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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we use the machinery we developed to study Glauber dynamics for the Ising model to study
the hard-core model. We are given a graph G = (V,E) with maximum degree ∆; we want to sample an
independent set I with probability proportional to λ|I| for 0 < λ. The main theorem we will prove is the
following:

Theorem 11.1. For any graph G = (V,E) of maximum degree ∆, if λ < (1− δ) (∆−1)∆−1

(∆−2)∆ =: (1− δ)λc(∆)

then π is Oδ(1) spectrally independent.

Then, following the machinery we developed in the last lecture we have the Glauber-dynamics mixes in
polynomial time.

Throughout this lecture we write

I(u, v) := Ψπ(u, v) := P [v|u]− P [v|u] .

In fact we prove the following theorem,

Theorem 11.2. If λ < (1− δ)λc(∆) then for any vertex r,∑
v ̸=r

|I(r → v)| ≤ Oδ(1).

Having this Theorem 11.1 simply follows from the fact that

λmax(Ψπ) ≤ max
r

∑
v

|Ψπ(r, v)| ≤ Oδ(1).

This in particular shows that π is Oδ(1) spectrally independent. Now, all pinnings of π also correspond to
the hard-core model on graphs of maximum degree ≤ ∆. So, the above theorem also implies all pinnings of
π are Oδ(1)-spectrally independent.

11.1 Self-avoiding Walk Tree

The main fundamental step in proving Theorem 11.2 is to reduce the theorem from arbitrary graphs G (with
maximum degree ∆) to trees (with maximum degree ∆) in which we want to bound the maximum influence
of the root to the rest of the vertices. This builds on Weitz’s influential correlation decay technique [Wei06]

We start by defining the self-avoiding walk trees. Given a connected graph G = (V,E) be a connected graph,
and a specific vertex r ∈ V , and a total ordering of the vertex set V , the self-avoiding walk (SAW) tree
rooted at r, TSAW (G, r) is defined as follows: It is a tree rooted at r of all paths starting at r in G except
that whenever a path closes a cycle, say r = v0, v1, . . . , vk, vi where 0 ≤ i ≤ k− 1, the copy (in the tree) of of
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vi (in G) is fixed to be occupied if vi+1 < vk in the total order and un-occupied otherwise. See the following
picture for an example. So, observe that there are multiple copies of every vertex of G in the tree. For each
v ∈ V we denote the set of all unfixed copies of v in TSAW (G, r) by Cv.

For the sake of the proof we assume that every vertex v has a distinct activity parameter, λv. In that case,
all copies of v from Cv will have the same activity parameter λv in the SAW tree. As alluded to above, we
will show that for any vertex v ̸= r, IG(r → v) =

∑
v̂∈Cv

IT (r → v̂).

To establish that, the idea is to look the generating polynomial of the hardcore model as a multivariate
polynomial in terms of vertex activities {λv}v∈V and relate the generating polynomial of G to the generating
polynomial of T . Let λ = {λv}v∈V denote the vector of vertex activities. We define the partition function,

gG(λ) =
∑

I independent set

∏
v∈I

λv

For a vertex v we write gG,v to denote the generating polynomial of the hard-core model when v is in, i.e.,
λv∂λv

gG and similarly we let gG,v̄ = gG(λv = 0).

Theorem 11.3. Let G = (V,E) be a connected graph, r ∈ V be a vertex such that G is connected. Let
T = TSAW (G, r) be the self-avoiding walk tree of G rooted at r. Then, gG,r(λ) divides gT,r(λ). More precisely,
there exists a polynomial pG(r) = pG(r)(λ−r) (that is independent of λr such that

gT,r = gG,r · pG(r), gT,r̄ = gG,r̄ · pG(r).

For a vertex u we write gG,u to denote the generating polynomial of all independent sets that contain u and
similarly we write gG,u to denote the polynomial that u is out. First, we use the above theorem to prove the
following lemma.

Lemma 11.4. For any vertex v ̸= r, IG(r → v) =
∑

v̂∈Cv
IT (r → v̂)

Proof. The main observation is that if g(z1, . . . , zn) is the generating polynomial of a probability distribution
π over n items, then for any i, the marginal of i is exactly equal to zi∂zi log g.

