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These notes were written for myself to refer to while lecturing. They are not a replacement for

the course textbooks [Lattimore and Szepesvári, 2020, Bubeck et al., 2012] and may contain

errors! I have posted them by request.

1 Introduction

Machine learning, and in particular, supervised learning, is the study of making statistical inferences from
previously collected data. Multi-armed bandits is more about an interaction between an agent (algorithm)
and an environment where one simultaneously collects data and makes inferences in a closed-loop.

You have n “arms” or actions, representing distributions. “Pulling” an arm represents requesting a
sample from that arm.

At each time t = 1, 2, 3, . . .

• Algorithm chooses an action It 2 {1, . . . , n}

• Observes a reward XIt,t ⇠ PIt where P1, . . . , Pn are unknown distributions

That is, playing arm i and time s results in a reward Xi,s from the ith distribution. In these lectures, all
distributions will be Gaussian (or sub-Gaussian) with variance 1 unless otherwise specified. Example of
sub-Gaussian distribution is bounded distributions on [�1, 1] or Gaussian N (0, 1). Formally, a distribution
of X is 1-sub-Gaussian if E[exp(�X)]  exp(�2/2).

We will find that the means of the distribution are the most pertinent parameters of these distributions.
Let ✓⇤i = EX⇠Pi [X] be the mean of the ith distribution. Define �i = maxj=1,...,n ✓⇤j � ✓⇤i . We measure
performance of an algorithm in two ways: 1) how much total reward is accumulated, and 2) how many total
pulls are required to identify the best mean.

1.1 Regret Minimization

After T time steps, define the regret as

RT = max
j=1,...,n

E
"

TX

t=1

Xj,t �
TX

t=1

XIt,t

#

= max
j=1,...,n

✓⇤jT � E
"

TX

t=1

XIt,t

#

The goal is to have R(T ) = o(T ) to achieve sub-linear regret (e.g., R(T ) 
p
T ).

1

 



If at time T the ith arm has been played Ti times, then

RT = max
j=1,...,n

✓⇤jT � E
"

TX

t=1

XIt,t

#

= max
j=1,...,n

✓⇤jT �
TX

t=1

E
"

nX

i=1

Xi,t1{It = i}
#

= max
j=1,...,n

✓⇤jT �
nX

i=1

✓⇤i E
"

TX

t=1

1{It = i}
#

= max
j=1,...,n

✓⇤jT �
nX

i=1

✓⇤i E [Ti]

=
nX

i=1

�iE [Ti]

Thus, we want to minimize the number of times we play sub-optimal arms.

1.2 Best-arm identification

Given a � 2 (0, 1) identify the best arm with probability at least 1� � using as few total pulls as possible.
While related, these objectives are at odds with one another. Sometimes called the (✏, �)-PAC setting,

but for simplicity we’ll take ✏ = 0.

1.3 Warm-up: A/B testing

Suppose n = 2. How long would it take to decide one arm was better than another using sub-gaussian
bounds? Consider the trivial algorithm:

Input: 2 arms, time ⌧ 2 N.
Pull each arm i 2 {1, 2} exactly ⌧ times and compute empirical mean b✓i.
For all t > 2⌧ play arm argmaxi b✓i

Without loss of generality, assume ✓⇤1 > ✓⇤2 . If b✓i is the empirical mean of arm i after pulling it ⌧ times, it

is a random variable that intuitively should be “close” to ✓⇤i . Suppose we could guarantee that b✓1 > b✓2 with
probability 1� �. If this were true then we have an algorithm for identifying the best arm with probability
at least 1� � using at most 2⌧ pulls. Moreover, with probability at least 1� � the sub-optimal arm is pulled
at most ⌧ times incurring a regret of at most ⌧� where � := ✓⇤1 � ✓⇤2 . To make this argument rigorous, we

need to be able to build a confidence interval on each b✓i � ✓⇤i with high probability. By the central limit

theorem (CLT) we know that b✓i � ✓⇤i ⇠ N (0, Var(Z)
⌧ ) where Var(Z) denotes the variance of each individual

observation (assumed the same for each arm). This suggests that
b✓i�✓⇤

ip
Var(Z))

2 [�1.96, 1.96] with probability

at least .95 using a standard Normal distribution look up. But this is asymptotic, can we get non-asymptotic
and mathematically convenient quantities?

1.4 Finite-sample confidence intervals

Proposition 1 (Cherno↵ Bounding technique). Fix ✏, �. If Z1, Z2, . . . are independent mean-zero random
variables with  Z(�) := log(E[exp(�Zi)]) then P( 1⌧

P⌧
t=1 Zt > ✏)  inf� exp(�⌧✏�+ ⌧ Z(�)).
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Proof.

P( 1
⌧

⌧X

t=1

Zt > ✏) = P(exp
 
�

⌧X

t=1

Zt

!
> exp(�⌧✏))

 e��⌧✏E
"
exp

 
�

⌧X

t=1

Zt

!#
(Markov’s)

= e��⌧✏
⌧Y

t=1

E [exp (�Zt)] (Independence)

= exp (��⌧✏+ ⌧ Z(�))

Corollary 1. Let Z1, Z2, . . . be independent mean-zero �2-sub-Gaussian random variables so that  Z(�) :=
log(E[exp(�Zt)])  exp(�2�2/2), then for ⌧ = d2�2✏�2 log(1/�)e we have P( 1⌧

P⌧
t=1 Zt  ✏) � 1� �.

Lemma 1 (Hoe↵ding’s Lemma). Let X be an independent random variable with support in [a, b] almost
surely and E[X] = 0. Then log(E[exp(�X)])  (b� a)2�2/8.

Proof. This proof is adapted from [Boucheron et al., 2013]. Let PX denote the distribution of X so that for
any function g : R! R we have EX [g(X)] =

R
x g(x)dP (x). Define a new random variable Z with distribution

PZ defined as dPZ(x) =
1

EX [exp(�X)]e
�xdPX(x). Note that PZ is a valid distribution as dPZ(x) � 0 for all x

and
R
x dPZ(x) =

1
EX [exp(�X)]

R
x e

�xdPX(x) = 1
EX [exp(�X)]EX [exp(�X)] = 1. The key observation is to notice

that

 X(�) := log(EX [exp(�X)])

 0
X(�) =

1

EX [exp(�X)]
EX [X exp(�X)]

 00
X(�) =

1

EX [exp(�X)]
EX [X2 exp(�X)]�

✓
1

EX [exp(�X)]
EX [X exp(�X)]

◆2

=EZ [Z
2]� EZ [Z]2

=Var(Z)

(b� a)2/4

where the last line follows from the fact that the support of PZ is contained in [a, b] so that

Var(Z) = EZ [(Z � EZ [Z]2)2]  EZ [(Z � a+b
2 )2]  (b� a)2/4.

By Taylor’s remainder theorem, for some ✓ 2 [0,�] we have

 X(�) =  X(0) +  0
X(0)�+  00

X(✓)�2/2

=  00
X(✓)�2/2

 (b� a)2�2/8

which completes the proof.

1.5 A/B testing solution

Set ⌧ = d8��2 log(4/�)e and let b✓i = 1
⌧

P⌧
s=1 Xi,s for i = 1, 2. Define the event

Ei :=
(
|b✓i � ✓⇤i | 

r
2 log(4/�)

⌧

)
.
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Then P(Ec
1 [ Ec

2)  P(Ec
1) + P(Ec

1)  �. Thus, if we pull each arm ⌧ times then on E1 \ E2 we have

b✓1 > ✓⇤1 �
r

2 log(4/�)

⌧
> ✓⇤1 ��/2

� ✓⇤2 +�/2

� b✓2 �
r

2 log(4/�)

⌧
+�/2

> b✓2

so that we have determined the best-arm. And we can play it forever.
After any T total plays such that arm i has been played Ti times and T = T1 + T2, the expected regret

is at most

✓⇤1T � E
"

TX

s=1

XIs,s

#
= ✓⇤1T � E [(T1✓

⇤
1 + T2✓

⇤
2)]

= E [T2�]

= E [T2�1{E1 \ E2}+ T2�1{Ec
1 [ Ec

2}]
 E [⌧�1{E1 \ E2}+ T�1{Ec

1 [ Ec
2}]

 8��1 log(4/�) +�TP(Ec
1 [ Ec

2)

 8��1 log(4/�) +�T �.

