial time:

Definition 13.4 (Glauber Dynamics for Matroid Bases:). Given a base B: Choose an element i ∈ B
uniformly at random and delete it, B − i. Among all elements j, such that B − i + j is a base choose one
uniformly at random and go to B − i+ j.

Although we will not discuss here, but the proof of the above theorem also implies the Mihail-Vazirani’s
conjecture. We also remark that the general version of the Mihail-Vazirani’s conjecture is still open:

Conjecture 13.5. Let V ⊆ {0, 1}n. Let P be the convex-hull of all of the vectors in S. Let G be the
1-skeleton of P , i.e., its vertex set is V and its edge set correspond to edges of P . Then G is a 1-expander.
i.e., for any S ⊆ V , h(S) ≥ 1.

Therefore, the 1-spectral independence of the uniform distribution distribution over bases of a matroid
implies the special case of the above conjecture where every edge of the polytope P has ℓ1 length exactly 2.
The general version is still open.

Closure Properties of Matroids. Given a matroid M = ([n], I) of rank r, it is closed under many
operations.

• Contraction: For an element 1 ≤ i ≤ n, M/i is the matroid on elements [n] 󰄀 {i} with independent
sets:

{I : i /∈ I, I ∪ {i} ∈ I}.

For example, if M is a graphic matroid, then this operation exactly corresponds to edge contraction in
graphs. This property in particular is very useful to our analysis in the next lecture as it shows that
all pinnings of π also correspond to uniform distribution over bases of matroids.

• Deletion: For an element 1 ≤ i ≤ n, M 󰄀 i is the matroid on elements [n]󰄀 {i} with independent sets:

{I : i /∈ I, I ∈ I}.

For example, if M is a graphic matroid, then this operation exactly corresponds to edge deletion.

• Truncation: For an integer 1 ≤ k ≤ r, the truncation of M to k, Mk is the matroid with elements [n]
and independent sets:

{I : |I| ≤ k, I ∈ I}.

For example, if M is a graphic matroid, then Mk has all forests of M with at most k edges. Note that
the truncation of a graphic matroid is no longer a graphic matroid.

Negative Correlation. Given a matroid M = ([n], I), let µ be the uniform distribution over the bases
of M . In this course we study properties of this distribution. As we discussed in previous lectures, if M is a
graphic matroid, then the uniform distribution over spanning trees is negatively correlated, namely for any
pair of elements i, j (correspond to two distinct edges),

P [i]P [j] ≥ P [i, j] .
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In fact as we said in the previous lecture the generating polynomial of the uniform distribution over spanning
trees of a given graph is real stable (and we said it is 2-spectrally independent). Unfortunately, negative
correlation and real stability properties don’t generalize to all matroids.

A well-known counter example is the matroid S8. Here you can see a representation of this matroid of GF(2)
where each element is a column of the following matrix:

󰀵

󰀹󰀹󰀷

1 1 1 1 1 1 1 0
0 1 0 0 0 1 1 1
0 0 1 0 1 0 1 1
0 0 0 1 1 1 0 1

󰀶

󰀺󰀺󰀸

Note that the rank of this matrix is 4; so rank(S8) = 4. It is not hard to see that |B1| = 28, |B8| = 20,
|B1,8| = 12 and |B| = 48, where by B1 we mean the set of bases that have column 1 and B is the set of all
bases. The matroid is not negative correlated because

28 · 20 ∕≥ 12 · 48.

13.2 Spectral Independence

Let M be a matroid of rank r.

We adopt the notation as before: For i ∈ [n] we let πi be the conditional distribution on [n] − i. As usual

we let π1 be the distribution on single elements, i.e., π1(i) = P[i]
r which correspond to marginal probability

of each element up to normalization.

Let C ∈ R[n]×[n] be the correlation matrix, i.e.,

Cπ(i, j) =
1

r(r − 1)
PS∼π [i, j ∈ S]

with C(i, i) = 0 for all i. We start by proving basic facts:

Lemma 13.6. The following holds for any matroid:

• Eiπ
1
i = π1

• Ei∼π1Cπi = C

• Eiπiπ
T
i = CΠ−1C.

where in the last identity Π be the diagonal matrix with π1(i) on its (i, i) entry.

