Active learning for Binary classification

Consider Chample Space
$$\mathcal{X}$$
 - space of all imaged (es. sublite)
(binary) [shed space $\{0,1\}$ - contains "human-made object" or not.
Assume: for every $x \in \mathcal{X}$ 3 a corresponding level $\frac{1}{x} \in \frac{50,13}{13}$
Hypothasis clars \mathcal{H} : the \mathcal{H} $h: \mathcal{X} \rightarrow 50,13$.
"Traditional" passive learning for supervised learning)
3 distribution \mathcal{D} over \mathcal{X} and we observe
 $\frac{1}{5}(\chi_{\ell}, \gamma_{\ell})^{*} \stackrel{\text{id}}{\longrightarrow} \mathcal{D}$ $\chi_{\ell} \in \mathcal{X}, \ y_{\ell} \in \{0,1\}$
Griver dataset. Learn $h_{n} = \underset{h\in \mathcal{H}}{\operatorname{argmin}} \frac{1}{n} \sum_{\ell=1}^{n} \mathbb{I}\{h(\chi_{\ell}) \pm y_{\ell}\}$
Reason about true risk $\mathbb{E}_{(\mathcal{K}, \mathcal{Y}) \rightarrow \mathcal{D}} \begin{bmatrix} \mathbb{I}\{h_{n}(\chi) \pm \mathcal{Y}\} \end{bmatrix}$.
Active learning selects examples to be labelled
and we evaluate an algorithm based on
both \mathcal{H} labels requested, \mathcal{H} uncloselled boled at
 $a_{n}d \in \mathbb{E}_{(\mathcal{K}, \mathcal{Y}) \rightarrow \mathcal{D}} \begin{bmatrix} \mathbb{I}\{h_{n}(\chi) \pm \mathcal{Y}\} \end{bmatrix}$

Question: Can active learning actieve same acarracy as passive learning al far ferrer labels?

Settings of interest			Separable	Agnostic
	Pool-bused	setting	Today	
	Streaming	setting		

Pool-based setting Example space X is finite and fixed.
Game proceeds in rounds
Input: 7t, X
far t=1,2,...,n
Learner chooses I e E X
Nature versals ye
henner outputs
$$\hat{h}_n \in \mathcal{H}$$
 and receives less
 $\frac{1}{N} \sum_{i=1}^{N} \int \int \hat{h}_n(x_i) \neq y_i$ over entire pool X
Streaming setting X can be uncountable. Exists a
distribution \hat{D}_X over χ ,
for t=1,2,...,n
Nature versals $\chi_E \stackrel{iid}{\to} \hat{D}_X$
Learner decides regrest label or not

IF gez, natur reveals y e. else round ends.
hæmer recieves loss
$$\overline{E}_{(X,Y)} p_{XY} \left[1 \left\{ \hat{h}_{*}(X) \neq Y \right\} \right].$$

Note An adjointhen for streaming setting can
always be applied to the pool-back setting.
Separable, pool-based setting (Exact setting: identity h^{*})

$$X$$
 is finite, and can be enumerated $X = \{1, ..., n\}$
 $n = |X|$
 X finite \Rightarrow H is finite whole
 $fh^* e H^*$: $h^*(i) = h^*(x_i) = y_i$ $\forall x_i \in X$ (i $\in X$)
(i $\in ln3$)
Ex. Thresholds $h_i(x_i) = f(i \le i)$, $H = \{h_i \le len3\}$
 $h_2(i) = h^*(x_i) = f(i \le i)$, $H = \{h_i \le len3\}$
 $h_2(i) = h^*(x_i) = f(x_i) = h^*(x_i)$
 $for this class I can use bisection search
to learn $h^* e H$ using just $\int log_2(H)$ labels.$

Ex. Needle in a haystach
$$h_j(x_i) = 11 \{i = j\}$$

 $f = h_j(i)$
 $i \ge 3$
 $h_j(x_i) = 11 \{i = j\}$
 $124I - I gueries$
 $s = ffice$

To identify he nothing is better than exhaustive search

Question: Griven arbitrary hypothesis class X, how many
guaries are necessary and suthisish to identify hiert?
For a deterministic algorithm A let
$$S(X, H, A, h)$$

be the number of labels requested under $h^* = h$,
write all other hypotheses are ruled out
WLOG any deterministic algorithm A is a
binary tree:
WI leaves as
hypotheses H.
HI caves = 1761
=) depth of tree $\geq \Gammaloge[761]$
=) Some $h \in H$ requires $\geq \Gammalose 1761$ labels
Proposition far any hypothesis class H we have.

 $\begin{array}{l} \min & \max \\ \mathcal{A} & \operatorname{he}\mathcal{H} \\ \end{array} \\ \mathcal{S}(\mathcal{X}, \mathcal{H}, \mathcal{A}, \operatorname{h}) \\ \end{array} \\ \geq \left\lceil \log_2 |\mathcal{H}| \right\rceil$

Extended teaching dimension (Heyedrus 1995) Def We say SCX is a specifying set for bEfoil?" wit H $|f| |\{h \in \mathcal{H} : h(x) = b(x) \forall x \in S\}| \leq |.$ Note: L is not necessarily in H. When bEH then a specifying set is sufficient to "teach" the compte bEX. "to prove that b\$ 20 When 6 &H " Det For any X, H before the extended teaching dimension EXT-TD(2) = min { k : fb E { 0, 1 }, Free. set S for b w/ ISI ≤ k } Theorem | For. an, 21 we have EXT-TD(2) < min max S(2,26,A,h) ≤ EXT-TD(26) [log_141] Moreover, the Halving algorithm achieves the upper bound. Ex. EXT-TD (Hohredalds) = 2. If bert, just need to give example to left +right ot threshold value. If 6476 then I a "o" before a "i" and so choose any pair or b= 0° and just return S= 813 since h(1)=1 Ex. EXT-TD (Huysheh) = 1781-1. Consider b=0"