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These notes were written for myself to refer to while lecturing. They are not a replacement for
the course textbooks [Lattimore and Szepesvari, 2020, Bubeck et al., 2012] and may contain
errors! I have posted them by request.

1 Introduction

Machine learning, and in particular, supervised learning, is the study of making statistical inferences from
previously collected data. Multi-armed bandits is more about an interaction between an agent (algorithm)
and an environment where one simultaneously collects data and makes inferences in a closed-loop.

You have n “arms” or actions, representing distributions. “Pulling” an arm represents requesting a
sample from that arm.

At each time t = 1,2,3, ...

e Algorithm chooses an action I € {1,...,n}
e Observes a reward Xy, ; ~ P, where Py, ..., P, are unknown distributions

That is, playing arm ¢ and time s results in a reward X, ; from the ¢th distribution. In these lectures, all
distributions will be Gaussian (or sub-Gaussian) with variance 1 unless otherwise specified. Example of
sub-Gaussian distribution is bounded distributions on [—1, 1] or Gaussian A/(0,1). Formally, a distribution
of X is 1-sub-Gaussian if E[exp(AX)] < exp()\?/2).

We will find that the means of the distribution are the most pertinent parameters of these distributions.
Let 07 = Ex.p,[X] be the mean of the ith distribution. Define A; = maxj—1, 9;* — 6. We measure
performance of an algorithm in two ways: 1) how much total reward is accumulated, and 2) how many total
pulls are required to identify the best mean.

1.1 Regret Minimization

After T time steps, define the regret as

Rr = max E
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The goal is to have R(T) = o(T) to achieve sub-linear regret (e.g., R(T) < vT).



If at time T the ith arm has been played T; times, then
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Thus, we want to minimize the number of times we play sub-optimal arms.

1.2 Best-arm identification

Given a 6 € (0,1) identify the best arm with probability at least 1 — § using as few total pulls as possible.
While related, these objectives are at odds with one another. Sometimes called the (e, §)-PAC setting,
but for simplicity we’ll take e = 0.

1.3 Warm-up: A/B testing

Suppose n = 2. How long would it take to decide one arm was better than another using sub-gaussian
bounds? Consider the trivial algorithm:

Input: 2 arms, time 7 € N. R
Pull each arm ¢ € {1,2} exactly 7 times and compute empirical mean 6;.
For all ¢t > 27 play arm arg max; 6;

Without loss of generality, assume 67 > 65. If 51 is the empirical mean of arm 7 after pulling it 7 times, it
is a random variable that intuitively should be “close” to 8. Suppose we could guarantee that 51 > (9\2 with
probability 1 — §. If this were true then we have an algorithm for identifying the best arm with probability
at least 1 — § using at most 27 pulls. Moreover, with probability at least 1 — § the sub-optimal arm is pulled
at most 7 times incurring a regret of at most 7A where A := 07 — 65. To make this argument rigorous, we
need to be able to build a confidence interval on each @ — 07 with high probability. By the central limit
theorem (CLT) we know that 0; — 0 ~ N(0, w) where Var(Z) denotes the variance of each individual

. . 0,—0: B . -
observation (assumed the same for each arm). This suggests that a2 € [-1.96,1.96] with probability
at least .95 using a standard Normal distribution look up. But this is asymptotic, can we get non-asymptotic
and mathematically convenient quantities?

1.4 Finite-sample confidence intervals

Proposition 1 (Chernoff Bounding technique). Fiz €,8. If Z1,Zs,... are independent mean-zero random
variables with ¢z () == log(Elexp(A\Z;)]) then P(£ 37, Z; > €) < infy exp(—TeA + Thz(N)).



Proof.

IP’(% Z Zy > €) = P(exp ()\ZZt> > exp(ATe))
t=1

t=1
< e MR |exp ()\Z Zt> (Markov’s)
=1
= e H E [exp (AZ})] (Independence)
t=1

=exp (—Ate + Tz (N))
O

Corollary 1. Let Zy,Zs, ... be independent mean-zero o*-sub-Gaussian random variables so that 1z (\) :=
log(Elexp(AZy)]) < exp(X20?/2), then for T = [20%e%1log(1/8)] we have P(L 37 Z; <€) > 1—6.

Lemma 1 (Hoeffding’s Lemma). Let X be an independent random variable with support in [a,b] almost
surely and E[X] = 0. Then log(E[exp(AX)]) < (b — a)?)?/8.

Proof. This proof is adapted from [Boucheron et al., 2013]. Let Px denote the distribution of X so that for
any function g : R — R we have Ex[g(X)] = [ g(x)dP(z). Define a new random variable Z with distribution
Py defined as dPy(z) = me”dPX(x). Note that Py is a valid distribution as dPz(z) > 0 for all =
and [ dPz(z) = m [, erdPx (z) = mﬂi;{ [exp(AX)] = 1. The key observation is to notice
that

¥x(A) :=log(Ex [exp(AX)])

WX()\) :m]]‘:x [X eXP()\X)}
2
(N :mm[)@ exp(AX)] — (WEX[X exp()\X)])

=E4[7% - Ez[2)?
=Var(Z)
<(b—a)?/4

where the last line follows from the fact that the support of Pz is contained in [a, ] so that
Var(Z) = Ez((Z — Ez[Z]*)’] < Ez[(Z — %4%)*] < (b—a)?/4.
By Taylor’s remainder theorem, for some 6 € [0, A] we have

Px(A) = 1hx (0) + ¢y (0)A + % (0)A% /2
= Py (0)A%/2
< (b—a)?A%/8

which completes the proof. O

1.5 A/B testing solution
Set 7 = [8A~21og(4/6)] and let b; = Ly X for i =1,2. Define the event

e, :={|@—92‘§\/W}.