Proof. We start with the first one:

Eiπi(j) =
󰁛

i

P [i]

r
· P [j|i]
r − 1

=
󰁛

i

P [i, j]

r(r − 1)
=

P [j]

r
= π1(j).
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To see the second one for j ∕= k we have

󰁛

i

π1(i)Cπi(j, k) =
󰁛

i

π1(i)
P [j, k|i]

(r − 1)(r − 2)

=
1

r(r − 1)(r − 2)

󰁛

i

P [i]P [j, k|i]

=
󰁛

i ∕=j,k

P [j, k, i]

=
P [j, k]

r(r − 1)
= Cπ(j, k).

The second to last identity uses that every base has exactly r elements. The third conclusion can be proven
as follows:

Ei∼π1π1
i π

1
i
T
(j, k) =

󰁛

i

π1(i)
P [j|i]
r − 1

· P [k|i]
r − 1

=
1

r(r − 1)2

󰁛

i

P [i, j]P [k, i]

P [i]

=
1

r2(r − 1)2

󰁛

i

P [i, j]P [k, i]

π1(i)
= CΠ−1C

Lemma 13.7 (Oppenheim Trickledown Machinery). Suppose for every i we have

Cπi
− π1

i π
1
i
T ≼ 0.

Then,

Cπ − π1π1T ≼ 0

Proof. By the previous lemma we have

Ei∼π1Cπi − π1
i π

1
i
T
= Cπ − CπΠ

−1Cπ ≼ 0.

Equivalently, we have
Π−1/2CπΠ

−1/2 ≼ (Π−1CπΠ
−1/2)2

This implies that the matrix P = Π−1Cπ has no eigenvalues in the interval (0, 1). Furthermore, observe for
any i, j:

P (i, j) =
P [i, j]

(r − 1)P [i]

So, is a stochastic matrix on the vertex set [n] and its largest eigenvalue is 1. Since the underlying graph is
connected the second eigenvalue of P is < 1. But from above we know it is ≤ 0. This implies that

P − 1π1 ≼ 0.

Or equivalently,

Cπ − π1π1T ≼ 0

as desired.
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Lemma 13.8 (Base Case). If M is rank 2, then C − π1π1T ≼ 0.

Proof. This lemma is the main property of the matroid that we use in the proof.

We say a pair of elements i, j are parallel if rank({i, j}) = 1. The main observation is the following fact
which can be proven by the exchange property.

Fact 13.9. If i, j are parallel elements in a matroid M and j, k are parallel then i, k are parallel.

Having that, it turns out that the matrix C is an ”anti-block-diagonal” matrix (up to a normalization).
Namely, for every parallel class we have an all-zero block matrix and every entry corresponding to two non-
parallel elements is 1. Such a matrix can also be seen as an adjacency matrix of a complete multi-partite
graph. It can be seen that this matrix has exactly one positive eigenvalue.

Similar to the previous lemma, Π−1C is the transition probability matrix of the simple random walk on a
complete multi-partite graph (which has exactly one positive eigenvalue). Therefore, Π−1C − 1π1 ≼ 0. This

implies C − π1π1T ≼ 0 as desired.

Lemma 13.10. Π is 1-spectrally independent.

Proof. All we need to show is that the matrix I with entries

I(i, j) = P [j|i]− P [j]

has λmax(I) ≤ 0. The main observation is that

I = (r − 1)Π−1C − r ·Π−1π1π1T ≼ (r − 1)(Π−1C −Π−1π1π1T ) ≼ 0

13.3 Lattices

Since Theorem 13.3 implies fast mixing of the Glauber dynamics for sampling bases of a given matroid, a
central question that has puzzled researchers since then is sampling non-broken (circuit) bases (NBC bases)
of a given matroid [BCT10].

Definition 13.11 (Lattice). A partially ordered set (L, <) is called a lattice if any pair of elements a, b have
a least upper bound denoted by a ∨ b and a greatest lower bound denoted by a ∧ b. Here, we only consider
finite lattices. A finite lattice has a minimum element that we denote by 0 and a maximum element that we
denote by 1.