If we take � = 1/T then the expected regret is less than � + 8��1 log(4T ). On the other hand, the regret
can’t possibly be greater than �T , thus the total regret is bounded by

✓⇤1T � E
"

TX

s=1

XIs,s

#
= min{T�,�+ 8��1 log(4T )}

 1 + 2
p
8T log(4T )

where the last step takes the worst case � =
p

8 log(4T )/T .
Takeaway: For very small � we lose almost nothing, for very large � its easy to distinguish, its maximized
at around 1/

p
T . We’ll see this again.

2 Action Elimination Algorithm for Multi-armed Bandits

Input: n arms X = {1, . . . , n}, confidence level � 2 (0, 1).
Let bX1  X , ` 1
while | bX`| > 1 do

✏` = 2�`

Pull each arm in bX` exactly ⌧` = d2✏�2
` log( 4`

2|X |
� )e times

Compute the empirical mean of these rewards b✓i,` for all i 2 bX`

bX`+1  bX` \
�
i 2 bX` : maxj2 bX`

b✓j,` � b✓i,` > 2✏`
 

` `+ 1
Output: bX`+1 (or play the last arm forever in the regret setting)

Lemma 2. Assume that maxi2X �i  4. With probability at least 1��, we have 1 2 bX` and maxi2 bX`
�i  8✏`

for all ` 2 N.

Proof. For any ` 2 N and i 2 [n] define

Ei,` =
n
|b✓i,` � ✓⇤i |  ✏`

o
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and E =
Tn

i=1

T1
`=1 Ei,`. Noting that ✏` =

q
2 log(4n`2/�)

⌧`
we have

P(Ec) = P
 

n[

i=1

1[

`=1

Ec
i,`

!


nX

i=1

1X

`=1

�

2n`2
 �.

In what follows assume E holds.
Fix any ` for which 1 2 bX` (note 1 2 bX1). Then for any j 2 bX` we have

b✓j,` � b✓1,` = (b✓j,` � ✓⇤j )� (b✓1,` � ✓⇤1)��`

E
 2✏`

which implies 1 2 bX`+1. Thus, 1 2 bX` for all `. On the other hand, any i for which �i = ✓⇤1 � ✓⇤i > 4✏` we
have

max
j2 bX`

b✓j,` � b✓i,` � b✓1,` � b✓i,`

= (b✓1,` � ✓1)� (b✓i,` � ✓i) +�i

> �2✏` + 4✏` = 2✏`

which implies this maxj2 bX`+1
✓⇤j � ✓⇤1 � 4✏` = ✓⇤1 � 8✏`+1.

Theorem 1. Assume that maxi2X �i  4. Then with probability at least 1 � �, 1 is returned from the
algorithm at a time ⌧ that satisfies

⌧  c
nX

i=2

��2
i log(n log(��2

i )/�)

Proof. Assume E holds, as it does with probability at least 1 � �. If � = mini 6=1 �i then bX` = {1} for
t � dlog2(8��1)e since all other arms would have been removed. Note that

Ti =

dlog2(8�
�1)eX

`=1

⌧`1{i 2 bX`}


dlog2(8�

�1)eX

`=1

⌧`1{�i  8✏`}

=

dlog2(8�
�1
i )eX

`=1

⌧`

=

dlog2(8�
�1
i )eX

`=1

d2✏�2
` log( 4`

2|X |
� )e

 d2 log( 4 log2
2(16�

�2
i )|X |

� )e
dlog2(8�

�1
i )eX

`=1

4`

 c��2
i log(

4 log2
2(16�

�2
i )|X |

� ).

Thus, the total number of samples taken before bX` = {1} is equal to

nX

i=1

Ti  T1 +
nX

i=1

c��2
i log(

4 log2
2(16�

�2
i )|X |

� )

 2
nX

i=1

c��2
i log(

4 log2
2(16�

�2
i )|X |

� )

which implies that one can identify the best arm after no more than
Pn

i=2 �
�2
i log(n log(��2

i )/�).
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Theorem 2. Assume that maxi2X �i  4. For any T 2 N, with probability at least 1� �
X

i:�i>0

Ti�i  inf
⌫�0

⌫T +
nX

i=1

c(�i _ ⌫)�1 log( log((�i_⌫)�1)|X |
� ).

Moreover, if the algorithm is run with � = 1/T then RT  c
Pn

i=2 �
�1
i log(T ) and RT  c

p
nT log(T ).

Suppose you run for T timesteps. For any ⌫ � 0 the regret is bounded by:
nX

i=2

�iTi =
X

i:�i⌫

�iTi +
X

i:�i>⌫

�iTi

 ⌫T +
X

i:�i>⌫

�iTi

= ⌫T +
X

i:�i>⌫

1X

`=1

�i⌧`1{i 2 bX`}

 ⌫T +
X

i:�i>⌫

1X

`=1

�i⌧`1{�i  8✏`}

 ⌫T +
nX

i=2

1X

`=1

�i⌧`1{�i _ ⌫  8✏`}

 ⌫T +
nX

i=2

dlog2(8(�i_⌫)�1)eX

`=1

8✏`⌧`

= ⌫T +
nX

i=2

dlog2(8(�i_⌫)�1)eX

`=1

8✏`d2✏�2
` log( 4`

2|X |
� )e

 ⌫T +
nX

i=2

c log( 4 log2
2(8(�i_⌫)�2)|X |

� )

dlog2(8(�i_⌫)�1)eX

`=1

2`

 ⌫T +
nX

i=2

c(�i _ ⌫)�1 log( log((�i_⌫)�1)|X |
� )

where the second inequality follows from Lemma 2. Setting ⌫ = 0 yields a regret of
Pn

i=2 �
�1
i log(n log(��1

i )/�).

On the other hand, using �i _ ⌫ � ⌫ and minimizing over ⌫ yields a regret of
p
nT log(n log(T )/�). The

expected regret, of course, is then bounded by

nX

i=2

�iE[Ti] = E
"

nX

i=2

�iTi

#


nX

i=2

��1
i log(n log(��1

i )/�) + TP(Ec)

Setting � = 1/T implies the regret is less than
Pn

i=2 c�
�1
i log(T ).

Some remarks:

• This analysis doesn’t reuse samples from previous rounds, it is easy to make this change.

• Regret bound requires knowledge of T a priori. One can avoid knowing this by using a double trick:
guess a value of T , then when you this value double T and restart using this value of T .

3 Lower bounds for Multi-armed Bandits

Let us briefly pause to consider how far o↵ from optimal we are, and then think about an algorithm that
could get us to optimality. How do we know we’re doing okay?

6



3.1 Mean of a Gaussian

Suppose I get n samples from a Gaussian distribution N (µ, 1). You compute the empirical mean bµ =
1
n

Pn
i=1 Xi. We know that |bµ � µ| 

p
2 log(2/�)/n. How tight is this? If µ 2 {0,�} then we just need

n = 8��2 log(2/�)1 You’ll show this on your homework.

