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Lecture 11: Entropic Independence
Lecturer: Shayan Oveis Gharan

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Recall the following definitions from lecture 9: We have a graph G = (V,E) we want sample from the state
space {±1}V . For σ ∈ {±1}V let

σ⊕i(j) =

!
−σj if j = i

σj otherwise

In GD we first we choose a u.r. vertex i then, with probability π(σ⊕i)
π(σ)+π(σ⊕i) we move to σ⊕i and otherwise

we stay.

Pinning. Let π be a distribution on {±1}V . For a any set of vertices i1, . . . , ik (for any 1 ≤ k < n) and
signs s1, . . . , sk we let

π(i1,s1),...,(ik,sk)) := π|σi1 = s1, . . . ,σik = sk.

In other words, this is the conditional measure on all vertices in V − {i1, . . . , ik} when we pin i1, . . . , ik to
signs s1, . . . , sk respectively.

Averaging / Projection. Conversely, given π and a set S ⊆ V we let πS to be distribution π projected
onto the set S when we average out all vertices outside of S. In other words,

πS(τ ∈ {±1}S) =
"

σ:σS=τ

π(σ).

11.1 Entropic Independence

We say µ is η-entropically independent if for any function f : {±1}n → R≥0

#
1− 1 + η

n

$
Ent(f) ≤ EiEs∼πi Entπi,s

f.

where as before,
Entπ f = Dx log x

π f = Eπf log f − Ef logEf

Theorem 11.1. Suppose that π and all conditionals of π are η-entropically independent. Then, the modified
log-sobolev constant of the Glauber dynamics is at least M(GD) ≥ Ω(1/n1+η).
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First, by repeated application of the Entropic independent on π and pinnings of π we can write,

Ent(f) ≤
#
1− 1 + η

n

$−1

EiEσi∼πi Entπi,σi
(f) (entropic Ind of π)

≤
#
1− 1 + η

n

$−1 #
1− 1 + η

n− 1

$−1

Ei,jEσi,σj∼πi,j Entπi,σi,j,σj
(f) (entropic Ind of πi,σi)

. . .

≤
k−1%

j=0

#
1− 1 + η

n− j

$−1

ES∼(nk)
Eσ∼πS EntπS,σ

(f)

. . .

≤
n−1%

j=0

#
1− 1 + η

n− j

$−1

ES∼( V
n−1)

Eσ∼πS EntπS,σ
(f)

≲ 2 exp

&
(1 + η)

n−1"

i=0

1

n− i

'
E(f, log f) ≲ 2n1+ηE(f, log f)

Let us explain how to prove the second to last inequality. It can be shown that for a two state system
{+,−} with K(+ → −) = p and K(− → +) = 1− p (and with remaining probability we stay), the modified
log-sobolev constant is at least 1/2 (see [BT06] for a proof). In other words for such a system and any
function f : {±1} → R we have,

E(f, log f)
Entπ(f)

≥ 1/2 ⇒ Entπ(f) ≤ 2E(f, log f).

From this we can write the Dirichlet form as follows:

E(f, log f) = 1

2
Eσ∼{±1}nEi

π(σ⊕i)

π(σ) + π(σ⊕i)
(f(σ)− f(σ⊕i))(log f(σ)− log f(σ⊕i))

=
1

2
Ei

"

σ∈{±1}V

(π(σ) + π(σ⊕i)) · π(σ⊕i)

π(σ) + π(σ⊕i)
· π(σ)

π(σ) + π(σ⊕i)
· (f(σ)− f(σ⊕i))(log f(σ)− log f(σ⊕i))

= Ei

"

σ∈{±1}V

(π(σ) + π(σ⊕i)) · Eπσ−i
(f, log f)

≥ 1

2
EiEσ∼πV −i Entπσ (f).

where as before πσ−i is the pinning of π on all vertices in V − i according to σ.

11.2 Main Theorem

The main goal of this lecture is to prove the following theorem.

Theorem 11.2. Suppose π is a distribution on {±1}n such that π and all pinnings of π are η-spectrally
independent. If π is B-marginally bounded; namely for any i and s ∈ {±1}, P [σi = s] ≥ B, then π and all
pinnings of π are O(η/B2)-entropically independent.