We say a ≼ b (b covers a) if b > a but there is no element c ∈ L such that a < c < b.

Definition 13.12 (Ranked Lattices). We say a lattice is graded/ranked if it can be equipped with a function
r : L → N such that if a < b then r(a) < r(b) and if b covers a, then r(b) = r(a) + 1.

Definition 13.13 (Chains). We say a sequence of elements a1, . . . , ak ∈ L form a chain if a1 < a2 < · · · <
ak. Let L be a graded lattice with rank r. A sequence of elements a1, . . . , ar−1 form a maximal chain if
0 ≼ a1 ≼ · · · ≼ ar−1 ≼ 1.

One of the most well-known examples of lattices is the lattice of flats of matroids.
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Definition 13.14 (Flats). We say a set F ⊆ [n] is a flat if for any element i /∈ F we have rank(F + i) >
rank(F ).

Lattice of flats is the lattice formed by all flats of the matroid with the relation F < G if F ⊂ G. This is a
ranked lattice with r(F ) = rank(F ). The minimum element is the ∅ and the maximum element is [n].

Definition 13.15 (Möbius Function). Given a lattice L one can define a Möbius function µ on pair of
elements a ≤ b as follows:

• For any element a, let µ(a, a) = 1.

• For any a < b we have

µ(a, b) = −
󰁛

a≤c<b

µ(a, c).

To put it differently the second condition implies

󰁛

a≤c≤b

µ(a, c) = 0.

The characteristic polynomial of a ranked lattice L is defined as

󰁛

a

µ(a)tr(a)

where µ(a) = µ(0, 1).

Let us give a concrete example: Consider the following graph It has the following flats:

a

b

c
d

e

∅
{a}, {b}, {c}, {d}, {e}
{a, b, c}, {c, d, e}, {a, e}, {a, d}, {b, d}, {b, e}
{a, b, c, d, e}.

Its characteristic polynomial is
t4 − 5t3 + 8t2 − 4t

It turns out that this polynomial is exactly the same as the chromatic polynomial of G.

If we can evaluate the characteristic polynomial at −1 then we can evaluate the following quantities all of
which are open:

• χ(−1) for the graphic matroid is the number of acyclic orientations of a graph [Sta73].

• χ(−1) for the co-graphic matroid is equal to the number of strongly connected orientations of the graph
(see e.g., [GL19]).
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• µ(0, 1) is equal to the number of parking functions with respect to a unique source vertex [BCT10]

• χ(−1) for a linear matroid with vectors v1, . . . , vn is equal to the number of regions defined by the
intersection of the orthogonal hyperplanes (see e.g., [Sta07]).

Lemma 13.16. Let L be lattice with Möbius function µ. Let ci denote the number of chains 0 = a0 < a1 <
· · · < ai = 1 in L. Then,

µ(0, 1) = −c1 + c2 − c3 + . . .

Proof. We prove by induction. The statement obviously holds for µ(a, b) with a ≼ b. Now, by definition of
the Möbius function,

µ(a, b) = −
󰁛

a≤c<b

µ(a, c)

= −
󰁛

a≤c<b

∞󰁛

i=1

(−1)ici(a, c)

=

∞󰁛

i=1

(−1)i+1
󰁛

a≤c<b

ci(a, c)

Now, the main observation is that
󰁓

a≤c<b ci(a, c) = ci+1(a, b). As, any i-chain from a to c can be extended
to an i+ 1 chain from a to b just by appending b.

Adiprasito-Huh-Katz proved the coefficients of the characteristic polynomial of the lattice of flats of any
matroid is a log-concave sequence, name the sequence a0, . . . , ar satisfies

a2i ≥ ai−1 · ai+1.

A recent re-proof of this by Brändén and Leake uses geometry of polynomials, but it is unclear how to turn
that proof into an spectral independence argument.

Definition 13.17 (E-labeling). Let L be a graded lattice. Let cE(L) be the set of edges of L corresponding
to all pairs a, b with a ≼ b. An E-labeling is a map λ : E(L) → N such that if a < b in L then there exists a
unique maximal chain

a = a0 ≼ a1 ≼ · · · ≼ ak = b

such that λ(a0, a1) ≤ λ(a1, a2) ≤ · · · ≤ λ(ak−1, ak).