Let pµ(x) =
1
2⇡ e

�(x�µ)2/2�2

be the Gaussian distribution with mean µ. Under H0, Xi ⇠ p0 and under
H1, Xi ⇠ p�. Let � : Rn ! {0,�}. Then the minimax probability of error is equal to

inf
�

max{P0(� = 1),P1(� = 0)} � inf
�

1

2
(P0(� = 1),P1(� = 0))

= inf
�

1

2

✓Z

x2Rn

1{�(x) = 1}p0(x)dx+

Z

x2Rn

1{�(x) = 0}p1(x)dx
◆

=
1

2

Z

x2Rn

min{p0(x), p1(x)}dx

� 1

4

✓Z

x2Rn

p
p0(x)p1(x)dx

◆2

(Cauchy-Schwartz)

� 1

4
exp

✓
�
Z

x2Rn

log(p1(x)
p0(x)

)p1(x)dx

◆
(Jensen’s)

where

✓Z

x2Rn

p
p0(x)p1(x)dx

◆2

=

✓Z

x2Rn

p
min{p0(x), p1(x)}max{p0(x), p1(x)}dx

◆2


Z

x2Rn

min{p0(x), p1(x)}dx
Z

x2Rn

max{p0(x), p1(x)}dx (Cauchy-Schwartz)

 2

Z

x2Rn

min{p0(x), p1(x)}dx

and (integrating only over support of pq)

✓Z

x2Rn

p
p0(x)p1(x)dx

◆2

= exp

✓
2 log(

Z

x2Rn

p0(x)
p
p1(x)/p0(x)dx)

◆

� exp

✓
2

Z

x2Rn

p0(x) log(
p
p1(x)/p0(x))dx

◆

= exp

✓
�
Z

x2Rn

log(p1(x)
p0(x)

)p1(x)dx

◆

Note that

KL(P1|P0) =

Z

x
log

 
nY

i=1

p1(xi)

p0(xi)

!
nY

i=1

p1(xi)dx

= nKL(p1|p0) = n�2/2

and that KL(N (0, 1)|N (�, 1)) = �2/2.
We conclude that

inf
�

max{P0(� = 1),P1(� = 0)} � 1

4
exp

�
�n�2/2

�

Thus, to determine whether or not n samples are from a Gaussian with mean 0 or � with probability of
failure less than �, one needs n � 2��2 log(1/4�).

1Using the SPRT, as � ! 0 one needs just an expected number of samples equal to 2��2 log(2/�).
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3.2 Indentification

An algorithm for best-arm identification at time t is described by given a history (Is, Xs)s<t for each time t
is described by a

• selection rule It 2 [n] is Ft�1 measurable where Ft = �(I1, X1, I2, X2, . . . , It�1, Xt�1)

• stopping time ⌧ is Ft measurable, and

• recommendation rule bi 2 [n] invoked at time ⌧ which is F⌧ -measurable.

Definition 1. We say that an algorithm for best-arm identification is �-PAC if for all ✓⇤ 2 Rn we have
P✓⇤(bi = argmaxi2[n] ✓

⇤
i ) � 1� �.

The following is due to [Kaufmann et al., 2016], a strengthening of the first time it appeared in [Mannor and Tsitsiklis, 2004].

Theorem 3 (Best-arm identification lower bound). Any algorithm that is �-PAC on {P : Pi = N (✓i, 1), ✓1 >
maxi 6=1 ✓i, ✓ 2 [0, 1]n} for � < 0.15 satisfies E✓⇤ [⌧ ] � 2 log( 1

2.4� )
Pn

i=1 �
�2
i .

Proof sketch: The original instance has Pi = N (✓⇤i , 1). Pick some j 2 [n] and define an alternative mean

vector ✓(j) 2 [0, 1]n such that ✓(j)i = ✓⇤i if i 6= j and ✓(j)i = ✓1 + ✏ for j = i for some arbitrarily small number
✏. Note that under ✓(j), arm j is the best arm.

Because the algorithm claims to be �-PAC, it has to output arm 1 under ✓⇤ and arm j under ✓(j). But
these two bandit games only di↵er on arm j so to tell the di↵erence between them its only natural to sample
arm j until one can figure out which instance is being played (i.e., is its mean ✓j or ✓1 + ✏?) The discussion
above suggests that to make this distinction with probability at least 1� �, it is necessary to sample arm j
at least 2(✓1 � ✓j + ✏)�2 log(1/4�) times. Taking ✏ to zero and noticing that j was arbitrary completes the
sketch.

This is not a proof, however, because the number of times the algorithm samples arm j is random whereas
in the above argument it was fixed. The proof of [Kaufmann et al., 2016] provides convenient tools to prove
general lower bounds for �-PAC settings.

3.3 Regret, minimax

Theorem 4 (Minimax regret lower bound). For every T � n there exists an instance P = N (✓⇤, I) such
that RT �

p
(n� 1)T/27.

Proof sketch: Let ✓⇤ = ✓ = (�, 0, . . . , 0). For any algorithm, by the pigeon hole principle, there exists an
arm bi 2 [n] such that E[Tbi]  T/n.

Define an alternative Gaussian instance with mean vector ✓0 that is identical to ✓ other than ✓bi = 2�.

If � ⇡
p
n/T then bi will not be given enough samples to distinguish between the two instances, which

means E[T1] will be about the same under both models.
Under ✓, if E[T1]  T/2 then the regret incurred is at least �T/2 ⇡

p
nT . On the other hand, under ✓0,

if E[T1] > T/2 then the regret again is at least �T/2 ⇡
p
nT .

This is not a proof because again the number of times an arm is pulled is random, but as before, these
arguments can be made precise.

3.4 Gap-dependent regret

Lemma 3. Any strategy that satisfies E[Ti(t)] = o(ta) for any arm i with �i > 0 and a 2 (0, 1), we have

that limT!1 inf R̄T
log(T ) =

Pn
i=2

2
�i

.

Takeaway: This is what his field does: prove an initial upper, then lower, then chase it.
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3.5 Revisiting MAB with Optimism

Why go beyond action elimination algorithms? Because they will never hit the asymptotic lower bound, for
one thing, since if we look at when the second to last arm exits, the lowerbounds are the same.

↵-UCB which is argmaxi b✓i,Ti(t) +
q

2↵ log(t)
Ti(t)

as ↵! 1 achieves the lower bound.

Any sub-linear regret algorithm plays arm 1 an infinite number of times, so assume bµ1 ⇡ µ1. Minimizing
the maximum upper bound. Thus, we expect the number of times the ith arm is pulled is 2��2

i log(T ),
which is optimal.

UCB1 in its most popular form was developed by [Auer et al., 2002].
MOSS first achieved

p
nT regret [Audibert and Bubeck, 2009].

KL-UCB is finite-time analysis with optimal constants for asymptotic regret [Cappé et al., 2013].
The recent work of [Lattimore, 2018] defined a UCB-based algorithm that achieves asymptotic optimal

constants, and finite regret bounds of
P

i
log(T )

��1
i

and
p
nT .

4 Linear Bandits Intro

Now suppose each arm i = 1, . . . , n has a feature vectors xi 2 Rd. And more over, there exists some ✓⇤ 2 Rd

such that a pull of arm It 2 [n] results in a reward yt = hxIt , ✓
⇤i+ ⌘t where ⌘t ⇠ N (0, 1).

Applications: Drug-discovery, Spotify, Netflix, ads
In the previous setup, pulling arm i provided no information about arm j, but now suddenly it does.

4.1 Least Squares

Given a sequence of arm choices and observed rewards let {xt, yt, ⌘t}⌧t=1 we denote the stacked sequences of
each as X 2 R⌧⇥d, Y 2 R⌧ , and ⌘ 2 R⌧ respectively where Y = X✓⇤ + ⌘. Using this information we can
derive a least-squares estimate of ✓⇤ given as follows

✓̂ = (XTX)�1XTY = (XTX)�1XT (X✓⇤ + ⌘) = ✓⇤ + (XTX)�1XT ⌘.

