
Homework 3
CSE 599i: Interactive Learning

Instructor: Kevin Jamieson
Due 11:59 PM on March 12, 2021 (late homework not accepted)

Contextual Bandits
1. Problem 18.8 of [SzepesvariLattimore].

2. In this exercise we will implement several contextual bandit algorithms. We will “fake” a contextual ban-
dit problem with multi-class classification dataset where each example is context, and the learner chooses an
“action” among the available class labels, and receives a reward of 1 if the guess was correct, and 0 otherwise.
However, keeping with bandit feedback, we assume the learner only knows the reward of the action played,
not all actions.

We will use the MNIST dataset1. The MNIST dataset contains 28x28 images of handwritten digits from
0-9. Download this dataset and use the python-mnist library2 to load it into Python. Rather than using
the full images, you may run PCA on the data to come up with a lower dimensional representation of each
image. You will have to experiment with what dimension, d, to use. Scale all images so that they are norm
1.

Let the d dimensional representation of the tth image in the dataset, ct, be our “context.” Our action
set X = {0, 1, . . . , 9} has 10 actions associated with each label. For each i ∈ X = {0, 1, . . . , 9} define the
feature map φ(c, i) = vec(ce>i ) ∈ R10d. If v(c, x) is the expected reward of playing action x ∈ X in response
to context c, then let us “model the world” with the simple linear model so that v(c, x) ≈ 〈θ∗, φ(c, x)〉 for
some unknown θ∗ ∈ R10d. Of course, when actually playing the game we will observe image features ct,
choose xt ∈ X , and receive reward rt = 1{xt = yt} where yt is the true label of the image ct and xt is the
action played.

Implement the Explore-Then-Commit algorithms, Follow-The-Leader, LinUCB, and Thompson Sampling
algorithms for this problem. You can use just the training set of T = 50000 examples. Draw ct uniformly at
random with replacement from this set at each time for t = 1, . . . , T . The algorithms work as follows:

• Explore-Then-Commit (“Model the world”): Fix τ ∈ [T ]. For the first τ steps, select each action

x ∈ X uniformly at random. Compute θ̂ = arg minθ
∑τ
t=1(rt − 〈φ(ct, xt), θ〉)2. For t > τ play

xt = arg maxx∈X 〈φ(ct, x), θ̂〉. Choose a value of τ and justify it.

• Explore-Then-Commit (“Model the bias”): Fix τ ∈ [T ]. For the first τ steps, select each action
x ∈ X uniformly at random. Note that here pt = 1/|X for all t, so we can ignore the importance
weights. Train a 10-class logistic classifier π̂ : C → X on a dataset {(ct, xt)}t≤τ :rt=1. That is, only
include those labels in which the randomly chosen action was correct (note that this is equivalent to
weighted-classification when rt ∈ {0, 1} and pt = 1/|X |). For t > τ play xt := π̂(ct). Choose the same
value of τ as “Model the world”.

• Follow-The-Leader: Fix τ ∈ [T ]. For the first τ steps, select each action x ∈ X uniformly at random.

For t > τ play xt = arg maxx∈X 〈φ(ct, x), θ̂t−1〉 where θ̂t = arg minθ
∑t
s=1(rs − 〈φ(cs, xs), θ〉)2. Choose

a value of τ and justify it.

• LinUCB Using Ridge regression with an appropriate γ > 0 (γ = 1 may be okay) construct the confi-
dence set Ct derived in class (and in the book). At each time t ∈ [T ] play xt = arg maxx∈X maxθ∈Ct〈θ, φ(ct, x)〉.

• Thompson Sampling Fix γ > 0 (γ = 1 may be okay). At time t ∈ [T ] draw θ̃t ∼ N (θ̂t−1, V
−1
t−1)

and play xt = arg maxx∈X 〈θ̃t, φ(ct, x)〉 where θ̂t = arg minθ
∑t
s=1(rs − 〈θ, φ(cs, xs)〉)2 and Vt = γI +∑t

s=1 φ(cs, xs)φ(cs, xs)
>.

Implement each of these algorithms and show a plot of the regret (all algorithms on one plot) when run
on MNIST for good choices of τ, γ. Hint, for computing V −1t efficiently see https://en.wikipedia.org/

wiki/Sherman%E2%80%93Morrison_formula.

1http://yann.lecun.com/exdb/mnist/
2https://pypi.org/project/python-mnist/

1

https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
http://yann.lecun.com/exdb/mnist/
https://pypi.org/project/python-mnist/


2