Then P(EF U ES) < P(E5) +P(Ef) < 4. Thus, if we pull each arm 7 times then on & N & we have

~ 2log(4
5> oy /BT
> 607 —A/2
>05+A/2
S8, - 210g(4/5)+A/2
T
>§2

so that we have determined the best-arm. And we can play it forever.
After any T total plays such that arm ¢ has been played T; times and T = T} + T, the expected regret

is at most

0:T —E

T
ZXIS,sl = 07T — E[(Th07 + T203)]

s=1

E [Ty A]
E[ToA1{E N &} + T AL{EF U ESY]
<E[TAL{E NE} + TAL{ET UESY]
< 8A7llog(4/8) + ATP(ES U ES)

< 8A tlog(4/8) + ATS.

If we take § = 1/T then the expected regret is less than A + 8A~11og(47T). On the other hand, the regret
can’t possibly be greater than AT, thus the total regret is bounded by

T
;T —E ZX,S,S] = min{TA, A +8A ! log(4T)}

s=1
<1+ 2+/8T log(4T)

where the last step takes the worst case A = /8log(4T)/T.
Takeaway: For very small A we lose almost nothing, for very large A its easy to distinguish, its maximized

at around 1/v/T. We'll see this again.

2 Action Elimination Algorithm for Multi-armed Bandits

Input: n arms X = {1,...,n}, confidence level § € (0,1).
Let &1 < X, 0+ 1
while || > 1 do
€ = 2-¢
~ 2
Pull each arm in X} exactly 7, = [2¢, 2 log(MT‘f‘)] times ~
Compute the empirical mean of these rewards 8; o for all ¢ € A
XZ+1 — X, \ {Z e X, maxje)?[ 9j7z — 91-7@ > 26@}
C—L+1
Output: Xp4q (or play the last arm forever in the regret setting)

Lemma 2. Assume that max;cxy A; < 4. With probability at least 1—9, we have 1 € .)?e and max; . p, A; < 8¢
for all ¢ € N.

Proof. For any ¢ € N and 7 € [n] define

Eiv= {@e -0 < 6@}



and €& = (N1, Nye; Eie- Noting that e, = 210g(4nl?/9) o have

Te
n o0 n o0 6
P(£°) =P<_UMU155€> SZ;;W < 4.

In what follows assume & holds. R R
Fix any ¢ for which 1 € A, (note 1 € X;). Then for any j € A, we have

é\j,z — 0= (é\j,é —07) — (00— 07) — Ay
&
< 2¢

which implies 1 € )?ul' Thus, 1 € /'Eg for all £. On the other hand, any ¢ for which A; = 67 — 07 > 4e, we
have

max0j,—0;0>010—0;,

JEX,
= ((/9\1,4 —01) — (@',e —0;)+ A,
> —2¢p + 4ep = 2¢4
which implies this max; s 07 > 67 — deg = 07 — Bepya. O

Theorem 1. Assume that max;cx A; < 4. Then with probability at least 1 — §, 1 is returned from the
algorithm at a time T that satisfies

T < CZ A;?log(nlog(A;?)/6)

1=2

Proof. Assume £ holds, as it does with probability at least 1 —d. If A = min;x; A; then X, = {1} for
t > [logy(8A™1)] since all other arms would have been removed. Note that

[log, (8A™1)] R
Ti= Y  wlficXy}

=1

Mog,(8A™1)]

< Z Tgl{Ai < 86@}

/=1

Mog, (8A; )]
/=1

[ogs(8A; )]

= 26,2 log(1E120Y)
=1

~

oy og, (84771
< [2log( 2182, 1My >4

(=1

4log§(16A;2)|X|)

-2
< eA; " log( 3

Thus, the total number of samples taken before /’?g = {1} is equal to
n n . B
ST T+ Y AT log((oBUsA I,
i=1 i=1

- —2
<2 Z CA'L‘_2 ]og(w)

i=1

which implies that one can identify the best arm after no more than Y"1 , A;?log(nlog(A;?)/9). O



Theorem 2. Assume that max;cx A; < 4. For any T € N, with probability at least 1 — ¢
A< " o(A, v )L log(lo8lav) DX
| Z T;A; < ;rgfo vT + ZC(AZ V)~ log( 5 ).
1:A; >0 i=1
Moreover, if the algorithm is run with § = 1/T then Ry < ¢ iy A7 log(T) and Ry < c\/nT log(T).
Suppose you run for T timesteps. For any v > 0 the regret is bounded by:

Xn:AiTz'Z Z AT + Z AT,
i=2

A <v A >Y
<vT+ > AT,
A >Y
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A >v =1
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n [logy(8(A;vv)™1)]
<vT + Z Z 8epTy
=2 =1
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=vT + Z Z 8er[2¢€, 2 1og(%ﬂ
=2 /=1
n R L rIng(S(AiVV)ilﬂ
< VT+ZCIOg(4log2(8(Ag\/V) )\X|) Z 25
=2 =1
n
<vT + Z c(A; V)T log(w)

i=2
where the second inequality follows from Lemma 2. Setting v = 0 yields a regret of .7, A; ' log(nlog(A;1)/4).

On the other hand, using A; V v > v and minimizing over v yields a regret of \/nT log(nlog(T)/§). The
expected regret, of course, is then bounded by

n
Z AT;
i—2

<37 A7 log(nlog(ATY)/) + TP(EY)
i=2
Setting § = 1/T implies the regret is less than > 7, cA; ' log(T).
Some remarks:

ﬁ: AE[T) =E
i=2

e This analysis doesn’t reuse samples from previous rounds, it is easy to make this change.

e Regret bound requires knowledge of T' a priori. One can avoid knowing this by using a double trick:
guess a value of T', then when you this value double T and restart using this value of T.

3 Lower bounds for Multi-armed Bandits

Let us briefly pause to consider how far off from optimal we are, and then think about an algorithm that
could get us to optimality. How do we know we’re doing okay?



3.1 Mean of a Gaussian

Suppose I get n samples from a Gaussian distribution A(y,1). You compute the empirical mean i =
L5 1 X;. We know that |2 — p| < \/2log(2/8)/n. How tight is this? If € {0,A} then we just need
n=8A? log(2/5)1 You'll show this on your homework.