Fix any z 2 Rd, then Thus

z>(✓̂ � ✓⇤) = z>(X>X)�1X>⌘.

Note that ⌘ ⇠ N (0, I). For any W ⇠ N (µ,⌃) we have AW + b ⇠ N (Aµ+ b, A⌃A>). Thus

z>(✓̂ � ✓⇤) ⇠ N (0, z>(X>X)�1z).

so that

P
✓
z>(✓̂ � ✓⇤) �

q
2z>(X>X)�1z log(1/�)

◆
 �.

We will use the notation kzk2A = z>Az so that with probability at least 1� �

z>(✓̂ � ✓⇤)  kzk(X>X)�1

p
2 log(1/�)

4.1.1 Aside: Gaussian to sub-Gaussian

For an arbitrary constant µ,

9



P (xT (✓̂ � ✓⇤) > µ) = P (wT ⌘ > µ)

 exp(��µ)E[exp(�wT ⌘)], let � > 0 Cherno↵ Bound

= exp(��µ)E[exp(�
tX

i=1

wi⌘i)]

= exp(��µ)
tY

i=1

E[exp(�wi⌘i)] independence of wi⌘i

 exp(��µ)
tY

i=1

exp(�2w2
i /2) sub-Gaussian assumption

= exp(��µ) exp(�
2

2
||w||22)

 exp(� µ2

2||w||22
) � =

µ

||w||22

= exp(� µ2

2xT (XTX)�1x
) = �,

where in the final step we made use of the following equality

||w||22 = xT (XTX)�1XTX(XTX)�1x = xT (XTX)�1x.

Thus with probability at least 1� �,

xT (✓̂ � ✓⇤) 
r

2xT (X>X)�1x log(
1

�
)

=: kxk(X>X)�1

p
2 log(1/�)

5 Experimental design

Note that if I take measurements (x1, . . . , xn) 2 X and observe their corresponding observations yi =

hxi, ✓⇤i + ⌘i where ⌘i 2 0,1, then E[(b✓ � ✓)(b✓ � ✓)>] = �2(XTX)�1 and also, b✓ � ✓⇤ ⇠ N (0,�2(X>X)�1).
We can visualize this as a confidence ellipsoid for each choice of X. And we can even think of optimizing
the choice. Recall that the PDF of a Gaussian is �(x) = 1

(2⇡|⌃|)d/2 e
�x>⌃�1x/2. With entropy 1

2 log(2⇡e|⌃|).
When the number of selected points is large, its more convenient to think of sampling n points from a

distribution placed over X . Define

A� =
X

x2X
�xxx

>

so that for every X 2 R⌧⇥d there exists some � 2 4X such that X>X =
P

x2X d�x⌧exx> = A�. This A�

can then be used to shape the covariance b✓:

• A-optimality: minimize fA(�) = Tr(A�1
� ) minimizes E[kb✓ � ✓k22]

• E-optimality: minimize fE(�) = maxu:kuk1 u
>A�1

� u minimizes maxu:kuk1 E[(hu, b✓ � ✓i)2]

• D-optimality: maximize gD(�) = log(|A�|) maximizes the entropy of distribution. Also, if E� = {x :
x>A�1

� x  d} then D-optimality is the minimum volume ellipsoid that contains X .

• G-optimality: minimize fG(�) = maxx2X x>A�1
� x minimizes maxx2X E[(hx, b✓ � ✓⇤i)2]

Lemma 4 (Kiefer-Wolfowitz (1960)). For any X with d = dim(span(X )), there exists a �⇤ 2 4X that

10



• max� gD(�) = gD(�⇤)

• min� fG(�) = fG(�⇤)

• fG(�⇤) = gD(�⇤) = d

• support(�⇤) = (d+ 1)d/2

Proposition 2. If �⇤ is the G-optimal design for X then if we pull arm x 2 X exactly d⌧�⇤xe times for some

⌧ > 0 and compute the least squares estimator b✓. Then for each x 2 X we have with probability at least 1� �

hx, b✓ � ✓⇤i  kxk(Px2X d⌧�⇤
xexx>)�1

p
2 log(1/�)

 1p
⌧
kxk(Px2X �⇤

xxx
>)�1

p
2 log(1/�)


r

2d log(1/�)

⌧

and we have taken at most ⌧ + d(d+1)
2 pulls. Thus, for any �0 2 (0, 1) we have P(

S
x2X {|hx, b✓ � ✓⇤i| >q

2d log(2|X |/�0)
⌧ })  �0.

Notes:

• The support size of (d + 1)d/2 is trivial application of Caratheodory’s theorem. Many algorithms to
find this e�ciently.

• Note that one can find a �⇤ with a constant approximation with just support O(d).

• Leverage scores if V -optimality

• John’s ellipsoid is equivalent to G/D-optimality

[Pukelsheim, 2006, Yu et al., 2006]. [Yu et al., 2006, Soare et al., 2014, Soare, 2015, Lattimore and Szepesvari, 2017],

6 Linear Bandits: Regret Minimization

This section is inspired by [Lattimore and Szepesvári, 2020].

Input: Finite set X ⇢ Rd, confidence level � 2 (0, 1).
Let bX1  X , ` 1
while | bX`| > 1 do

Let b�` 2 4 bX`
be a d(d+1)

2 -sparse minimizer of f(�) = max
x2 bX`

kxk2(Px2cX`
�xxx>)�1

✏` = 2�`, ⌧` = 2d✏�2
` log(4`2|X |/�)

Pull arm x 2 X exactly db�`,x⌧`e times and construct the least squares estimator b✓` using only
the observations of this round
bX`+1  bX` \

�
x 2 bX` : maxx02 bX`

hx0 � x, b✓`i > 2✏`
 

` `+ 1
Output: bX`

After T time steps, define the regret as

RT = hx?, ✓⇤i � E
"

TX

t=1

hxt, ✓
⇤i
#

= E

2

4
X

x 6=x?

Tx�x

3

5

where �x = hx? � x, ✓⇤i.
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Lemma 5. Assume that maxx2X hx? � x, ✓⇤i  4. With probability at least 1 � �, we have x? 2 bX` and
maxx2 bX`

hx? � x, ✓⇤i  8✏` for all ` 2 N.

Proof. For any V ✓ X and x 2 V define

Ex,`(V) = {|hx, b✓` � ✓⇤i|  ✏`}

where it is implicit that b✓` is the G-optimal design constructed in the algorithm at stage ` with respect
to bX` = V. Note that this is precisely the analogous events of multi-armed bandits. The key piece of the
analysis is that

P

0

@
1[

`=1

[

x2 bX`

{Ec
x,`( bX`)}

1

A 
1X

`=1

P

0

@
[

x2 bX`

{Ec
x,`( bX`)}

1

A

=
1X

`=1

X

V✓X
P
 
[

x2V
{Ec

x,`(V)}, bX` = V
!

=
1X

`=1

X

V✓X
P
 
[

x2V
{Ec

x,`(V)}
!
P( bX` = V)


1X

`=1

X

V✓X

�|V|
2`2|X |P( bX` = V)  �

Thus, in what follows, assume E :=
T

x2X
T1

`=1{Ex,`( bX`)} holds.