Having this we can write,

λv∂λv log
gG,r(λ)

gG,r(λ)
= λv∂λv (log gG,r(λ)− log gG,r̄)

= λv∂λv
log gG,r(λ)− λv∂λv

log gG,r̄

= P [v|r]− P [v|r] = IG(r → v). (11.1)

In other words, the above calculations follows by a simple fact that if g(z1, . . . , zn) is a generating polynomial
of a probability distribution over n items, then for any i, the marginal of i is exactly equal to zi∂zi log g.
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On the other hand, recall that for the SAW tree T , every free copy v̂ of v has the same activity λv̂ = λv.
So, by the above theorem,

λv∂λv
log

gG,r(λ)

gG,r(λ)
= λv∂λv

log
gT,r(λ)

gT,r(λ)
(Theorem 11.3)

=
∑
v̂∈Cv

λv̂∂λv̂
log

gT,r(λ)

gT,r(λ)
· ∂λv̂
∂λv

λv̂(λv) (Chain Rule)

=
∑
v̂∈Cv

IT (r → v̂)

This completes the proof of the lemma.

11.2 Reduction to Self Avoiding Walk Tree

In this section we prove Theorem 11.3. The proof is an inductive argument in which we condition on
additional vertices of the graph G to be in/out. Therefore, we will need a stronger inductive hypothesis. For
Λ ⊆ V and a partial configuration σΛ ∈ {0, 1}Λ, we define the SAW tree with conditioning σΛ by assigning
the configuring σv to every copy v̂ of v from Cv and removing all descendants of v̂ (from the tree), for each
v ∈ Λ. Recall that in general, different copies of v from Cv can receive different in/out assignments. We define
the generating polynomial gσΛ(.) to denote the generating polynomial of all independent sets consistent with
the status of the set Λ of vertices.

We inductively prove that, there is a polynomial pσΛ

G(r)(λ) (that is independent of λr such that

gσΛ

T,r = gσΛ

G,r · p
σΛ

G(r) and gσΛ

T,r = gσΛ

G,r · p
σΛ

G(r)

We induct on the number of edges with (at least) one endpoint in the set V \ Λ.

Suppose that the root r has d neighbors v1, . . . , vd in G. Define G′ to be the graph obtained by replacing the
vertex r with d vertices r1, . . . , rd and then connecting {ri, di} for 1 ≤ i ≤ d. For simplicity, we assume that
(G \ {r}) \ Λ is still connected. For each i, let Gi = G′ − ri. Consider the hardcore model on GσΛ

i together
with an additional conditioning that the vertices r1, . . . , ri−1 are fixed to be out while ri+1, . . . , rd are fixed
to be in; we denote this conditioning by σUi with Ui := {v1, . . . , vd} \ {vi}. Then, T = TSAW (G, r) can be
generated by the following recursive procedure.

Step 1) For each i, let Ti = TSAW (Gi, vi) plus the conditioning σUi
;

Step 2) Let T = TSAW (G, r) be the union of r and T1, . . . , Td by connecting {r, vi} for 1 ≤ i ≤ d; output T .

Observe that this algorithm exactly corresponds to the definition of the self-avoiding walk tree we gave in
the previous section.

For the purpose of the proof we set λri = 1 for all 1 ≤ i ≤ d instead of λr (this is basically how we will avoid
λr in as a parameter of pσΛ

G,r). Observe that by definition

gσΛ

G,r = λrg
σΛ

G′,r1,...,rd
gσΛ

G,r = gσΛ

G′,r1,...,rd
(11.2)

The main observation is that the graph Gi has one edge less than G, so by induction hypothesis, its generating
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polynomial divides the generating polynomial of a tree. Define Λi = Λ ∪ Ui. We write

gσΛ

T,r = λr

d∏
i=1

g
σΛi

Ti,vi
(recursion of a tree)

= λr

d∏
i=1

g
σΛi

Gi,vi
· pσΛi

Gi(vi)
(Induction Hypothesis)

