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Lecture 11: Spectral Independence via Geometry of Polynomials
Lecturer: Shayan Oveis Gharan

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. In

the previous lecture we introduced the generating polynomial of a probability distribution µ : 2[n] → R≥0,

gµ(z1, . . . , zn) =


S

µ(S)zS ,

where zS =


i∈S zi.

Definition 11.1 (Real Stable Polynomial). We say a polynomial p(z1, . . . , zn) is real stable if p(z1, . . . , zn) ∕=
0 whenever ℑ(zi) > 0 for all i.

There is a by now a rich theory of these polynomials. For example,

Theorem 11.2. For any set of PSD matrices A1, . . . , An ∈ Rn×n and a symmetric matrix B ∈ Rn×n the
polynomial det(B + z1A1 + · · ·+ znAn) is real stable.

So, for example the generating polynomial of the uniform distribution of spanning trees of any graph G is
real stable.

We also know that this family is closed under many operators; if p(z1, . . . , zn) is real stable then so is,

Substituion p(z1, z2, zi−1, a, zi+1 . . . , zn) for any a with ℑ(a) ≥ 0, in particular for any a ∈ R.

Differentiation ∂zip for any 1 ≤ i ≤ n.

External Fields/Tilts p(λ1z1, . . . ,λnzn) for any λ1, . . .λn ≥ 0.

Inversion If zi has degree d in p then p(z1, . . . , zi−1,−1/zi, zi+1, . . . , zn)z
d
i .

Product If q is also stable then p · q.

For a probability distribution µ and λ : [n] → R≥0 we let λ ∗ µ be the external-field/tilts with respect to λ.
That is the distribution where the probability of any S is proportional to λSµ(S).

It is well-known fact that if gµ is real stable then µ is negatively correlated. So, is 1-spectrally independent
(if in addition it is homogeneous).

This definition has been generalized recently to the class of sector stable polynomials by Alimohammadi,
Anari, Shiragur and Vuoung:

Definition 11.3 (Sector Stable Polynomials). Let

Sα := {r · eiθ : r > 0, |θ| ≤ α · π
2
}

be the sector around the positive real axis with aperture απ. We say p is α-sector stable if p(z1, . . . , zn) ∕= 0
whenever zi ∈ Sα for all i.
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Note that many closure properties of real stable polynomial naturally generalize to sector stable polynomials,
such as substitution to the closure of the sector, differentiation, external field and product.

They proved the following theorem:

Theorem 11.4. If gµ is α-sector stable then µ is 2/α-spectrally independent, namely for any 1 ≤ i ≤ n,

n

j=1

|P [j ∈ S|i ∈ S]− P [j ∈ S|i /∈ S] | ≤ 2/α.

Let me also emphasize the following theorem that we will prove in future:

Theorem 11.5. Let µ be a probability distribution on 2[n]. Then, the following are equivalent,

• µ For every λ : [n] → R≥0, the distribution λ ∗ µ is η-spectrally independent.

• For every λ : [n] → R≥0, the distribution λ ∗ µ is η-entropically independent.

Since sector stability is closed under external fields, combining these two theorems we obtain that α-sector
stable polynomials are 2/α-entropic independent. This implies that the corresponding Markov chain has
MLS constant Ω(n−2/α)).

11.1 Application

Lemma 11.6. Given a graph G = (V,E), the matching polynomial is


M matching



v saturated in M

zv.

The matching polynomial of any graph is 1-sector stable, i.e., it has no root in the right-half complex plane.
This class of polynomials are also called Hurwitz stable.

Proof. The polynomial p1 = z1, . . . , zn is real stable. It is shown by Borcea and Brändén that if p is real
stable then (1− ∂zi∂zj)p is also real stable for any i ∕= j. Now consider

p2 =






i∼j

(1− ∂zi∂zj)



 p1

So, p2 is real stable. But p2 can be written equivalently as follows:

p2 =


M matching

(−1)|M |


v saturated in M

zv,

i.e., it is the matching polynomial with ”alternating” signs. So, p2 has no roots in the upper-half complex
plane. Now, it turns out that if a polynomial p(z1, . . . , zn) is real stable then p(eiπ/2z1, . . . , e

iπ/2zn) is
Hurwitz stable. So, p3 = p2({eiπ/2zv}v∈V ) is Hurwitz stable, i.e., 1-sector stable. But that is exactly the
matching polynomial.

So, this gives an algorithm to count matchings in all graphs; except there is a caveat one needs to be able
to run the chain that is to compute the coefficient of a monomial zS . For a set S ⊂ V , the coefficient of
zS is the number of perfect matchings in the induced graph G[S]. It turns out that such a quantity can
be computed exactly for planar graphs, and therefore this gives an efficient algorithm the approximately
count/sample matchings in planar graphs.
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11.2 Some Tools in Complex Analysis

In this section we prove Theorem 11.4. The main idea of the proof is that if a polynomial has no roots close
to the all-ones vector (at which we want to evaluate our polynomial) then it must be smooth, and therefore
close to being independent.