Fix any ` for which x? 2 bX` (note x? 2 bX1). Then for any x 2 bX` we have

hx� x?, b✓`i = hx, b✓` � ✓⇤i � hx?, b✓` � ✓⇤i+ hx� x?, ✓⇤i
 2✏`

which implies x? 2 bX`+1. Thus, x? 2 bX` for all `. On the other hand, any x for which hx? � x, ✓⇤i > 4✏` we
have

max
x02 bX`

hx0 � x, b✓`i � hx? � x, b✓`i

= hx?, b✓` � ✓⇤i � hx, b✓` � ✓⇤i+ hx? � x, ✓⇤i
> 2✏`

which implies maxx2 bX`+1
hx, ✓⇤i � hx?, ✓⇤i � 4✏` = hx?, ✓⇤i � 8✏`+1.

For any ` � dlog2(8��1)e we have that bX` = {x?}. Suppose you run for T timesteps. Then for any ⌫ � 0

12



the regret is bounded by:

X

x2X\x?

�xTx =
X

x2X\x?:�x⌫

�xTx +
X

x2X\x?:�x>⌫

�xTx

 ⌫T +
1X

`=1

X

x2X\x?:�x>⌫

�xd⌧`b�`e

 T⌫ +

dlog2(8(�_⌫)�1)eX

`=1

8✏`(|support(b�`)|+ ⌧`)

= T⌫ +

dlog2(8(�_⌫)�1)eX

`=1

8✏`(
(d+1)d

2 + 2d✏�2
` log(4`2|X |/�))

 T⌫ + 4(d+ 1)ddlog2(8(� _ ⌫)�1)e+
dlog2(8(�_⌫)�1)eX

`=1

16d✏�1
` log(4`2|X |/�)

 T⌫ + 4(d+ 1)ddlog2(8(� _ ⌫)�1)e+ 16d log(4 log22(16(� _ ⌫)�1)|X |/�)
dlog2(8(�_⌫)�1)eX

`=1

2`

 T⌫ + 4(d+ 1)ddlog2(8(� _ ⌫)�1)e+ 512d(� _ ⌫)�1 log(4 log22(16(� _ ⌫)�1)|X |/�)

Setting ⌫ = 0 yields a regret bound of O(d��1 log(|X | log(��1)/�)) which implies RT  c d
� log(|X |T ). Mini-

mizing over ⌫ > 0 yields a regret bound of O(
p

dT log(log(T/d)|X |/�)) which implies RT  c
p
dT log(|X |T ).

Remarks:

• Let X = {ei : i 2 [d]}. Then for this action set, this bound is nearly minimax according to our lower
bounds!

• However, this is also concerning: we know that in the bandit setting the regret scales like
Pd

i=2 �
�1
i log(T )

but this scales d��1 log(T ), which is significantly worse. Can we achieve this?

• For pure-exploration, an analogous analysis shows that one can identify the best-arm in d
�2 log(1/�)

pulls. But this is exactly the same rate we would have gotten if we did G-optimal once in the beginning
and sample according to that!

• Optimism won’t help here

7 Linear Bandits: Pure exploration

This section is inspired by [Fiez et al., 2019].
Showing that x? is the best arm is equivalent to showing that hx? � x, ✓⇤i > 0 for all x 2 X \ x?. Given

a finite number of observations, we have an estimate b✓ and a confidence set for ✓⇤.

hx? � x, b✓i = hx? � x, b✓ � ✓⇤i+ hx? � x, ✓⇤i

= hx? � x, b✓ � ✓⇤i+�x

Recalling above, we have for any vector z 2 Rd that |hz, b✓ � ✓⇤i|  kzk(X>X)�1

p
2 log(1/�) w.p. � 1� �.

We need to show that this confidence set is completely inside the x? region. Where we need to decrease
uncertainty is in the directions x � x?, clearly, which is not the G-optimal design. The most realistic
optimization program
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⇢? := inf
�24X ,⌧2N

⌧

subject to max
x2X

kx? � xk2(Px2X ⌧�xxx>)�1

�2
x

 1

2

= inf
�24X

max
x2X

kx? � xk2(Px2X �xxx>)�1

�2
x

Once can prove a lower bound of log(1/2.4�)⇢?.

Input: Finite set X ⇢ Rd, confidence level � 2 (0, 1).
Let bX1  X , t 1
while | bX`| > 1 do

Let b�` 2 4X be a d(d+1)
2 -sparse minimizer of f(�; bX`) where

f(V) = inf
�2X

f(�;V) = inf
�2X

max
x,x02V

kx� x0k2(Px2X �xxx>)�1

Set ✏` = 2�`, ⌧` = 2✏�2
` f( bX`) log(4`2|X |/�)

Pull arm x 2 X exactly d⌧`b�`,xe times and construct b✓`
bX`+1  bX` \

�
x 2 bX` : maxx02 bX`

hx0 � x, b✓ti > ✏`
 

t t+ 1
Output: bXt+1

Lemma 6. Assume that maxx2X hx? � x, ✓⇤i  2. With probability at least 1 � �, we have x? 2 bX` and
maxx2 bX`

hx? � x, ✓⇤i  4✏` for all ` 2 N.
Proof. For any V ✓ X and x 2 V define

Ex,`(V) = {|hx� x?, b✓` � ✓⇤i|  ✏`}

where it is implicit that b✓` is the design constructed in the algorithm at stage ` with respect to bX` = V.
Given bX`, with probability at least 1� �

2`2|X |

|hx� x?, b✓` � ✓⇤i|  kx� x?k(Px2Vd⌧`�`,x(V)exx>)�1

p
2 log(4`2|X |/�)


kx� x?k(Px2V �`,x(V)xx>)�1

p
⌧`

p
2 log(4`2|X |/�)



vuutkx� x?k2(Px2V �`,x(V)xx>)�1

2✏�2
` f(V) log(4`2|X |/�)

p
2 log(4`2|X |/�)

= ✏`

By exactly the same sequence of steps as above, we have P(
T1

`=1

T
x2 bX`

{|hx � x?, b✓t � ✓⇤i| > ✏t}) =

P
⇣T

x2X
T1

`=1 Ex,`( bX`)
⌘
� 1� �, so assume these events hold. Consequently, for any x0 2 bX`

hx0 � x?, b✓`i = hx0 � x?, b✓` � ✓⇤i+ hx0 � x?, ✓⇤i

 hx0 � x?, b✓` � ✓⇤i
 ✏`

so that x? would survive to round `+ 1. And for any x 2 bX` such that hx? � x, ✓⇤i > 2✏` we have

max
x02 bX`

hx0 � x, b✓`i � hx? � x, b✓`i

= hx? � x, b✓` � ✓⇤i+ hx? � x, ✓⇤i
> �✏` + 2✏`

= ✏`
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which implies this x would be kicked out. Note that this implies that maxx2 bX`+1
hx?�x, ✓⇤i  2✏` = 4✏`+1.

Theorem 5. Assume that maxx2X hx?�x, ✓⇤i  2. Then with probability at least 1� �, x? is returned from
the algorithm at a time ⌧ that satisfies

⌧  c⇢? log(��1)[log(1/�) + log(log(��1)) + log(|X |)].

Proof. Define S` = {x 2 X : hx? � x, ✓⇤i  4✏`}. Note that by assumption X = bX1 = S1. The above lemma
implies that with probability at least 1� � we have

T1
`=1{ bX` ✓ S`}. This implies that

f( bX`) = min
�24X

max
x,x02 bX`

kx� x0k2(Px2X �xxx>)�1

 min
�24X

max
x,x02S`

kx� x0k2(Px2X �xxx>)�1

= f(S`)

For ` � dlog2(4��1)e we have that S` = {x?}, thus, the sample complexity to identify x? is equal to

dlog2(4�
�1)eX

`=1

X

x2X
d⌧`b�`,xe =

dlog2(4�
�1)eX

`=1

⇣
(d+1)d

2 + ⌧`
⌘

=

dlog2(4�
�1)eX

`=1

⇣
(d+1)d

2 + 2✏�2
` f( bX`) log(4`

2|X |/�)
⌘

 (d+1)d
2 dlog2(4��1)e+

dlog2(4�
�1)eX

`=1

2✏�2
` f(S`) log(4`

2|X |/�)

 (d+1)d
2 dlog2(4��1)e+ 4 log( 4 log2

2(8�
�1)|X |

� )

dlog2(4�
�1)eX

`=1

22`f(S`).