Theorem 13.18. Let λ be an E-labeling of P . Then, (−1)r(a,b)µ(a, b) is equal to the number of strictly
decreasing maximal chains from a to b, i.e.,

(−1)r(a,b)µ(a, b) = |{a = a0 ≼ a1 · · · ≼ ak = b : λ(a0, a1) > · · · > λ(ak−1, ak)}|.

Proof. Without loss o generality assume a = 0, b = 1. Let S = {r1, . . . , rj−1} ⊆ [r− 1] with r1 < · · · < rj−1.
Let αL(S) be the number of chains 0 < a1 < · · · < aj−1 < 1 such that r(ai) = ri. The function αL is called
the flag f-vector of L.

Claim 13.19. αL(S) is the number of maximal chains 0 = a0 ≼ · · · ≼ ar = 1 such that

λ(ai−1, ai) > λ(ai, ai+1) =⇒ i ∈ S, ∀1 ≤ i < r.
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The proof follows by defining a bijection between the chains counted in αP (S) and the maximal chains
defined above.

Now, let

βL(S) =
󰁛

T⊆S

(−1)|S − T |αL(T ).

The function βL is called the flag h-vector of L. It follows from the above claim that βL(T ) is equal to the
number of maximal chains 0 = a0 ≼ · · · ≼ ar = 1 such that λ(xi−1, xi) > λ(xi, xi+1) if and only if i ∈ T .
So, in particular, βL([r− 1]) is equal to the number of strictly decreasing maximal chains. But, on the other
hand,

βL([r − 1]) =
󰁛

T⊆[r−1]

(−1)r−1−|T |αL(T )

= (−1)r
󰁛

k≥1

(−1)kck

But the RHS is exactly the Mobius function µ(0, 1) by the Halls’ theorem as desired.

Next, we explain a way to construct an E-labeling: Let L be the lattice of flats of a matroid. Fix an ordering
on the elements say 1 < 2 < · · · < n and for a ≼ b let

λ(a, b) = −max{i : a ∨ i = b}.

We leave it as an exercise to show that this is a valid E-labeling.

Definition 13.20. We say a maximal chain of flats ∅ = F0 ≼ · · · ≼ Fr = [n] is strictly increasing if
λ(F0, F1) > · · · > λ(Fr−1, Fr) or in other words,

max{F1 − F0} < max{F2 − F1} · · · < max{Fr − Fr−1}

So, the above theorem in particular implies that the number of strictly increasing maximal chains is exactly
equal to the µ(0, 1). Note that interestingly this definition is independent of the ordering on the underlying
elements of the matroid.

Having this one can consider a family of Markov chains to count/sampling strictly increasing maximal chains:

Definition 13.21 (Glauber dynamics to sample strictly increasing maximal chains). Given a strictly in-
creasing maximal chain F0 ≼ · · · ≼≼ Fr, choose 1 ≤ i ≤ r − 1 uniformly at random, remove Fi and choose
a u.r. flat (of rank i) among all that gives a strictly increasing maximal chain.

13.4 Non Broken Bases

Fix an ordering on elements of the matroid, say 1 < · · · < n. We say a set C ⊆ [n] is a circuit iff C \ {i} ∈ I
for any i ∈ C. A broken circuit is a set C \ {i}, where C ⊆ [n] is a circuit and i is the largest element of C.
An independent set S ⊆ I is a non-broken independent set (NBC independent set) if it contains no broken
circuits. Similarly an NBC base is an NBC independent set of rank r.

Theorem 13.22. The number of NBC bases of M is equal to the number of maximal increasing chains of
the lattice of flats of M .
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Proof. In fact there is a simple bijection: Given a maximal strictly increasing chains ∅ = F0 ≼ F1 ≼ Fr = [n],
∪r
i=1 maxj∈Fi−Fi−1{j} is a non-broken base and vice versa we can construct a maximal strictly increasing

chain given a non-broken base.

Given this the following conjecture is raised and still open:

Conjecture 13.23. For any matroid M , and any total ordering of the elements of M , the down-up walk on
the NBC bases of M mixes in polynomial time.
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