Let p,(z) = 5= ~(@=m)?*/20* e the Gaussian distribution with mean p. Under Hy, X; ~ po and under
Hy, X; ~pa. Let ng R™ — {0, A}. Then the minimax probability of error is equal to

igfmax{]P’o(qb =1),Pi(¢=0)} > igf %(]P’o@ =1),Pi(¢ = 0))
—int 5 ([ 10 = tmis + [ 16 = 0w

_ ;/@eRn min{po(x), p1(x)}dx

1 2
> = < Po(x)p1 (l’)dac> (Cauchy-Schwartz)
TER"
1
> —exp (—/ log(il(g )p1 (x)dx) (Jensen’s)
4 zeR™ °

where

( m@ - < eV mm{po(f)vpl(x)}max{p()(x),pl(x)}dx)z

< / min{po(x), p1(z)}dx / max{po(x), p1(z)}dx (Cauchy-Schwartz)
zER" TER"

<9 / __ minfm(e). pr ()}

and (integrating only over support of pq)

< ceRn \/mdx)z = exp (2 log( / L Po@ Vi (@) /po()da)

)
> o (2 pole) st/ @) ) )
~ exp (_ / L los(Z (m)dm)

KL(P1|Po) = /10’8; (H Pz (@) ) [ pi(z)d

=nKL(p1|po) = nA?/2

Note that

and that KL(N(0,1)|NV(A,1)) = A?/2.
We conclude that

igf max{Py(¢p =1),P1(¢ =0)} > iexp (—nA?/2)

Thus, to determine whether or not n samples are from a Gaussian with mean 0 or A with probability of
failure less than 4, one needs n > 2A~21og(1/46).

1Using the SPRT, as § — 0 one needs just an expected number of samples equal to 2A~2log(2/4).



3.2 Indentification

An algorithm for best-arm identification at time ¢ is described by given a history (Is, Xs)s<+ for each time ¢
is described by a

e selection rule I; € [n] is F;_; measurable where F; = o (1, X1,15, Xo, ..., I—1, Xt—1)
e stopping time 7 is F; measurable, and
e recommendation rule i € [n] invoked at time 7 which is F,-measurable.

Definition 1. We say that an algorithm for best-arm identification is 6-PAC if for all 6 € R™ we have
P« (i = arg max;e,) 0;) > 1 — 6.

The following is due to [Kaufmann et al., 2016], a strengthening of the first time it appeared in [Mannor and Tsitsiklis, 200-

Theorem 3 (Best-arm identification lower bound). Any algorithm that is §-PAC on {P : P; = N(6;,1),6, >
max;1 0;,0 € [0,1]"} for § < 0.15 satisfies Eg«[1] > 2log(555) > iy A2

Proof sketch: The original instance has P; = N(6F,1). Pick some j € [n] and define an alternative mean
vector §) € [0,1]™ such that 953) =0rifi # j and 9§]) =01 + € for j =i for some arbitrarily small number
e. Note that under (), arm j is the best arm.

Because the algorithm claims to be 6-PAC, it has to output arm 1 under * and arm j under ). But
these two bandit games only differ on arm j so to tell the difference between them its only natural to sample
arm j until one can figure out which instance is being played (i.e., is its mean 6; or 6; + €?) The discussion
above suggests that to make this distinction with probability at least 1 — §, it is necessary to sample arm j
at least 2(0; — 0; + €)"?log(1/40) times. Taking € to zero and noticing that j was arbitrary completes the
sketch.

This is not a proof, however, because the number of times the algorithm samples arm j is random whereas
in the above argument it was fixed. The proof of [Kaufmann et al., 2016] provides convenient tools to prove
general lower bounds for 6-PAC settings.

3.3 Regret, minimax

Theorem 4 (Minimax regret lower bound). For every T > n there exists an instance P = N(0*,1) such
that Rr > /( n—l )T'/27.

Proof sketch: Let 6* = 6 = (A,0,...,0). For any algorithm, by the pigeon hole principle, there exists an
arm i € [n] such that E[T 3 <T/n.

Define an alternative Gaussum instance with mean vector # that is identical to # other than 6; = 2A.

If A = +/n/T then 7 will not be given enough samples to distinguish between the two instances, which
means E[T7] will be about the same under both models.

Under 6, if E[T}] < T/2 then the regret incurred is at least AT/2 ~ v/nT. On the other hand, under ¢’,
if E[Ty] > T/2 then the regret again is at least AT/2 ~ /nT.

This is not a proof because again the number of times an arm is pulled is random, but as before, these
arguments can be made precise.

3.4 Gap-dependent regret

Lemma 3. Any stmtegy that satisfies E[T;(t)] = o(t*) for any arm i with A; > 0 and a € (0,1), we have

that imp_, o inf log(T) =>r, A% )

Takeaway: This is what his field does: prove an initial upper, then lower, then chase it.



3.5 Revisiting MAB with Optimism

Why go beyond action elimination algorithms? Because they will never hit the asymptotic lower bound, for

one thing, since if we look at when the second to last arm exits, the lowerbounds are the same.

a-UCB which is arg max; é\i,Ti(t) + QQTI_O(%)@) as a — 1 achieves the lower bound.

Any sub-linear regret algorithm plays arm 1 an infinite number of times, so assume fi; ~ p1. Minimizing
the maximum upper bound. Thus, we expect the number of times the ith arm is pulled is 2A; 2 log(T),
which is optimal.

UCBLI in its most popular form was developed by [Auer et al., 2002].

MOSS first achieved v/nT regret [Audibert and Bubeck, 2009)].

KL-UCB is finite-time analysis with optimal constants for asymptotic regret [Cappé et al., 2013].

The recent work of [Lattimore, 2018] defined a UCB-based algorithm that achieves asymptotic optimal

constants, and finite regret bounds of >, 1Zgg) and vnT.

4 Linear Bandits Intro

Now suppose each arm i = 1,...,n has a feature vectors z; € R?. And more over, there exists some 6* € R?
such that a pull of arm I; € [n] results in a reward y; = (zj,,0*) + n: where n; ~ N (0,1).