We now note that

⇢? = inf
�24X

max
x2X

kx� x?k2(Px2X �xxx>)�1

(hx� x?, ✓⇤i)2

= inf
�24X

max
`dlog2(4�

�1)e
max
x2S`

kx� x?k2(Px2X �xxx>)�1

(hx� x?, ✓⇤i)2

� 1

dlog2(4��1)e inf
�24X

dlog2(4�
�1)eX

`=1

max
x2S`

kx� x?k2(Px2X �xxx>)�1

(hx� x?, ✓⇤i)2

� 1

16dlog2(4��1)e

dlog2(4�
�1)eX

`=1

22` inf
�24X

max
x2S`

kx� x?k2(Px2X �xxx>)�1

� 1

64dlog2(4��1)e

dlog2(4�
�1)eX

`=1

22` inf
�24X

max
x,x02S`

kx� x0k2(Px2X �xxx>)�1

� 1

64dlog2(4��1)e

dlog2(4�
�1)eX

`=1

22`f(S`)

where we have used the fact that maxx,x02St kx�x0k2(Px2X �xxx>)�1  4maxx2St kx�x?k2(Px2X �xxx>)�1 by

the triangle inequality.
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8 Linear bandits: regret minimization revisited

Okay, now that we know how to do optimal pure exploration, how do we turn this into an algorithm that is
optimal?

Let RT (X , ✓) = E✓[
PT

t=1 �Xt ], �x = maxx02X hx0 � x, ✓i
The next theorem is from [Lattimore and Szepesvári, 2020].

Theorem 6. Fix any X ⇢ Rd that spans Rd and ✓⇤ 2 Rd such that argmaxx2X hx, ✓⇤i is unique. Any policy

for which RT (X , ✓⇤) = o(T a) for any a > 0 also satisfies lim infT!1
RT (X ,✓⇤)
log(T ) � r? where

r? := inf
↵2[0,1)X

X

x2X
↵x�x

subject to max
x2X

kx? � xk2(Px2X ↵xxx>)�1

�2
x

 1

2

Note that

⇢? := inf
↵2[0,1)X

1

2

X

x2X
↵x

subject to max
x2X

kx? � xk2(Px2X ↵xxx>)�1

�2
x

 1

2

Notes

• There exists an asymptotic algorithm [Lattimore and Szepesvari, 2016], but no satisfying finite-time
algorithm as of yet.

• Information directed sampling may be near-optimal and very high performance.

16



RU Z Z dv where Elza M

E expCd Zi tu 3EexpCd42

Chernoff technique For a fixed n f O

IPC's 77,2 Mt E 8

Fix NEIN Suppose we want a bond to hold for all

I En EN simultaneously Union bound

PC Eh z in 3

lP a 77,2 in 12M
c
z s

And if we wanted a band to hold for all new

IPCI.EE
n

zisiut2o f

IF.PH
n

zisiut2osYI
E I En E S

n I
in S

N



9 Sequential statistics and Martingales

Additional material on this section can be found in [Lattimore and Szepesvári, 2020] and [Howard et al., 2018].
Let X1, X2, . . . be a sequence of random variables on (⌦,F ,P) where F = {Ft}nt=1 is a filtration of F .

We say the sequence {Xt}nt=1 is F-adapted if Xt is Ft measurable for all 1  t  n.

Definition 2. An F-adapted sequence of random variables is an F-adapted martingale if E[Xt+1|Ft] = Xt

for all t and E[|Xt|] <1. Furthermore, if

• Xt is a super-martingale if E[Xt+1|Ft]  Xt

• Xt is a sub-martingale if E[Xt+1|Ft] � Xt

Definition 3. Let F = {Ft}t2N be a filtration. A random variable ⌧ 2 N is a stopping time with respect to
F with values in N [ {1} if 1{⌧  t} is Ft measurable for all t 2 N.

Lemma 7 (Doob’s optional stopping). Let F = {Ft}t2N be a filtration and {Xt}t be an F-adapted martingale
and ⌧ be an F-stopping time. Then if E[⌧ ] < 1 and E[|Xt+1 � Xt| |Ft] < c for all t < ⌧ for some c > 0,
then X⌧ is well-defined and E[X⌧ ] = E[X0]. Furthermore, if

• Xt is a super-martingale then E[X⌧ ]  E[X0]

• Xt is a sub-martingale then E[X⌧ ] � E[X0]
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9 Sequential statistics and Martingales

Additional material on this section can be found in [Lattimore and Szepesvári, 2020] and [Howard et al., 2018].
Let X1, X2, . . . be a sequence of random variables on (⌦,F ,P) where F = {Ft}nt=1 is a filtration of F .

We say the sequence {Xt}nt=1 is F-adapted if Xt is Ft measurable for all 1  t  n.

Definition 2. An F-adapted sequence of random variables is an F-adapted martingale if E[Xt+1|Ft] = Xt

for all t and E[|Xt|] <1. Furthermore, if

• Xt is a super-martingale if E[Xt+1|Ft]  Xt

• Xt is a sub-martingale if E[Xt+1|Ft] � Xt

Definition 3. Let F = {Ft}t2N be a filtration. A random variable ⌧ 2 N is a stopping time with respect to
F with values in N [ {1} if 1{⌧  t} is Ft measurable for all t 2 N.

Lemma 7 (Doob’s optional stopping). Let F = {Ft}t2N be a filtration and {Xt}t be an F-adapted martingale
and ⌧ be an F-stopping time. Then if E[⌧ ] < 1 and E[|Xt+1 � Xt| |Ft] < c for all t < ⌧ for some c > 0,
then X⌧ is well-defined and E[X⌧ ] = E[X0]. Furthermore, if

• Xt is a super-martingale then E[X⌧ ]  E[X0]

• Xt is a sub-martingale then E[X⌧ ] � E[X0]
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Lemma 8 (Maximal inequality). Let {Xt}t be an F-adapted sequence of random variables with Xt � 0
almost surely. Then for any ✏ > 0, if

• Xt is a super-martingale then P(maxt2N Xt � ✏)  E[X0]/✏

• Xt is a sub-martingale then P(maxt2{1,...,n} Xt � ✏)  E[Xn]/✏

18

Fix n

An I Xt E assume Xt super ma his 6

I min nel moisten Xe El

Elko Ellis Efx Isen

ELE Cosens

L lP An

L lP SEEK E



Example: Maximal inequality Let Z1, Z2, . . . be Bernoulli(1/2) random variables in {�1, 1}. Ver-
ify that St =

Pt
i=1 Zi is a martingale. Also note that for any � > 0 we have by Jensen’s inequality

that E[exp(�St)|Ft�1] = E[exp(�Zt)|Ft�1] exp(�St�1) � exp(�E[Zt|Ft�1]) exp(�St�1) = exp(�St�1). Thus,
exp(�St) is a sub-martingale. Applying the maximal ineqaulity we have for any N 2 N that

