
Homework 3
CSE 599i: Interactive Learning

Instructor: Kevin Jamieson
Due 11:59 PM on March 13, 2020 (late homework not accepted)

Mirror Descent
1.1 Problem 26.4 of [SzepesvariLattimore].

Follow the Regularized Leader
2.1 Problem 28.4 of [SzepesvariLattimore]. For part b, implement both FTRL and mirror descent, state the
explicit update rules for both algorithms, and comment on when they are different.

2.2 Problem 28.15 of [SzepesvariLattimore], excluding part h (just read that part).

Contextual Bandits
3.1 Problem 18.8 of [SzepesvariLattimore].

Experiments
4.1 Implement the algorithm from 28.15 (FTRL), EXP3, Follow-the-Leader, UCB, and Thompson Sampling
(you can use implementations of UCB and Thompson Sampling from Homework 1 as a starting point). The
updates for Follow-The-Leader are given by:

at+1 = arg min
a∈∆

t∑
s=1

〈a, µ̂s〉

where µ̂s = eIsXs and Xs ∼ PIs vector at time s. Note that we’re looking at losses so lower is better–
modify Thompson sampling and UCB appropriately. Include plots and comment on the following:

• Run all algorithms on a standard stochastic bandit with Pi = Bernoulli(µi) in {0, 1}, n = 10 arms,
µi = 1/4 for i = 1, µi = 3/4 for i 6= 1. Use time horizon T = 10000. Note: if rewards are in {0, 1} how
should you change the confidence bound of UCB, and variance of TS?

• Run all algorithms on a standard stochastic bandit with Pi = Bernoulli(µi) in {0, 1}, n = 10 arms,
µi = 1/4 + 1
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√
(i− 1)/(n− 1). Use time horizon T = 10000.

• With T = 1000, n = 10, find a set of losses such that UCB suffers roughly linear regret while EXP3
and FTRL both suffer sub-linear regret. The losses should be chosen in an oblivious fashion—they
may rely on knowledge of the algorithms but cannot adapt to actions played by the algorithm (i.e. the
losses should be chosen in advance).

• With T = 1000, n = 10, find an example where FTL suffers linear regret while FTRL suffers sub-linear
regret. As above the losses should be chosen in an oblivious fashion.

4.2 Implement the EXP3(γ) algorithm discussed in class for linear bandits with a finite set of arms. Compare
the performance of this algorithm to that of the LinUCB, Thompson Sampling, and Action Elimination
algorithms from Homework 2 on a stochastic linear bandit. Fix θ∗ = e1 and draw arms from a Gaussian
distribution. Recall that the EXP3(γ) algorithm is as follows:

Input: T , n arms, η > 0, γ ∈ [0, 1], exploration distribution λ
Init: p1 = (1/n, . . . , 1/n), Adversary chooses {yt}Tt=1 ∈ [−h, h]n

for t = 1, 2, ..., T :

• Player draws It ∼ (1− γ)pt + γλ

• Player suffers loss yt,It

• Player computes ŷt,i satisfying E[ŷt,i|pt] = yt,i

• Update p̃t+1,i = exp(−η
∑t
s=1 ŷs,i), pt+1,i = p̃t+1,i/‖p̃t+1‖1
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Implement this algorithm with both the original action set, and the action set augmented to map stochastic
bandits to the adversarial setting (see Section 29.2 of [SzepesvariLattimore]). If X is our original action set
and x ∈ X an arm, the augmented action set is defined as:

Xaug = {[x, 1] : x ∈ X}

Note that the theoretical regret bounds we proved for EXP3(γ) only hold in the stochastic setting when we
use the augmented action set.

Experiment with the choices of d and n. Can you find values of d and n for which EXP3(γ) with
augmented actions significantly outperforms LinUCB? Provide plots comparing the performance of each of
these algorithms in settings of n and d where:

• LinUCB outperforms Action Elimination and EXP3(γ) with augmented actions.