= λr

d∏
i=1

gσΛ

G′,r1,...,ri−1,ri,...,rd
·

d∏
i=1

p
σΛi

Gi(vi)

= gσΛ

G,r

d∏
i=2

gσΛ

G′,r1,...,ri−1,ri,...,rd
·

d∏
i=1

p
σΛi

Gi(vi)
(by (11.2))

Similarly, we can write

gσΛ

T,r =

d∏
i=1

(g
σΛi

Ti,vi
+ g

σΛi

Ti,vi
) =

d∏
i=1

(g
σΛi

Gi,vi
· pσΛi

Gi(vi)
+ g

σΛi

Gi,vi
· pσΛi

Gi(vi)
)

=

d∏
i=1

gσΛ

G′,r1,...,ri,ri+1,...,rd
·

d∏
i=1

p
σΛi

Gi(vi)
= gσΛ

G,r

d−1∏
i=1

gσΛ

G′,r1,...,ri,ri+1,...,rd
·

d∏
i=1

p
σΛi

Gi(vi)

The inductive step simply follows by letting gσΛ

G(r) =
∏d

i=2 g
σΛ

G′,r1,...,ri,ri+1,...,rd
·
∏d

i=1 p
σΛi

Gi(vi)

This completes the proof of Theorem 11.3. Using Theorem 11.3 and Lemma 11.4 to prove Theorem 11.2 it
is enough to prove the following theorem:

Theorem 11.5. For any ∆-ary tree T rooted at a vertex r and any λ ≤ (1− δ)λc(∆), we have∑
v

I(r → v) ≤ Oδ(1).

11.3 Bounding Influences on a Tree

Given a tree T (where every vertex has at most ∆ − 1 many children (note that root can really have ∆
children but we ignore that for simplicity let Lr(k) be the number of vertices at distance k of the root.
[CLV20] proved that if the activity parameter λ ≤ (1− δ)λc(∆), then we have the following bound: For any
k ≥ 1, ∑

v∈Lr(k)

I(r → v) ≤ 4(1− δ/2)k−1

Summing this up for k = 1 → ∞, even if T has infinitely many vertices, we get∑
v

I(r → v) ≤ 8/δ.

Next, we will explain the main ideas to prove the above bound. First, for a vertex v ∈ T , let Tv be the

sub-tree of T rooted at v; thus Tr = T . Let Rv :=
gTv,v(λ)
gTv,v(λ)

= P[v in]
P[v out] . Say a vertex u has d children v1, . . . , vd

in the tree; the tree recursion is a formula that computes Ru given Rv1 , . . . , Rvd due to the independence of
Tvi ’s. More specifically, there is a function Fd : [0,∞]d → [0,∞] such that

Ru = Fd(Rv1 , . . . , Rvd) := λ

d∏
i=1

1

Rvi + 1
.
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We leave it as an exercise to verify the above formula.

Recall that by equation (11.1), the influence of r to a vertex u is the derivative of logRr with respect to the
external field at u. So, it is natural to define an analogue of the Fd function for the log ratio quantity. More
specifically, let Hd := [−∞,+∞]d → [−∞,+∞] defined as follows:

logRu = Hd(logRv1 , . . . , logRvd) := log λ+

d∑
i=1

log
1

1 + elogRvi

To put it differently, Hd = log ◦Fd ◦ exp.

The following lemma follows from the fact that we are analyzing influences in a tree.

Lemma 11.6. Suppose that u, v, w ∈ T are three distinct vertices such that v is on the unique path from u
to w. Then

I(u→ w) = I(u→ v) · I(v → w)

Proof.

I[u→ w] = P [w|u]− P [w|ū]
= P [v|u]P [w|u, v] + P [v̄|u]P [w|uv̄]− P [v|ū]P [w|ū, v]− P [v̄|ū]P [w|v̄, ū]
= P [v|u]P [w|v] + P [v̄|u]P [w|v̄]− P [v|ū]P [w|v]− P [v̄|ū]P [w|v̄]

The last line uses that T is a tree and v is on the path from u to w. On the other hand,

I[u→ v]I[v → w] = (P [v|u]− P [v|ū]) · (P [w|v]− P [w|v̄])
= P [w|v] · (P [v|u]− P [v|ū])− P [w|v̄] · (P [v|u]− P [v|ū])
= P [w|v] · (P [v|u]− P [v|ū])− P [w|v̄] · (P [v̄|ū]− P [v̄|u]) = I[u→ w]

as desired.