P( max
t2{1,...,N}

St �
p
2N log(1/�)) = P( max

t2{1,...,N}
exp(�St) � exp(�

p
2N log(1/�)))

 exp(��
p

2N log(1/�))E[exp(�SN )]

 exp(��
p

2N log(1/�)) exp(�2N/2)

where the last inequality follows from the fact that SN is a sum of N IID random variables, so E[exp(�SN )] 
exp(�2N/2). By setting � =

p
2 log(1/�)/N we obtain P(maxt2{1,...,N} St �

p
2N log(1/�))  �. Since all

we used is that E[exp(�SN )]  exp(�2N/2), we could have also applied a standard Cherno↵ bound at
time N to obtain P(SN �

p
2N log(1/�))  �. This above example seems to be getting a guarantee on

t 2 {1, . . . , N � 1} for free! It turns out we can do even better.
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Example: Maximal inequality Let Z1, Z2, . . . be Bernoulli(1/2) random variables in {�1, 1}. Ver-
ify that St =

Pt
i=1 Zi is a martingale. Also note that for any � > 0 we have by Jensen’s inequality

that E[exp(�St)|Ft�1] = E[exp(�Zt)|Ft�1] exp(�St�1) � exp(�E[Zt|Ft�1]) exp(�St�1) = exp(�St�1). Thus,
exp(�St) is a sub-martingale. Applying the maximal ineqaulity we have for any N 2 N that

P( max
t2{1,...,N}

St �
p
2N log(1/�)) = P( max

t2{1,...,N}
exp(�St) � exp(�

p
2N log(1/�)))

 exp(��
p

2N log(1/�))E[exp(�SN )]

 exp(��
p

2N log(1/�)) exp(�2N/2)

where the last inequality follows from the fact that SN is a sum of N IID random variables, so E[exp(�SN )] 
exp(�2N/2). By setting � =

p
2 log(1/�)/N we obtain P(maxt2{1,...,N} St �

p
2N log(1/�))  �. Since all

we used is that E[exp(�SN )]  exp(�2N/2), we could have also applied a standard Cherno↵ bound at
time N to obtain P(SN �

p
2N log(1/�))  �. This above example seems to be getting a guarantee on

t 2 {1, . . . , N � 1} for free! It turns out we can do even better.
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Example: Linear boundary crossing Let Z1, Z2, . . . be Bernoulli(1/2) random variables in {�1, 1}.
Define the random walk St =

Pt
i=1 Zi. If Mt(�) = exp(�St � t�2/2) then Mt is a super-martingale since

E[Mt+1(�)|Ft] = E[exp(�St+1 � (t+ 1)�2/2)|Ft] = exp(�St � t�2/2)E[exp(�Zt+1 � �2/2)|Ft] Mt(�) · 1

Let ⌧ = 1{Mt(�) � 1/�}. Then by Doob’s optional stopping theorem

P(9t 2 N : St � t�/2 + log(1/�)/�) = P(9t 2 N : Mt(�) � 1/�)

= P(M⌧ (�) � 1/�)

 �E[M⌧ (�)]

 �

The above holds for any � and says the random walk St, with probability at least 1 � � does not go above
the line t�/2 + log(1/�)/� for all t 2 N. But if we take � =

p
2 log(1/�)/N then we have that

P( max
t2{1,...,N}

St � (t/
p
N +

p
N)

p
log(1/�)/2)  �,

a strict improvement over the maximal inequality!
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Example: Linear boundary crossing Let Z1, Z2, . . . be Bernoulli(1/2) random variables in {�1, 1}.
Define the random walk St =

Pt
i=1 Zi. If Mt(�) = exp(�St � t�2/2) then Mt is a super-martingale since

E[Mt+1(�)|Ft] = E[exp(�St+1 � (t+ 1)�2/2)|Ft] = exp(�St � t�2/2)E[exp(�Zt+1 � �2/2)|Ft] Mt(�) · 1

Let ⌧ = 1{Mt(�) � 1/�}. Then by Doob’s optional stopping theorem

P(9t 2 N : St � t�/2 + log(1/�)/�) = P(9t 2 N : Mt(�) � 1/�)

= P(M⌧ (�) � 1/�)

 �E[M⌧ (�)]

 �

The above holds for any � and says the random walk St, with probability at least 1 � � does not go above
the line t�/2 + log(1/�)/� for all t 2 N. But if we take � =

p
2 log(1/�)/N then we have that

P( max
t2{1,...,N}

St � (t/
p
N +

p
N)

p
log(1/�)/2)  �,

a strict improvement over the maximal inequality!
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Example: Curved boundaries with a mixing distribution Let Z1, Z2, . . . be Bernoulli(1/2) random
variables in {�1, 1}. If St =

Pt
i=1 Zi then Mt(�) = exp(�St � t�2/2) is a super-martingale for any � 2 R.

Let h be any probability distribution over R. Define M̄t =
R
� Mt(�)dh(�). Then M̄t is a super-martingale

since

E[M̄t+1|Ft] = E
Z

�
Mt+1(�)dh(�)|Ft

�

=

Z

�
E [Mt+1(�)|Ft] dh(�)


Z

�
Mt(�)dh(�)

= M̄t.

Suppose we take h(�) = 1p
2⇡⌫2

e��2/2⌫2

. Then

M̄t =

Z

�
Mt(�)dh(�) =

1p
2⇡⌫2

Z
exp(�St � t�2/2� �2/2⌫2)d�

=
1p
2⇡⌫2

Z
exp(�St � �2(t+ ⌫�2)/2)d�

=
1p
2⇡⌫2

Z
exp(S2

t (t+ ⌫�2)�1/2� (St(t+ ⌫�2)�1 � �)2/2(t+ ⌫�2)�1)d�

=

r
(t+ ⌫�2)�1

⌫2
exp(S2

t (t+ ⌫�2)�1/2)

=

r
⌫�2

t+ ⌫�2
exp(S2

t (t+ ⌫�2)�1/2).

Using the same logic as above, if ⌧ = 1{min t : M̄t � 1/�} then

P(9t : |St| �

s

2(t+ ⌫�2)

✓
log(1/�) + 1

2 log(
t+ ⌫�2

⌫�2
)

◆
) = P(9t : M̄t � 1/�)

= P(M⌧ � 1/�)

 �.

Intuitively, h(�) is a probability distribution over linear boundaries parameterized by �.
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Example: Curved boundaries with a mixing distribution Let Z1, Z2, . . . be Bernoulli(1/2) random
variables in {�1, 1}. If St =

Pt
i=1 Zi then Mt(�) = exp(�St � t�2/2) is a super-martingale for any � 2 R.

Let h be any probability distribution over R. Define M̄t =
R
� Mt(�)dh(�). Then M̄t is a super-martingale

since

E[M̄t+1|Ft] = E
Z

�
Mt+1(�)dh(�)|Ft

�

=

Z

�
E [Mt+1(�)|Ft] dh(�)


Z

�
Mt(�)dh(�)

= M̄t.

Suppose we take h(�) = 1p
2⇡⌫2

e��2/2⌫2

. Then

M̄t =

Z

�
Mt(�)dh(�) =

1p
2⇡⌫2

Z
exp(�St � t�2/2� �2/2⌫2)d�

=
1p
2⇡⌫2

Z
exp(�St � �2(t+ ⌫�2)/2)d�

=
1p
2⇡⌫2

Z
exp(S2

t (t+ ⌫�2)�1/2� (St(t+ ⌫�2)�1 � �)2/2(t+ ⌫�2)�1)d�

=

r
(t+ ⌫�2)�1

⌫2
exp(S2

t (t+ ⌫�2)�1/2)

=

r
⌫�2

t+ ⌫�2
exp(S2

t (t+ ⌫�2)�1/2).

Using the same logic as above, if ⌧ = 1{min t : M̄t � 1/�} then

P(9t : |St| �

s

2(t+ ⌫�2)

✓
log(1/�) + 1

2 log(
t+ ⌫�2

⌫�2
)

◆
) = P(9t : M̄t � 1/�)

= P(M⌧ � 1/�)

 �.