To use this intuition we use the following lemma which says that if we have a smooth in the complex plane
on the unit disc its derivate at 0 is bounded. To use this lemma we need to apply a map (a mobius function)
which maps our sector to the disk and all-ones to 0. Then we apply the lemma. Finally we need to apply
the inverse back to translate our findings to our own setting.

The main tool that we use is the following Schwartz-Pick lemma: Let D(0, ) be the open unit disk in the
complex plane around 0.

Lemma 11.7 (Schwarz-Pick). . Let f : D(0, 1) → D(0, 1) be a univariate holomorphic function. Then
|f ′(0)| ≤ 1− |f(0)|2 ≤ 1.

Recall that in the previous lectures we observed that ∂zi log gµ(1) = P [i ∈ S] is the marginal probability of
element i.

Fi(z1, . . . , zn) = log


∂zigµ(z)

(1− zi∂zi)gµ(z)



Then,

∂zjFi(1) = ∂zj log ∂zigµ(1)− ∂zj log(1− zi∂zi)gµ(1)

= P [j ∈ S|i ∈ S]− P [j ∈ S|i /∈ S]

So, our main goal is to upper-bound gradient of Fi. In order to use our tool we need to do a change of basis.

Let f(z) be the univariate polynomial,

f(z) = ψ(Fi(h1(z), . . . , hn(z)))

The idea is to choose H : C → Cn such that H(D(0, 1)) ⊆ Sα and that ψ : C → C maps back the sector to
the unit disk. By the Pick’s lemma and the chain rule we have

1− |f(0)|2 ≥ |f ′(0)| = |ψ′(Fi(H(0)))| ·





j ∕=i

∂zjFi(h1(0), . . . , hn(0)) · h′
j(0)



= |ψ′(Fi(H(0)))| ·





j ∕=i

Ψ(i → j) · h′
j(0)


(11.1)

We start by construction hi’s. First, notice that the möbius function z → 1+sz
1−sz maps D(0, 1) to the Right

half plane (and 0 gets mapped to the all-ones vector). To map to the sector it is enough to raise to an α

factor, z →


1+sz
1−sz

α

. The parameter s will be chosen carefully to take the signs of the quantities Ψ(i → j)

into account, namely we let

hj(z) =


1 + sjz

1− sjz

α

where sj = sign(Ψ(i → j)).

Now, observe that

h′
j(z) =

2sjα

(1− sjz)2
·

1 + sjz

1− sjz

α−1
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Now, plugging in, z = 0 we have H(0) = 1, h′
j(0) = 2sjα. Note that sjΨ(i → j) = |Ψ(i → j)|. Therefore,

from (11.1) we get


j ∕=i

|Ψ(i → j)| ≤ 1

2α
· 1− |ψ(Fi(1))|2

ψ′(Fi(1))
(11.2)

Claim 11.8. For every z1, . . . , zn ∈ Sα we have

∂zigµ(z)

(1− zi∂zi)gµ(z)
/∈ −Sα.

In particular, the image of Sα under Fi is in the strip

Tα := {z ∈ C : ℑ(z) ≤

1− α

2


π}

Proof. Let y =
∂zi

gµ(z)

(1−zi∂zi
)gµ(z)

and suppose for contradiction that y ∈ −Sα. Then,
−1
y ∈ Sα. By definition of

y, we have

(1− zi∂zi)gµ(z)−
1

y
∂zigµ(z) = 0.

But then since gµ is multi-affine, gµ(z1, . . . , zi−1,
−1
y , zi+1, . . . , zn) = 0. But this contradicts sector stability

of gµ. THis shows the first conclusion. Now, since Fi(z) = log
∂zi

gµ(z)

(1−zi∂zi
) and log maps any point outside of

−Sα to the strip the conclusion follows.

Having established this, first observe the map z → 1/2
1/2−α · z maps the strip Tα to T1. So, z → exp( 1/2

1/2−α · z)
maps it to the Right half plane, i.e., S1. Finally if we compose with the inverse of the Mobius function 1+z

1−z

we get back the unit disk. Note that the inverse of the mobius transformation z → 1+z
1−z is z → z−1

2z = g−1(z).
We let

ψ(z) = g−1


exp(

1/2

1/2− α
· z)



It can then be shown that

ψ′(z) =
2 exp( 1/2

1/2−α · z)

(1 + exp( 1/2
1/2−α · z))2

· 1/2

1/2− α
=

1/2

1/2− α
· 1
2
(1− ψ(z)2).

This together with (11.2) implies that


j ∕=i

Ψ(i → j) ≤ 2

α
− 1

Adding I to the diagonal we get that λmax(Ψ) ≤ 2/α as desired. This finishes the proof of Theorem 11.4.