Applications: Drug-discovery, Spotify, Netflix, ads

In the previous setup, pulling arm ¢ provided no information about arm j, but now suddenly it does.

4.1 Least Squares

Given a sequence of arm choices and observed rewards let {xz,y;,n: }7_; we denote the stacked sequences of
each as X € R™*4 Y € R”, and n € R” respectively where Y = X6* + 7. Using this information we can
derive a least-squares estimate of 6, given as follows

0=(XTX)"'XTYy = (XTX) ' XT (X0, +1) =0, + (XTX)"'xTy.
Fix any z € R?, then Thus
2T0-0)=2"(XTX)"'X Ty
Note that  ~ N(0,1). For any W ~ N (11, %) we have AW + b ~ N (Au + b, ALAT). Thus

270 —0,) ~ N, 2" (XTX)712).

so that

P (zT(é —0.) > \/QZT(XTX)—lzlog(1/6)> <.
We will use the notation ||z||% = 2T Az so that with probability at least 1 —§
21(0 = 0.) < |zl (xx)-1 V/210g(1/5)

4.1.1 Aside: Gaussian to sub-Gaussian

For an arbitrary constant g,



P(z"(0 - 0.) > p) = P(w"n > )
exp(—A\u)E[exp(Aw™n)],  let A >0 Chernoff Bound

A

exp(—Ap)Elexp(A Z w;n;)]

i=1

-~

= exp(—Ap) | | Elexp(Aw;n;)] independence of w;n;

=1

-
Il

exp(\2w?/2) sub-Gaussian assumption

-~

< exp(—Ap)
i=1

«
I

A2 9
= exp(—Au) eXp(gHsz)
2
2[lwl)}
12
ST (XTX)1g) %

< expl ) A=n

— exp(—

where in the final step we made use of the following equality
[[w]2 =27 (XTX) ' XTX(XTX) e =27 (XTX) La.

Thus with probability at least 1 — 9,

P ()

IN

\/2.TT(XTX)1$ log(%)

=: ||zl (x7x)-11/2log(1/9)

5 Experimental design

Note that if I take measurements (z1,...,z,) € X and observe their corresponding observations y, =
(x;,6%) + 1; where 1; € 1,00, then E[(6 — 6)(6 — 6)T] = 02(XTX)~! and also, § — 6* ~ N(0,02(X T X)~1).
We can visualize this as a confidence ellipsoid for each choice of X. And we can even think of optimizing
the choice. Recall that the PDF of a Gaussian is ¢(x) = We*ﬂzflz/? With entropy 1 log(2me|X)).

When the number of selected points is large, its more convenient to think of sampling n points from a
distribution placed over X. Define

Ay = Z A\pxz |

zeX

so that for every X € R™*? there exists some A € Ay such that XTX =

can then be used to shape the covariance 0:

cEX [Ao7]zaz " = Ay. This Ay

e A-optimality: minimize f4(\) = Tr(A} ') minimizes E[Ha— 01/3]
e E-optimality: minimize fp()\) = max,;|.|<1 u" A} 'u minimizes maxy,. || <1 E[((u, b — 0))?]

e D-optimality: maximize gp(A) = log(]A,|) maximizes the entropy of distribution. Also, if £y = {z :
xTAglx < d} then D-optimality is the minimum volume ellipsoid that contains X’

e G-optimality: minimize fo()\) = max,cy 2" A} ' minimizes max,¢x E[((z, 0 —67))?]

Lemma 4 (Kiefer-Wolfowitz (1960)). For any X with d = dim(span(X)), there exists a \* € Ay that

10



e maxy gp(A) = gp(A*)
e miny fe(A) = fa(A")
e fa(\") =gp(\") =d
o support(\*) = (d+1)d/2

Proposition 2. If \* is the G-optimal design for X then if we pull arm x € X exactly [TAL] times for some
7> 0 and compute the least squares estimator 8. Then for each x € X we have with probability at least 1 —§

<$,9 - 9*> < ||m‘|(zmexﬁ'/\;]xm7)*1 \% 210g<1/5)

\fo” wex AzxT)Tt 210g(1/5)

2d1og(1/6)

and we have taken at most T + (d+1) pulls. Thus, for any &' € (0,1) we have P(UIeXﬂ(m,af 0*)| >
2dlog(2|X|/6") }) <5
Notes:

e The support size of (d + 1)d/2 is trivial application of Caratheodory’s theorem. Many algorithms to
find this efficiently.

e Note that one can find a \* with a constant approximation with just support O(d).

e Leverage scores if V-optimality

e John’s ellipsoid is equivalent to G/ D-optimality

[Pukelsheim, 2006, Yu et al., 2006]. [Yu et al., 2006, Soare et al., 2014, Soare, 2015, Lattimore and Szepesvari, 2017],

6 Linear Bandits: Regret Minimization

This section is inspired by [Lattimore and Szepesvéri, 2020].
Input: Finite set X C R?, confidence level § € (0,1).
Let /’?1 « X, 0+ 1
while |X/| >1do
Let Ay € Az, bea d(d+ ) _sparse minimizer of f(A\) = max ||:13||(Z
Xy

re

Ty—1
Te){)\IJIJ)

e =27¢ 7 = 2de; * log(40%|X|/5)

Pull arm = € X exactly |—/):47ng—| times and construct the least squares estimator é\g using only
the observations of this round R

Xoy1 < X\ {x € Xy :max,, g, (' — x,00) > 26@}

(+—(+1
Output: é?g
After T time steps, define the regret as

T
Ry = (z",6") — E [Zm,e*)]
=E| ) T.A,

THET*

where A, = (z* — z,0%).

11



Lemma 5. Assume that maxgcx(2* — z,0%) < 4. With probability at least 1 — §, we have z* € X, and
max, .z, (x* —x,0%) < 8¢ for all £ € N.

