
Homework 2
CSE 599i: Interactive Learning

Instructor: Kevin Jamieson
Due 11:59 PM on February 17, 2021

Confidence bounds
1.1 (Wald’s identity) Let X1, X2, . . . be a sequence of iid random variables. For j ∈ {0, 1}, under Hj we have
that Xi ∼ pj . Let Pj(·),Ej(·) denote the probability and expectation under Hj . Assume that the support of

p0 and p1 are equal and furthermore, that supx∈support(p0)
p1(x)
p0(x) ≤ κ. Fix some δ ∈ (0, 1). If Lt =

∏t
i=1

p1(Xi)
p0(Xi)

and τ = min{t : Lt > 1/δ}, we showed in class that the false alarm probability P0(Lτ > 1/δ) ≤ δ. Assume

that E1[τ ] < ∞. Show that log(1/δ)
KL(p1||p0) ≤ E1[τ ] ≤ log(κ/δ)

KL(p1||p0) where KL(p1|p0) =
∫
p1(x) log(p1(x)

p0(x) )dx is the

Kullback Leibler divergence between p1 and p0.

1.2 (Method of Mixtures) Let X1, X2, . . . be a sequence of iid random variables where X1 ∼ N (µ, 1). Under
H0 we have µ = 0 and under H1 assume µ = θ.

• Define Lt(θ) := exp(Stθ − tθ2/2) where St =
∑t
s=1Xs. Show that

∏t
i=1

p1(Xi)
p0(Xi)

= Lt(θ).

• Now suppose the sequence X1, X2, . . . is still iid and E[X1] = µ in the above notation, but now the

distribution of X1 is unknown other than the knowledge that E[exp(λ(X1 − µ))] ≤ eλ
2/2. Show that

Lt(θ) defined above is a super-martingale under H0.

• Assume the setting of the previous step. Define L̄t =
∫
θ
Lt(θ)h(θ)dθ where h(θ) = 1√

2πσ2
e−

θ2

2σ2 and

σ > 0. Show that L̄t is a super-martingale under H0.

• Fix δ ∈ (0, 1). Show that P0(∃t ∈ N : L̄t > 1/δ) ≤ δ.

• Conclude that if Z1, Z2, . . . are iid random variables with E[exp(λ(Z1 − E[Z1])] ≤ exp(λ2/2), then for
any σ > 0

P

(
∃t ∈ N : |1

t

t∑
s=1

(Zs − E[Zs])| >
√

1 +
1

tσ2

√
2 log(1/δ) + log(tσ2 + 1)

t

)
≤ δ. (1)

1.3 (Best arm identification) Consider an n-armed multi-armed bandit problem where the jth pull of the ith
arm yields a random variable Xi,j ∼ N (θi, 1). The objective of the player is to strategically pull arms until
getting to a point that they can predict the index of the arm with the highest mean, at which time they stop
and output this estimated arm. Suppose an oracle told the player that θ, the true means they are playing
against, is equal to ∆ej for some j = 1, . . . , n where ej is a vector of all zeros except a 1 in the jth location.
Note that while ∆ > 0 is known to the player, which is the true j is unknown.

• Due to the symmetry of the known problem setup, it is conceivable that the following algorithm is
optimal: play every arm the same number of times (say, τ times), and then declare that the arm with
the highest empirical mean is best. Provide a sufficient condition on τ such that such a procedure
correctly identifies the location of the true j index with probability at least 1 − δ (don’t forget the
union bound!).

• Argue that if each arm is pulled the same number of times this value of τ up to a constant factor
(ignoring dependence on δ) is necessary. Hint1

• The previous two parts suggest that any algorithm that pulls every arm the same number of times
and identifies the best arm requires essentially n∆−2 log(n/δ) total pulls. We will beat this with an
adaptive procedure that requires just O(n∆−2 log(1/δ)) pulls.

Algorithm: Initialize S1 = [n]. At each around t ≥ 1, while |St| > 1, pull every arm in St and then

set St+1 = {i ∈ St :
∑t
s=1(Xi,s −∆) ≥ −∆t/2− log(1/δ)

∆ }.