For the second lemma we need another notation: For y ∈ [−∞,∞] define

h(y) := − ey

1 + ey
=

∂

∂y
Hd(y1, . . . , yi−1, y, yi+1, . . . , yd). (11.3)

It follows by (11.1) that

Lemma 11.7. For any vertex v ∈ T and any child u of v we have

I(v → u) = h(logRu).

Proof.

∂yHd = ∂y

log λ+ log
1

1 + ey
+

∑
1≤j≤d,j ̸=i

1

1 + eyj


= ∂y log

1

1 + ey

= −∂y(1 + ey)

1 + ey
= − ey

1 + ey
= − Ru

1 +Ru
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Having the above two lemmas we can simply write the influence of r to vertices in Lk(r) inductively. Now,

the main issue is that the straightforward recursion gives us terms of the form
∏k−1

i=0 h(logRui
) for any path

r = u0, . . . , uk−1, uk. And, in principal we can have as many as (∆− 1)k many such paths. A direct upper
bound on such a product does not give a tight bound on the influence (that is independent of ∆) as we have
to multiply the upper-bound by (∆− 1)k.

The trick is to use a method called the potential method: Instead of tracking log ratios in the tree recursion
we apply a potential function Ψ and study how Ψ(logRu) evolves in the tree. We also let ψ := Ψ′ be the
derivative of the potential. More precisely define

HΨ
d := Ψ ◦Hd ◦Ψ−1.

We prove inductively that for any vertex u ∈ T ,∑
v∈Lu(k)

ψ(logRu)|I(u→ v)| ≤ max
v∈Lu(k)

{ψ(logRv)} · (1− α)k

where Lu(k) is the set of vertices at distance k of u and α is a parameter that we choose later. The base
case can be checked easily. Now, suppose the claim is checked for k − 1. Say u has d children w1, . . . , wd.
We write,∑

v∈Lu(k)

ψ(logRu)|I(u→ v) =

d∑
i=1

ψ(logRu)|I(u→ wi)|
∑

v∈Lwi
(k−1)

|I(wi → v)| (Lemma 11.6)

=

d∑
i=1

ψ(logRu)

ψ(logRwi
)
|h(logRwi

)|
∑

v∈Lwi
(k−1)

ψ(logRwi
)I(wi → v)| (Lemma 11.7)

≤
d∑

i=1

ψ(logRu)

ψ(logRwi)
|h(logRwi

)| max
v∈Lwi

(k−1)
ψ(logRv) · (1− α)k−1 (IH)

≤ max
v∈Lu(k)

ψ(logRv)(1− α)k−1 ·
d∑

i=1

ψ(logRu)

ψ(logRwi
)
|h(logRwi

)|

Finally, the last observation is that the quantity in the sum is exactly
∥∥∇HΨ

d (Ψ(logRw1
), . . . ,Ψ(logRwd

))
∥∥
1
.

So, the main property of the potential function is that for any y1, . . . , yd in the range of Ψ we have∥∥∇HΨ
d (y1, . . . , yd)

∥∥
1
≤ 1− α.

It turns out that this can be achieved for ψ(y) =
√

|h(y)| and Ψ defined accordingly and for α ≥ δ/2. In
particular, we can write

d∑
i=1

ψ(logRu)

ψ(logRwi
)
|h(logRwi

)| =
d∑

i=1

√
|h(logRu)|√
|h(logRwi

)|
|h(logRwi

)|

=

d∑
i=1

√√√√√ λ
∏d

j=1
1

1+Rwj

1 + λ
∏d

j=1
1

1+Rwj

√
Rwi

1 +Rwi

We leave it as an exercise to bound the RHS by 1− δ/2 assuming λ ≤ (1− δ)λc(∆). Note that d ≤ ∆− 1.
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