Proof. For any ¥V C X and x € V define

Ers(V) = {|(,00 = 07)| < er}

where it is implicit that é\g is the G-optimal design constructed in the algorithm at stage ¢ with respect
to Xy = V. Note that this is precisely the analogous events of multi-armed bandits. The key piece of the
analysis is that

Pl U@y | <dp| U & (X}
=1 IG)?@ /=1 CCG/’?@
=3P (U (&,00)}), X = v)
(=1 VCXx €V

M
™

P (U {sg,ew») P(X, = V)

zeV

~
Il

—_
<
N

X

e
™

2T P(Xe = V) <6

~
Il
—
<
N
=

Thus, in what follows, assume & := (), N2, {E2.0(Xe)} holds.
Fix any ¢ for which 2* € X, (note z* € A}). Then for any x € &, we have

(x —2*,0) = (x,0, — 0°) — (2,0, — 0") + (x — x*,6%)
< 2¢

which implies x* € )?eﬂ' Thus, z* € ‘5(\4 for all . On the other hand, any x for which (z* — z,0%) > 4¢; we
have

max <£U/ - $,§g> > <f£* - x7§l>

' eX,
= (2*,0, — 0) — (2,0, — 0%) + (a* — x,0%)
> 2¢y

which implies max x,0%) > (x*,0%) — dey = (x*,0%) — 8epqq. O

xeé?/,+1<

For any £ > [log,(8A~1)] we have that X; = {z*}. Suppose you run for T timesteps. Then for any v > 0

12



the regret is bounded by:

> AT = Y AT+ Yoo AT

TEX\z* zEX\z*: Ay <v TEX\z*:Ap >V

<vT + Z Z A, fTeXﬂ

=1 zeX\z*:Ax>v

Moga (8(AVY)™H)]

<Tv+ Z 8€g(|support(Xg)| + 7¢)
=1
Mog, (8(Avy)~h)]
—Tv+ 3 Seo({ERY 1 2de; 2 log(462|X|/5))
=1

[oga (8(AVr)~1)]
< T+ 4(d + 1)d[log, (8(A V v)™1)] + > 16de, ' log (402X |/5)
(=1
[oga (8(AVr)~1)]
< Tv +4(d + 1)d[logy(8(A V v)™1)] + 16d log(4 logi (16(A v v)~1)|X|/6) > 2f
(=1
< Tv+4(d+ 1)d[logy(8(A V )™ 1)) + 512d(A v v) "' log(4logs (16(A Vv v) 1) |X|/6)

Setting v = 0 yields a regret bound of O(dA~! log(|X'|log(A~1)/§)) which implies Ry < ¢4 log(|X|T"). Mini-
mizing over v > 0 yields a regret bound of O(+/dT log(log(T/d)| X|/§)) which implies Ry < c/dT log(]X|T).

Remarks:

e Let X = {e; : i € [d]}. Then for this action set, this bound is nearly minimax according to our lower
bounds!

e However, this is also concerning: we know that in the bandit setting the regret scales like Z?:z A7 ! log(T)
but this scales A~ log(T'), which is significantly worse. Can we achieve this?

e For pure-exploration, an analogous analysis shows that one can identify the best-arm in % log(1/4)
pulls. But this is exactly the same rate we would have gotten if we did G-optimal once in the beginning
and sample according to that!

e Optimism won’t help here

7 Linear Bandits: Pure exploration

This section is inspired by [Fiez et al., 2019].
Showing that x* is the best arm is equivalent to showing that (z* — z,6*) > 0 for all z € X \ z*. Given
a finite number of observations, we have an estimate 6 and a confidence set for 6*.

(z* — m,§> = (z* — z,0 — 0*) + (x* — x,0%)
=(z* — 2,0 —0") + A,
Recalling above, we have for any vector z € R? that |(z, b — ) < lzll(xTx)-1v/21og(1/6) wp. > 1—0.
We need to show that this confidence set is completely inside the x* region. Where we need to decrease

uncertainty is in the directions x — x*, clearly, which is not the G-optimal design. The most realistic
optimization program

13



pr:= inf 7T

NEAX,7EN
* 2
|z* — 33”(2 Ty-1
. > TAgzz 1) 1
subject to max 5 <=
reX Am 2
* 2
2 = 2ty avwar)—
= inf max
NEAX zEX A2

x

Once can prove a lower bound of log(1/2.40)p*

Input: Finite set X C R?, confidence level § € (0, 1).
Let 2?1 — X t+1
while |X;| > 1 do
Let A\¢ € Ax be a @—sparse minimizer of f(\; )?g) where
f(V) = inf fou V) = inf nax Ha:—x’”?zwex ApzzT)-1

Set ep = 27¢, 7 = 2¢, 2f(pq) 1og(4152|;\f|/5)
Pull arm z € X exactly [Tg)\g «| times and construct 0(;
Xg+1%Xg\{l’6Xg.maX$,€X£< l‘,et >€g}
tt+1

Output: &}

Lemma 6. Assume that maxgex(2* — z,0%) < 2. With probability at least 1 — §, we have z* € X, and
max, g, (z* —x,0%) < de; for all £ € N.

Proof. For any V C & and x € V define
Exe(V) = {l{ — 2*,0, — 07)] < e}

where it is implicit that 04 is the design constructed in the algorithm at stage ¢ with respect to Xz = V.
Given Xz, with probability at least 1 — 2[2‘)(‘

[z —a%,00 = 0°)| < [lz — 2™([(s, o, [rerrn(W)]zeT)-1 V/ 2 10g(4€2X|/6)

lz = 22, 00, Ao (V)2 T)—1
< N

l — 2|2

2log(402|1X|/0)

erv XK,I(V)wa)_l
2¢, 2 f(V) log(4¢2|X| /)

2log (402X [/3)

By exactly the same sequence of steps as above, we have P((,2, Nees, Iz — 5,0, — 0%)] > &}) =
P (ﬂzex Ny 595’4(.5(\[)) >1— 6, so assume these events hold. Consequently, for any =’ € X}

(x’—o:*,é}) a —x*,0, — 0% + (x — z*,0%)

(2’
g( —x ,94—9*>
< e

so that 2* would survive to round ¢ + 1. And for any = € X; such that (x* —z,0%) > 2¢, we have

max (z' — z,0) > (z* — z,0)
' €Xy

= (z* — z,0, — 0*) + (x* — x,0%)
> —€p + 2¢y

:ee

14



which implies this « would be kicked out. Note that this implies that max, .o (x*—x,0%) <2¢p =4dep1. O

Theorem 5. Assume that max,cx(z* —x,0%) < 2. Then with probability at least 1 — &, x* is returned from
the algorithm at a time T that satisfies

7 < cp*log(A™")[log(1/6) + log(log(A™")) + log(|X])].