Having proven that, we can immediately follow the proof technique that we discussed before: Namely use
the entropic independence for k = (1 − θ)n for θ ≪ 1/∆ such that the resulting graph is decomposed into
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constant size components (in expectation) and then simply use the fact that the MLS constant of a constant
size chain is bounded away from 1 to prove the Glauber dynamics mixes in Oη,∆(n log n). This implies
”optimal” mixing result for the Glauber dynamics. This is summarized in the following theorem:

Theorem 11.3. Let π be a probability measure on {±1}n s.t.,

• π and all pinnings of π are η-spectrally independent.

• There exists a graph G = ([n], E) of maximum degree ∆ such that all pairwise interactions are only
defined on edges of G. In other words, For any disjoint sets S, T ⊆ [n], such that there are no edges
between S, T , σS is independent of σT conditioned on σN(S)

• π is B-marginally bounded.

Then, M(GD) ≥ Ωη,∆,B(1/n) so the Glauber Dynamics mixes in Oη,∆,B(n log n).

11.3 Entropic Independence from Local Entropy Contraction

In this section we prove Theorem 11.2. In previous lectures, for a function f : {±1}n → R we defined
π1 = Eiπ

i and f1 = Eπ1 [f ]. This definition naturally generalizes to k:

πk = ES∈(nk)
πS , fk(S, τ) = Eσ∼π[f(σ)|σS = τ ], S ∈

#
n

k

$
, τ ∈ {±1}S .

We also discussed the law of total variance which naturally generalize to the law of total entropy proved
below.

Lemma 11.4 (Law of Total Entropy). Let X,Y be random variable jointly defined. Then,

Ent[Y ] = Ent[E[Y |X]] + E[Ent[Y |X]]

Proof. First, we write

EY log Y = EX [E[Y log Y |X]] = EX [Ent[Y |X] + E[Y |X] · logE[Y |X]]

On the other hand,

EntE[Y |X] = EXE[Y |X] logE[Y |X]− EXE[Y |X] logEXE[Y |X] = EX [E[Y |X] logE[Y |X]]− EY logEY.

Therefore,

Ent[Y ] = EY log Y − E[Y ] logE[Y ]

= EY log Y + EntE[Y |X]− EX [E[Y |X] logE[Y |X]]

= EntE[Y |X] + EX Ent[Y |X]

as desired.

The following is an immediate consequence of the law of total entropy:

Corollary 11.5. For ℓ > k

Entπℓ f ℓ = Entπk fk + ES,σ∼πk EntπS,σ
f ℓ−k
S,σ
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To see this we let X be the random variable which chooses a set S ∈
(
[n]
k

)
u.a.r. and a random signing of S

(and Y = f ℓ(S ∪ T,σS ∪ σT ) for T ∈
(
[n]−S

ℓ

)
).

Definition 11.6. We say π is satisfies α-local entropy contraction if for any function f : {±1}n → R≥0,

Entπ1 f1 ≤ 1

2
(1− α

n
)−1 Entπ2 f2.

Lemma 11.7. Suppose π and all pinnings of π are η-spectrally and B-marginally bounded. Then π satisfies
α-local entropy contraction for α = O(η/B2).

Proof of Theorem 11.2. Our main goal is to prove that

Entπ1(f1) ≤ 1 +O(η/B2)

n
Entπ f. (11.1)

Then, by an immediate application of law of total entropy we get O(η/B2)-entropic independence.