• EXP3(γ) with augmented actions outperforms both, and LinUCB outperforms Action Elimination.

• EXP3(γ) with augmented actions outperforms both, and Action Elimination outperforms LinUCB

(Hint: how do the regret bounds we proved for each of these algorithms scale with d and n? You may need
to use a different learning rate for EXP3(γ) than the theory motivates to attain this performance. All of
these objective should be attainable with values of d and n below 200.). Also note that while we proved the
correctness of EXP3(γ) for rewards in [−1, 1] is is straightforward to show that it holds for Gaussian as well.

4.3 In this exercise we will implement several contextual bandit algorithms to perform classification with
bandit feedback. In most practical settings where contextual bandits are used, we do not have access to the
rewards for each action (we only know the reward of the action taken – bandit feedback). But to benchmark
a contextual bandit algorithm we need to know the rewards of every action so we can evaluate how the al-
gorithm would have performed if it took some other sequence of actions. To simulate such a process we can
use a multi-class classification dataset in the following way: each feature vector is the context, each “arm”
is recommending a particular class label, and the reward of an arm is 1 if the correct class was predicted
and 0 otherwise. This way, while the bandit algorithm only knows whether they get it right or not, as an
evaluator we know what reward the algorithm would have received if they had taken any arm. This is, of
course, not something we would do if we actually cared about solving the classification task, since in that
case we should incorporate the knowledge of the reward obtained for each action. We are only using this
classification task as a way to benchmark our contextual bandit algorithm.

We will run our classification task on the MNIST dataset1. The MNIST dataset contains 28x28 images
of handwritten digits from 0-9. Download this dataset and use the python-mnist library2 to load it into
Python. Rather than using the full images, you may run PCA on the data to come up with a lower
dimensional representation of each image. You will have to experiment with what dimension, d, to use.

We will reduce the classification task to regression—given a context, predict the reward you will receive
for playing each action, and choose the action with the highest predicted reward. Let the d dimensional
representation of the tth image in the dataset, xt, be our “context”, and for each a ∈ {0, 1, . . . , 9} let φa ∈ Rd.
Then x>t φa is the predicted value of the “reward” for context xt when action a is played. Here our true
reward r(xt, At) will be equal to 1 if a is the correct label for xt and 0 otherwise. As noted above, the player
only observes the reward for the action they chose—unlike the standard supervised learning setting, they do
not observe what the true label is when they guess incorrectly.

Implement the Explore-Then-Commit, LinUCB, Follow-The-Leader, and Thompson Sampling algorithms
for this problem. Let:

φ̂a,T = arg min
φ∈Rd

T∑
t=1

I{At == a}(φ>xt − r(xt, At))2

In this setting, the algorithms work as follows:

1http://yann.lecun.com/exdb/mnist/
2https://pypi.org/project/python-mnist/
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• Explore-Then-Commit algorithm uniformly samples actions for the first T steps, then computes φ̂a,T
as above, and then for the remaining points in the dataset, it chooses the action At such that φ̂>At,T

xt
is maximized.

• For LinUCB, the algorithm is essentially the standard LinUCB algorithm but now it forms confidence
sets, CT,a for each φ̂a,T . At each iteration, it determines which action corresponds to the highest UCB,
that is, it chooses action At where:

At = arg max
a∈{0,1,...,9}

max
φ∈CT,a

φ>xt

• Follow-The-Leader chooses actions according to the following rule:

At = arg max
a∈{0,1,...,9}

φ̂>a,t−1xt

where φa is obtained by solving the above.

• Thompson Sampling is similar to in standard linear bandits, but now it maintains a posterior distri-
bution on φa for each action. At time t, it draws φ̃a from the posterior for each a, and chooses the
action At such that φ̃>At

xt is maximized.

Implement each of these algorithms and plot the regret when run on MNIST. Experiment with different
choices of d. Find values of d (and include corresponding plots) where LinUCB outperforms Explore-Then-
Commit, and where Explore-Then-Commit outperforms LinUCB.
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