Proof. Define Sy = {z € X : (z* — z,6*) < 4¢;}. Note that by assumption X = X} = S;. The above lemma
implies that with probability at least 1 — § we have (),2,{X; C S¢}. This implies that

~

_ o2
(&) = AIQAHM??;Z = 2'llts> _ xpeaTy

< min max Hx—x”
ANEAx xz,x’ €Sy

= f(Se)

For £ > [logs(4A~1)] we have that Sy, = {z*}, thus, the sample complexity to identify z* is equal to

cx Aazz )71

[log, (4A~ Bl [log, (4A™ D)
Z Z TZ)\Zm = Z (W'FW)
T€EX L=
(log2(4A_1)‘| ey =N
_ (419 1 2¢,% {( ) log(42|X|/3)
=1
[log2(4A71)~|
< EPMlog (AT Y 26 f(50) log (4% X|/6)

(=1
[og, (447 1)]

< WDl (4A1)] 4 dlog(He2BAIX) ™ 92 gy,
=1
We now note that
. ”17 — JS*H%EEGX ApzzT)=1
p* = inf max
Ay zEX ({x — a*,0%))?
. ||$ — $*||?Ewex ApzaT)—1
= inf max max
AEA X (< [log, (4A—1)] zES, ({x — a*,0%))?
-1
1 . [log,(4A™5)] ||J,‘ _ x*”%zzex AowT)1
> —————— inf Z max
[logy (4A~1)] AeAx - z€S, ((x — a*,0%))?
1 “08;2(4A71).|
2 T 22¢ inf max ||z — 2* || Nz T)-1
16[log,(4A—1)] — AEAx wES, cex AoTT
[log,(4A71)]
S S— 226 inf  max |z —a/ || o1
N 64“0g2(4A71)—| — AEAx x,x' €Sy ex AemT )"

Mogy (4A71)]

1 2
> W Z 2 éf(SZ)

(=1

where we have used the fact that max, ,/¢es, ||z fx’||?z a1 S Amaxges, |z fx*||%zzex \oaxT)-1 DY
the triangle inequality. O
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8 Linear bandits: regret minimization revisited

Okay, now that we know how to do optimal pure exploration, how do we turn this into an algorithm that is
optimal?
T
Let Rp(X,0) =Eo[>_,_; Ax,], A, = maxyex (' —x,0)
The next theorem is from [Lattimore and Szepesvéri, 2020].

Theorem 6. Fir any X C RY that spans R? and 0* € R? such that arg max, ¢y (z,0*) is unique. Any policy

for which Rp(X,0%) = o(T?) for any a > 0 also satisfies iminfp_, %(Ti) > r* where

rzeX
HJT* - xH?Z azzr )L 1
bject t S <3
subject to glea))fc A2 <3
Note that
*
p :: inf Z Qg
€[0,00)* 2 Jopg
lo* — ||t~ -1 1
subject t pex OB < =
subject to Iglea))(( A2 <3
Notes

e There exists an asymptotic algorithm [Lattimore and Szepesvari, 2016], but no satisfying finite-time
algorithm as of yet.

e Information directed sampling may be near-optimal and very high performance.
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T che 5.
9 Sequential statistics and Martingales

Additional material on this section can be found in [Lattimore and Szepesvéri, 2020] and [Howard et al., 2018].
Let X7, Xo,... be a sequence of random variables on (Q, F,P) where F = {F;}}-, is a filtration of F.
We say the sequence {Xt}?il is F-adapted if X; is F; measurable for all 1 <t < n.

Definition 2. An F-adapted sequence of random variables is an F-adapted martingale if E[X¢1]|F] = Xy
for allt and E[|X,|] < co. Furthermore, if

o X; is a super-martingale if B[ X:11|Ft] < Xy
o X; is a sub-martingale if B[ X¢41|F:] > Xi

Definition 3. Let F = {F;}ien be a filtration. A random variable 7 € N is a stopping time with respect to
F with values in NU {oo} if 1{r < t} is F; measurable for all t € N.

Elv.. | @ = fz | 5.1

T
—
q\m\)
|

.
S
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9 Sequential statistics and Martingales

Additional material on this section can be found in [Lattimore and Szepesvéri, 2020] and [Howard et al., 2018].
Let X7, Xo,... be a sequence of random variables on (Q, F,P) where F = {F;}}-, is a filtration of F.
We say the sequence {X;}}; is F-adapted if X; is F; measurable for all 1 <t < n.

Definition 2. An F-adapted sequence of random variables is an F-adapted martingale if E[X¢41]|F:] = Xi
for allt and E[|X,|] < co. Furthermore, if

o X; is a super-martingale if B[ X:11|Ft] < Xy
o X; is a sub-martingale if B[ X¢41|F:] > Xi

Definition 3. Let F = {F;}ien be a filtration. A random variable 7 € N is a stopping time with respect to
F with values in NU {oo} if 1{r < t} is F; measurable for all t € N.

Lemma 7 (Doob’s optional stopping). Let F = {F;}ien be a filtration and {X;}+ be an F-adapted martingale
and T be an F-stopping time. Then if E[7] < oo_and E[| X1 — Xi||F] < ¢ for all t < 7 for some ¢ > 0,
then X, is well-defined and E[X .| = E|Xo]. Furthermore, if

o X, is a super-martingale then E[X ;] < E[X(] 5 (& /?[ ‘Z (00) = /
e X, is a sub-martingale then E[X;] > E[X(]
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Lemma 8 (Maximal inequality). Let {X:}+ be an F-adapted sequence of random wvariables with X > 0
almost surely. Then for any € > 0, if

o X, is a super-martingale then P(maxeny X¢ > €) < E[X(]/e

o X; is a sub-martingale then P(maxcq1,... ) X¢ > €) <E[X,]/e

-----

‘ '\F {\«
A 6 (.Y Yt >" ? s-‘WM Xé SUP‘U v )"

T = Vﬂt'ﬂ{ (4*(5/ P L7 Y(Z f?)