First, by law of total entropy we can write,

Entπk fk − Entπk−1 fk−1 = ES,σ∼πk−1 Entπ1
S,σ

f1
S,σ

Entπk+1 fk+1 − Entπk−1 fk−1 = ES,σ∼πk−1 Entπ2
S,σ

f2
S,σ

Now, by Lemma 11.7 we can write

Entπk+1 fk+1 − Entπk−1 fk−1 = ES,σ∼πk−1 Entπ2
S,σ

f2
S,σ

≥ 2

#
1− α

n− k + 1

$
ES,σ∼πk Entπ1

S,σ
f1

= 2

#
1− α

n− k + 1

$
(Entπk fk − Entπk−1 fk−1)

The rest of the proof is a simple induction with the right induction hypothesis. In particular suppose for
βk :=

*k−1
j=0

+j−1
i=0 (1− 2α

n−i ). Then, we show by induction that

Entπk−1 fk−1

βk−1
≤ Entπk fk

βk
. (11.2)

Re-arranging the above equation and using IH we can write

Entπk+1 fk+1 ≥ 2

#
1− α

n− k + 1

$
Entπk fk −

#
1− 2α

n− k + 1

$
Entπk−1 fk−1

≥
#
2

#
1− α

n− k + 1

$
−
#
1− 2α

n− k + 1

$
βk−1

βk

$
Entπk fk (IH)

=

#
1−

#
1− 2α

n− k + 1

$
−
#
βk−1

βk
− 1

$$
Entπk fk

=
βk+1

βk
Entπk fk

The last equation follow simply by the definition of βk−1,βk,βk + 1. This proves (11.2). Now, using (11.2)
repeatedly we can write

Entπ1 f1 ≤ 1

βn
Entπ f, (11.3)
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and by definition:

βn :=

n−1"

j=0

j−1%

i=0

(1− 2α

n− i
) ≳

n−1"

j=0

#
n

n− j

$−2α

We can easily see βn ≥ Ω(ηn/B2) for α = O(η/B2).

11.4 Local Entropy Contraction

In this section we explain the main ideas in the proof of Lemma 11.7.

Lemma 11.8. If π is η-spectrally independent then,

Entπ2 f2 − 2Entπ1 f1 ≥ − η

n− 1

Var(f1)

Ef1

Proof. First, since this equation is scale invariant, i.e., entropy remains invariant under re-scaling f , we
assume Ef = 1. Recall that

π2((i, s1), (j, s2)) =
1(
n
2

)P [σi = s1,σj = s2] .

Note that for any x ∈ [n]× {±}, "

y∈[n]×{±}

π2(x, y) = 2 · π1(x)

This is mainly because we define π2 on unordered sets of size 2.

We write,

Entπ1 f1 =
"

x∈[n]×{±}

π1(x)f1(x) log f1(x)

=
f1(x)=

1
2Eyf2(x,y)

1

2
E{x,y}∼π2f2(x, y)(log f1(x) + log f1(y))

Therefore,

Entπ2 f2 − 2Entπ1 f1 = E{x,y}∼π2f2(x, y)(log f2(x, y)− log(f1(x) · f1(y)))

≥ E{x,y}∼π2(f2(x, y)− f1(x)f1(y)) (since for a, b ≥ 0 we have a log a
b ≥ a− b)

= 1− E(x,y)∼π2f1(x)f1(y) (since Ef2 = 1.)

The next observation is that we can write f1 = 1 + g1 where 〈g1, 1〉π1 = 0. Recall that M ∈ R2n×2n where
M((i, s1), (j, s2)) = P [σj = s2|σi = s1] that we defined as few lectures ago. Then,

Entπ2 f2 − 2Entπ1 f1 ≥ 1− E(x,y)∼π2f1(x)f1(y)

= E(x,y)∼π2g1(x)g1(y) (since Ef1 = 1)

=

,
g1,

n

n− 1
(M − I)g1

-

π1

(we subtract I since there is no term g1(x)2)

≤ −λ2(
n

n− 1
(M − I)) ·Var(f1) ≤ − η

n− 1
Var(f1)

as desired. IN the last inequality we used that π is η-spectrally independent which implies that λ2(M) ≤
η/n.
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Finally to finish the proof of Lemma 11.7 we use the following fact which we leave as an exercise:

Fact 11.9. Suppose π is B-marginally bounded. Then for any function f : {±1}n → R≥0,

f1(i, s) ≤ 1

B
Ef, ∀i ∈ [n], s ∈ {±1}.

As a consequence of this we have, Var(f1)
Ef1 ≤ 4

B2 Entπ1 f1

The proof uses that the function x log x behaves quadratically in a neighborhood of 1.
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