1If Zi ∼ N (0, σ2) for i = 1, . . . , n show that P(maxi=1,...,n Zi ≥
√

2σ2 log(n)) > c for some absolute constant c.
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We showed in class that if Zs ∼ N (0, 1) then for any α > 0 and ρ ∈ (0, 1) we have

max

{
P

( ∞⋃
t=1

{
t∑

s=1

Zs < −
αt

2
− log(1/ρ)

α
}

)
,P

( ∞⋃
t=1

{
t∑

s=1

Zs >
αt

2
+

log(1/ρ)

α
}

)}
≤ ρ. (2)

Conclude that if j is the index of the best-arm (so that Xj,s ∼ N (∆, 1)) then with probability at least
1− δ arm j remains in St for all t ≥ 1.

• For i 6= j (so that Xi,s ∼ N (0, 1)) define the random variables

ρi := sup

{
ρ ∈ (0, 1) :

∞⋂
t=1

{
t∑

s=1

Xi,s ≤
∆t

4
+

log(1/ρ)

∆/2
}

}
.

If Ti = max{t : i ∈ St} show that Ti ≤ 4∆−2 log(1/δ) + 8∆−2 log(1/ρi).

• Note that by (2) we have P(ρi ≤ ρ) ≤ ρ for any ρ ∈ (0, 1). Use this fact to show that E [
∑n
i=1 Ti] ≤

cn∆−2 log(1/δ) for some absolute constant c > 0. While not necessary for this problem, it is also
possible to show that the right hand side holds with probability at least 1− δ (see sub-Gamma random
variables).

In general, when the means are unknown, curved boundaries with a UCB-like algorithm [1] can be used to
identify the best arm using just O(log(1/δ)

∑n
i=2 ∆−2 log(log(∆−2))) total pulls, where ∆i = maxj θj − θi

using a similar analysis.

Linear regression and experimental design
2.1 Exercise 20.2 of [SzepesvariLattimore]

Non-parametric bandits
4.1 Let FLip be a set of functions defined over [0, 1] such that for each f ∈ FLip we have f : [0, 1]→ [0, 1] and
for every x, y ∈ [0, 1] we have |f(y)−f(x)| ≤ L|y−x| for some known L > 0. At each round t the player chooses
an xt ∈ [0, 1] and observes a random variable yt ∈ [0, 1] such that E[yt] = f∗(xt) where f∗ ∈ FLip. Define

the regret of an algorithm after T steps as RT = E
[∑T

t=1 f∗(x?)− f∗(xt)
]

where x? = arg maxx∈[0,1] f∗(x).

• Propose an algorithm, that perhaps uses knowledge of the time horizon T , that achieves RT ≤ O(T 2/3)
regret (Okay to ignore constant, log factors).

• Argue that this is minimax optimal (i.e., unimprovable in general through the use of an explicit example,
with math, but no formal proof necessary).

Experiments
5.1 Suppose we have random variables Z1, Z2, . . . that are iid with E[exp(λ(Z1−E[Z1])] ≤ exp(λ2/2). Then
for any fixed t ∈ N we have the standard tail bound

P

(
|1
t

t∑
s=1

(Zs − E[Zs])| >
√

2 log(2/δ)

t

)
≤ δ. (3)

The bound in (1) holds for all t ∈ N simultaneously (i.e., not for just a fixed t) at the cost of a slightly
inflated bound. Let δ = 0.05. Plot the ratio of the confidence bound of (1) to (3) as a function of t for values
of σ2 ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 100}. What do you notice about where the ratio is smallest
with respect to σ2 (if the smallest value is at the edge, your t is not big enough–it should be in the many
millions)? Suppose you are observing a stream of iid Gaussian random variables Z1, Z2, . . . and you are
trying to determine whether their mean is positive or negative. If someone tells you they think the absolute
value of the mean is about .01, how would you choose σ2 and use the above confidence bound to perform
this test using as few total observations as possible?