ET > Elxs ]2 Elx, 1] ]
> E[ ¢ 4(sent]

¢ P(An)

¢ P( 5 x, 08 )

r)

i)
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Example: Maximal inequality Let Z;,Z5,... be Bernoulli(1/2) random variables in {—1,1}. Ver-
ify that S; = 2221 Z; is a martingale. Also note that Tor any A > 0 we have by Jensen’s inequality
that Elexp(ASy)|Fi—1] = Elexp(AZ;)|Fi—1] exp(ASi—1) > exp(AE[Z;| Fi—1]) exp(ASi—1) = exp(AS;—1). Thus,
exp(AS;) is a sub-martingale. Applying the maximal ineqaulity we have for any N € N that

Clacs Mf boa cul machigl G
MC,: Cscp(/\ fé)
EL M) F1=E Lexp(3S) 15 ]

© Elew(02) ep(A Q)] B
- e (1) Ef oy (422 (%]

> exp(16) eqp(JE[) 2“’]>

§ ernS 2 Qf/ﬁ(/\ff\ 15[2?:0
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Example: Maximal inequality Let Z;,Z,... be Bernoulli(1/2) random variables in {—1,1}. Ver-
ify that S; = 22:1 Z; is a martingale. Also note that for any A > 0 we have by Jensen’s inequality
that E[exp(ASt)|Fi—1] = Elexp(AZ;)|Fi—1] exp(ASi—1) > exp(AE[Z|Fi—1]) exp(ASi—1) = exp(AS;—1). Thus,
exp(AS;) is a sub-martingale. Applying the maximal ineqaulity we have for any N € N that

P(te{rfl’?ny} Sy > /2N log(1/4)) = P(te{rflf}fzv} exp(ASy) = exp(Ay/2N log(1/0)))
< exp(—Av/2N log(1/6))E[exp(ASy)]
< exp(—A/2N log(1/6)) exp(A\2N/2)

where the last inequality follows from the fact that Sy is a sum of N IID random variables, so E[exp(ASy)] <

exp(A2N/2). By setting A = y/2log(1/8)/N we obtain P(max;eq1,... . Ny St > /2N log(1/§)) < 4. Since all
we used is that E[exp(ASy)] < exp(A2N/2), we could have also applied a standard Chernoff bound at
time N to obtain P(Sy > 1/2Nlog(1/6)) < §. This above example seems to be getting a guarantee on
te{l,...,N —1} for free! It turns out we can do even better.

N ¢ B
= P(U{Te > Jaonum))¢d

N
lZQ/Cav//: g(am [t .f//'/é p( ;2;>«/ ZA//a)(//Jl > -ZJ

Accomplishios o lad Mt Ll LW
é""é VW/ ﬁd7 /'13} For o~ e Lav...nc/.
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Example: Linear boundary crossing Let Z;,Z5,... be Bernoulli(1/2) random variables in {—1,1}.
Define the random walk S; = S°!_, Z;. If My(\) = exp(AS; — tA%/2) then M, is a super-martingale since

Bl o] %17 E [ ep(if =) 7]

- E [ewp(h 2., -3t | 5T MlD)
S ) Mech)
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Example: Linear boundary crossing Let Z;,Z5,... be Bernoulli(1/2) random variables in {—1,1}.
Define the random walk S; = S°!_, Z;. If My(\) = exp(AS; — tA%/2) then M, is a super-martingale since

E[M;1(\)|F,] = E[exp(ASip1 — (t + 1)A2/2)|F] = exp(ASy — tA%/2)Elexp(AZip1 — A2 /2)|F,] < My(\) - 1
Let 7 = 1{M;(\) > 1/6}. Then by Doob’s optional stopping theorem
e n _ | o lds frr
(FteN: S >tA/2+10g(1/8)/N) =P(3t € N: My(\) > 1/6)
= P(M()) > 1/4) all Cime €
< OE[M-(A
> [ ()] j‘l.w“"/mlg h//o

<4
wacen boud
The above holds for any A and says the random walk S;, with probability at least 1 — é does not go above '

the line tA/2 +log(1/6)/A for all t € N. But if we take A = y/2log(1/0)/N then we have that

P( max S > (t/VN + VN)\/log(1/5)/2) < 4,

te{l,...,N}

a strict improvement over the maximal inequality!

A €A P “¢hy Se >m <d
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Example: Curved boundaries with a mixing distribution Let Z;,Zs,... be Bernoulli(1/2) random
variables in {—1,1}. If S; = 3.'_, Z; then M;(\) = exp(AS; — tA?/2) is a super-martingale for any A € R.
Let h be any probability distribution over R. Define My = [, M;(A)dh()). Then M, is a super-martingale
since
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Example: Curved boundaries with a mixing distribution Let Z;,Zs,... be Bernoulli(1/2) random
variables in {—1,1}. If S; = 3.'_, Z; then M;(\) = exp(AS; — tA?/2) is a super-martingale for any A € R.
Let h be any probability distribution over R. Define My = [, M;(A)dh()). Then M, is a super-martingale
since

B[y 1| F)] = E [ A My (N dh(V)|F,
- A E (M1 (VI F] dh(\)

< A M, (N)dh()\)
= Mt.

Suppose we take h(\) = \/#e_v/g’ﬁ. Then

M, = [ M)\ = \/21;2

/exp(/\St —tA%/2 — A% /20%)d)\

= \/2;7 /exp()\St — AN (t4v72)/2)d)

_ \/;7 /exp(sf(t S (St ) N2/t v?) )N
e R )

=/ :;2_2 exp(S2(t +v72)71/2).