Intuitively, h(�) is a probability distribution over linear boundaries parameterized by �.
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(a) Fix � = 0.05. The ‘fixed time Cherno↵’ repre-
sents

p
2t log(1/�) which holds at each t but not all

t  500 simultaneously (which is why it is dotted).
The ‘max inequality’ holds for all t  500, and the
linear boundaries hold for all t 2 N simultaneously.

(b) Fix � = 0.05. The ‘fixed time Cherno↵’ repre-
sents

p
2t log(1/�) which holds at each t but not all

t 2 N simultaneously (which is why it is dotted). All
other curves do hold for all t 2 N simultaneously.
“union bound 2t2” plots

p
2 log(2t2/�).

The above Figures compares these linear and curved boundaries. We see that the curved boundary just
derived appears much tighter than our naive union bound used in the proofs of the early days of this course.
Let us consider a few more interesting exampes.
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Example: Predictable sequences Let Z1, Z2, . . . be an Ft-adapted sequence and assume �t is pre-
dictable in the sense that �t is Ft�1-measurable. Furthermore, assume that for any � > 0 we have
E[exp(�Zt)|Ft�1]  exp(��2

t /2). Define St =
Pt

i=1 Zi and Vt =
Pt

i=1 �
2
i . Then Mt = exp(�St��2Vt/2) is a

super-martingale. Thus, P(9t 2 N : St � �Vt/2+ log(1/�)/�). Note that “time” t does not appear anywhere
in this bound explicitly, and has been replaced by Vt.
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Example: Vector-valued martingales Now suppose Z1, Z2, · · · 2 Rd is a Ft-adapted random sequence
that satisfies E[exp(h�, Zti)|Ft�1]  exp(k�k2⌃t

/2) for any � 2 Rd for a ⌃t predictable sequence. Define

St =
Pt

i=1 Zi and Vt =
Pt

i=1 ⌃i. Then Mt(�) = exp(h�, Sti � k�k2Vt
/2) is a super-martingale. If h(�) =

1
(2⇡/�)d/2

exp(�k�k2�/2) be a mean-zero Gaussian distribution with covariance ��1I. If M̄t =
R
� Mt(�)dh(�)

then

M̄t =

Z

�
Mt(�)dh(�)

=
1

(2⇡/�)d/2

Z

�
exp(h�, Sti � k�k2Vt

/2� k�k2�/2)dh(�)

=
1

(2⇡/�)d/2

Z

�
exp(h�, Sti � k�k2Vt+�I/2)dh(�)

=
1

(2⇡/�)d/2

Z

�
exp( 12kStk2(Vt+�I)�1 � 1

2k(Vt + �I)�1St � �k2(Vt+�I))dh(�)

=
|Vt + �I|�1/2

��d/2
exp( 12kStk2(Vt+�I)�1)

then repeating the same steps as above we conclude that

P(9t : kStk(Vt+�I)�1 �

s

2 log(1/�) + log(
|Vt + �I|

�d
))  �. (1)

24



Example: Vector-valued martingales Now suppose Z1, Z2, · · · 2 Rd is a Ft-adapted random sequence
that satisfies E[exp(h�, Zti)|Ft�1]  exp(k�k2⌃t

/2) for any � 2 Rd for a ⌃t predictable sequence. Define

St =
Pt

i=1 Zi and Vt =
Pt

i=1 ⌃i. Then Mt(�) = exp(h�, Sti � k�k2Vt
/2) is a super-martingale. If h(�) =

1
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exp(�k�k2�/2) be a mean-zero Gaussian distribution with covariance ��1I. If M̄t =
R
� Mt(�)dh(�)

then

M̄t =
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=
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=
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2k(Vt + �I)�1St � �k2(Vt+�I))dh(�)

=
|Vt + �I|�1/2

��d/2
exp( 12kStk2(Vt+�I)�1)

then repeating the same steps as above we conclude that

P(9t : kStk(Vt+�I)�1 �
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2 log(1/�) + log(
|Vt + �I|

�d
))  �. (1)
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Example: Online linear regression Let x1, x2, · · · 2 Rd be an Ft�1-measurable sequence, and for each
t 2 N let yt 2 R be Ft-measurable. We assume there exists ✓⇤ 2 Rd such that each yt = h✓⇤, xti+⌘t where ⌘t
is mean-zero, independent of xt, and E[exp(s⌘t)|Ft�1]  exp(s2/2) for any s 2 R. In the previous example
let Zi = xi⌘i so that St =

Pt
i=1 xt⌘t and Vt =

Pt
i=1 xtx>

t since

E[exp(h�, xt⌘ti)|Ft�1] = E[exp(h�, xti⌘t)|Ft�1]

 exp(h�, xti2/2)
= exp(k�k2xtx>

t
/2).

Thus, Equation 1 holds for any � > 0. Fix some � > 0 and define

b✓t = argmin
✓

tX

i=1

(yi � hx, ✓i)2 + �k✓k22

= (
tX

i=1

xix
>
i + �I)�1

tX

i=1

xiyi

= (Vt + �I)�1Vt✓⇤ + (Vt + �I)�1St

Now notice

kb✓t � ✓⇤k(Vt+�I) = kb✓t � (Vt + �I)�1(Vt + �I)✓⇤k(Vt+�I)

= k(Vt + �I)�1St � �(Vt + �I)�1✓⇤k(Vt+�I)

= kSt � �✓⇤k(Vt+��1I)�1

 kStk(Vt+�I)�1 + �k✓⇤k(Vt+�I)�1

 kStk(Vt+�I)�1 +
p
�k✓⇤k2.

We conclude that

P
⇣
9t : kb✓t � ✓⇤k(Vt+�I) �

p
�k✓⇤k22 +

q
2 log(1/�) + log(��d|Vt + �I|)

⌘
(2)

 P
⇣
9t : kStk(Vt+�I)�1 �

q
2 log(1/�) + log(��d|Vt + �I|)

⌘
 �.
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Example: Online linear regression Let x1, x2, · · · 2 Rd be an Ft�1-measurable sequence, and for each
t 2 N let yt 2 R be Ft-measurable. We assume there exists ✓⇤ 2 Rd such that each yt = h✓⇤, xti+⌘t where ⌘t
is mean-zero, independent of xt, and E[exp(s⌘t)|Ft�1]  exp(s2/2) for any s 2 R. In the previous example
let Zi = xi⌘i so that St =

Pt
i=1 xt⌘t and Vt =

Pt
i=1 xtx>

t since

E[exp(h�, xt⌘ti)|Ft�1] = E[exp(h�, xti⌘t)|Ft�1]
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�k✓⇤k2.

We conclude that

P
⇣
9t : kb✓t � ✓⇤k(Vt+�I) �

p
�k✓⇤k22 +

q
2 log(1/�) + log(��d|Vt + �I|)

⌘
(2)

 P
⇣
9t : kStk(Vt+�I)�1 �

q
2 log(1/�) + log(��d|Vt + �I|)

⌘
 �.
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9.1 Hypothesis testing and Likelihood ratios

The previous section show-cased the method of mixtures to generate curved boundaries that random walks
will not pass. However, the method seems mysterious and unmotivated. In this section we present an
alternative perspective on the same derivations that, at least to me, is quite illuminating.

26



References

[Audibert and Bubeck, 2009] Audibert, J.-Y. and Bubeck, S. (2009). Minimax policies for adversarial and stochastic
bandits.

[Auer et al., 2002] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256.

[Boucheron et al., 2013] Boucheron, S., Lugosi, G., and Massart, P. (2013). Concentration inequalities: A nonasymp-

totic theory of independence. Oxford university press.

[Bubeck et al., 2012] Bubeck, S., Cesa-Bianchi, N., et al. (2012). Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends R� in Machine Learning, 5(1):1–122.
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