5.2 This problem addresses finding a G-optimal design. Fix (x1, . . . , xn) ⊂ Rd.
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• Let 4n = {p ∈ Rn :
∑n
i=1 pi = 1, pi ≥ 0 ∀i ∈ [n]} and A(λ) =

∑n
j=1 λjxjx

>
j . For some λ ∈ 4n let

f(λ) = maxi=1,...,n ‖xi‖2A(λ)−1 . Derive the partial gradient ∂f(λ)
∂λi

. Hint2.

We wish to find a discrete allocation of size N for G-optimal design. Below are three strategies to output
an allocation (I1, . . . , IN ) ∈ [n].

1. Random Sampling Fix η > 0 and λ(0) = (1/n, . . . , 1/n)> ∈ Rn. Iterate λ̃
(k+1)
i = exp(log(λ

(k)
i ) −

η ∂f(λ)
∂λi
|λ=λ(k)), λ

(k+1)
i = λ̃

(k+1)
i /

∑n
j=1 λ̃

(k+1)
j until convergence (you may have to experiment with step

sizes η). Once converged, f(λ(K)) should be very close to d. Sample N points with replacement from
λ(K) and return them.

2. Greedy For i = 1, . . . , 2d select Ii uniformly at random with replacement from [n]. For t = 2d +
1, . . . , N select It = arg mink∈[n] maxi=1,...,n ‖xi‖2(xkx>k +

∑t−1
j=1 xIjx

>
Ij

)−1
. Return (I1, . . . , IN ).

3. Frank Wolfe For i = 1, . . . , 2d select Ii uniformly at random with replacement from [n] and let

λ(2d) = 1
2d

∑2d
i=1 eIi . For k = 2d + 1, . . . , N select Ik = arg minj∈[n]

∂f(λ)
∂λj
|
λ=λ

(k−1) and set λ(k) =

(1− ηk)λ(k−1) + ηkeIk where ηk = 2/(k + 1). Return (I1, . . . , IN ).

For each method, let λ̂ = 1
N

∑N
i=1 eIi . We are going to evaluate f(λ̂) in a variety of settings. For a > 0 and

n ∈ N let xi ∼ N (0,diag(σ2)) with σ2
j = j−a for j = 1, . . . , d with d = 10. With a seperate plot for each

a ∈ {0, 0.5, 1, 2} as a function of n ∈ {10 + 2i}10
i=1, plot the three methods on a single plot for N = 1000.

5.3 Consider regret minimization for linear bandits with a fixed arm set X (i.e., it does not change over
time), θ∗ with ‖θ∗‖2 ≤ 1, and observations yt = 〈xt, θ∗〉+ εt where εt ∼ N (0, 1). Implement the Thompson
Sampling algorithm with a Gaussian prior with mean 0 and identity covariance (Section 36.3), LinUCB
algorithm (Section 19.2 of text), and the elimination algorithm that uses G-optimal design (See Section
22.0). Use any G-optimal method you’d like from the previous proble. For various values of n and d ≤ n,
construct X by drawing n vectors uniformly at random from {x ∈ Rd : ‖x‖2 = 1}3. Use θ∗ = e1 for all
experiments. Qualitatively describe the relative performance of the algorithms as a function of n and d. Use
plots of the empirical regret to justify your claims. Hint: We showed in class that the elimination algorithm
had a regret bound of O(

√
dT log(|X |T )) and UCB had a regret bound of roughly O(d

√
T ) for any set X

with bounded entries. These regret bounds are tight up to constants for the data generation model described
above. Thus to receive full credit you should pick values of n and d such that both dominate each other in
different regimes.
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2I = A(λ)A(λ)−1. Thus, 0 = ∂
∂λi

I =
(

∂
∂λi

A(λ)
)
·A(λ)−1 +A(λ) ·

(
∂
∂λi

A(λ)−1
)

3If Z ∼ N (0, Id) then Z/‖Z‖2 is uniformly distributed on the unit sphere
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