Using the same logic as above, if 7 = 1{mint¢ : M; > 1/§} then

P(3t: |S,] > \/Z(t +u2) (log(1/5) 4 Log(! t_”22)>) = P(3t: M, >1/5)
= P(M, >1/5)
< 6.

Intuitively, () is a probability distribution over linear boundaries parameterized by .
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m <4

w B

40 <4
""" fixed time Chernoff

201 max ineguality
— linear boundary: \lambda= 0.11
= linear boundary: \lambda= 0.30

0 — linear boundary: \lambda= 0.20

0 100 200 300 400 500
(a) Fix 6 = 0.05. The ‘fixed time Chernoff’ repre-
sents /2t log(1/6) which holds at each ¢ but not all
t < 500 simultaneously (which is why it is dotted).
The ‘max inequality’ holds for all ¢ < 500, and the
linear boundaries hold for all ¢ € N simultaneously.

----- fixed time Chernoff -
120 1 . . —
union bound 2 t*2

curved boundary:

10017 u"2=003
____ curved boundary:
o u™2 =10
. .
S
20
01

0 100 200 300 400 500

(b) Fix § = 0.05. The ‘fixed time Chernoft’ repre-
sents /2t 1og(1/6) which holds at each ¢ but not all
t € N simultaneously (which is why it is dotted). All
other curves do hold for all ¢ € N simultaneously.

“union bound 2t>” plots /21log(2t2/6).

The above Figures compares these linear and curved boundaries. We see that the curved boundary just
derived appears much tighter than our naive union bound used in the proofs of the early days of this course.

Let us consider a few more interesting exampes.
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Example: Predictable sequences Let Z;,Z5,... be an F;-adapted sequence and assume oy is pre-
dictable in the sense that o; is F;_i-measurable. Furthermore, assume that for any A > 0 we have
Elexp(AZ;)|Fi_1] < exp(Ao?/2). Define S; = S°_, Z; and V; = 32'_, 0?. Then M; = exp(AS; — A\2V;/2) is a
super-martingale. Thus, P(3t € N : S; > AV;/2+1og(1/d)/\). Note that “time” t does not appear anywhere
in this bound explicitly, and has been replaced by V4.
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Example: Vector-valued martingales Now suppose Z;, Zo,--- € R? is a F;-adapted random sequence
that satisfies Elexp((\, Z¢))|Fi—1] < exp(||A|%,/2) for any A € R? for a %, predictable sequence. Define

Sy =3 Ziand V; = Y'_, % Then M;(\) = exp({)\, S;) — [All}, /2) is a super-martingale. If h(\) =
W exp(—||A|?v/2) be a mean-zero Gaussian distribution with covariance y~'I. If My = [, My(X)dh())
then
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Example: Vector-valued martingales Now suppose Z;, Zo,--- € R? is a F;-adapted random sequence
that satisfies Elexp((\, Z¢))|Fi—1] < exp(||A|%,/2) for any A € R? for a %, predictable sequence. Define

Sy =3 Ziand V; = Y'_, % Then M;(\) = exp({)\, S;) — [All}, /2) is a super-martingale. If h(\) =
W exp(—||A|?v/2) be a mean-zero Gaussian distribution with covariance y~'I. If My = [, My(X)dh())
then

N, = A My(\dh(A)

1
= @) /AGXPW’S» — A% /2 = [IX1P3/2)dh(N)
1
- W/AGXP(Q,SQ — A%, 441/2)dR(N)
1 - ) 3 2
= @i ), PGSy = 2l (V49D 780 = Allfy,iy)dh(A)
_ Vitnr 2

"Y_d/Q exp(%”St”%Vt-‘r'yI)_l)

then repeating the same steps as above we conclude that

Vi + 1
d

P33t 2 ISt (vyyry-1 > \/2 log(1/8) + log( ) < 4. (1)
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Example: Online linear regression Let 1,25, -- € R? be an F;_;-measurable sequence, and for each
t € Nlet y; € R be Fi-measurable. We assume there exists 6, € R? such that each yr = (0«, x¢) +n: where 7
is mean-zero, independent of Tt and E[exp(snt)|}} 1] < exp(s?/2) for any s € R. In the previous example
let Z; = z;n; so that S; = Z _,x¢m and Vi = Z 1 rx] since

Elexp({A, zm))[Fi—1] = Elexp((A, z¢)me ) | Fe-1]
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Example: Online linear regression Let 1,25, -- € R? be an F;_;-measurable sequence, and for each
t € Nlet y; € R be Fi-measurable. We assume there exists 6, € R? such that each yr = (0«, x¢) +n: where 7
is mean-zero, independent of Tt and E[exp(snt)|}} 1] < exp(s?/2) for any s € R. In the previous example
let Z; = z;n; so that S; = Z _,x¢m and Vi = Z 1 rx] since

Elexp({A, zm))[Fi—1] = Elexp((A, z¢)me ) | Fe-1]
<exp((\,z,)?/2)
= eXP(H)\HMﬂ/?)

Thus, Equation 1 holds for any v > 0. Fix some « > 0 and define

0, —argmmz )? +711013

me +~I)” leyz
= (Vt +WI) "V, + (Vt +91)7'5;
Now notice
162 = Ol (vigrry = 100 — (Ve +41) 7 (Vi + 7D s | (v
= (Vs + 1) 7" Se = v(Ve +40) 7 0ull (v
= |8t = 10ull (v, 4y-11)1

< NSellv4vn -1 + YNl vy
< |[Sell(vivyry-1 + VN0 |l2-

We conclude that

P (3t 18— Oullvissn 2V/A10. 13 + y/2108(1/8) + log(y—4IV; +41])) 2)

<P(3t: S vran -+ > /2108(1/8) +log(y~4|Vi +71])) < 6
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9.1 Hypothesis testing and Likelihood ratios

The previous section show-cased the method of miztures to generate curved boundaries that random walks
will not pass. However, the method seems mysterious and unmotivated. In this section we present an
alternative perspective on the same derivations that, at least to me, is quite illuminating.
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