Homework 1
CSE 599i: Interactive Learning
Instructor: Kevin Jamieson
Due 11:59 PM on January 24, 2020

Probability
Concentration inequalities are at the heart of most arguments in statistical learning theory and bandits. Refer to [1] for more details.

1.1 (Markov’s Inequality) Let X be a positive random variable. Prove that $\Pr(X > \lambda) \leq \frac{E[X]}{\lambda}$.

1.2 (Jensen’s Inequality) Let X be a random vector in \mathbb{R}^d and let $\phi : \mathbb{R}^d \to \mathbb{R}$ be convex. Then $\phi(E[X]) \leq E[\phi(X)]$. Show this inequality for the special case when X has discrete support. That is, for $p_i \geq 0$ and $\sum_{i=1}^n p_i = 1$, and $(x_1, \ldots, x_n) \in \mathbb{R}^n$ show that $\phi(\sum_{i=1}^n p_i x_i) \leq \sum_{i=1}^n p_i \phi(x_i)$.

1.3 (Hoeffding’s Lemma) Let X be a random variable with $E[X] = 0$ and $X \in [a, b]$ almost surely. Show that for any $\lambda \geq 0$, $\log(E[e^{\lambda X}]) \leq \frac{\lambda^2(b-a)^2}{8}$. Hint²

1.4 (Sub-exponential concentration) For $i = 1, \ldots, n$ let X_i be an independent, positive random variable that satisfies $\Pr(X_i > t) \leq e^{-t/a_i}$ for some $a \in \mathbb{R}^n_+$. Show that there exists a universal constant $c > 0$ such that $\Pr(\sum_{i=1}^n (X_i - a_i) \geq t) \leq \exp(-c \min\left\{\frac{t^2}{\|a\|^2}, \frac{t}{\|a\|}\right\})$.

The Upper Confidence Bound Algorithm.
Consider the following algorithm for the multi-armed bandit problem.

Algorithm 1: UCB

Input: Time horizon T, 1-subGaussian arm distributions P_1, \ldots, P_n with unknown means μ_1, \ldots, μ_n

Initialize: At any time let $T_i(t)$ denote the number of times i has been pulled at time t and let $T_i = T_i(t)$. Pull each arm once.

for: $t = n + 1, \ldots, T$

Pull arm $I_t = \arg\max_{i=1, \ldots, n} \hat{\mu}_{i, T_i(t-1)} + \sqrt{\frac{2 \log(2nT^2)}{T_i(t-1)}}$ and observe draw from P_i.

Let $\hat{\mu}_{i, T_i(t)}$ be the empirical mean of the first $T_i(t)$ pulls.

In the following exercises, we will compute the regret of the UCB algorithm and show it matches the regret bound from lecture. Without loss of generality, assume that the best arm is μ_1. For any $i \in [n]$, define the sub-optimality gap $\Delta_i = \mu_1 - \mu_i$. Define the regret at time T as $R_T = E[\sum_{i=1}^T \mu^* - \mu_{i,T}] = \sum_{i=1}^n \Delta_i E[T_i]$.

2.1 Consider the event

$$\mathcal{E} = \bigcap_{i \in [n]} \bigcap_{s \leq T} \left\{ |\hat{\mu}_{i,s} - \mu_i| \leq \sqrt{\frac{2 \log(2nT^2)}{s}} \right\}.$$

Show that $\Pr(\mathcal{E}) \geq 1 - \frac{1}{T}$.

2.2 Conditioned on event \mathcal{E}, show that $T_i < \frac{8 \log(2nT^2)}{\Delta_i^2}$ for $i \neq 1$.

2.3 Show that $E[T_i] \leq \frac{8 \log(2nT^2)}{\Delta_i^2} + 1$. When $n \leq T$, conclude by showing that $R_T \leq \sum_{i=1}^n \left(\frac{24 \log(2T)}{\Delta_i^2} + \Delta_i \right)$.

¹Last updated to correct for typos January 21, 2020 at 8:33 AM
²For any $X \in [a, b]$ we can write $X = (1-p)a + pb$ for $p = \frac{X-a}{b-a} \in [0, 1]$. Apply Jensen’s inequality. This can be tricky feel free to get as far as you can.
Thompson Sampling.

We consider the following Bayesian setting. Consider n arms and let p_0 be an n-dimensional prior distribution over $[-1, 1]^n$ such that $\theta^* \sim p_0$ is drawn before the start of the game (e.g., p_0 is uniform over $[-1, 1]^n$). At any time t, when we pull arm $i \in [n]$ we observe a random variable $X_{i,t} \in [-1, 1]$ where $\mathbb{E}[X_{i,t}] = \theta_i^*$.

Algorithm 1: Thompson Sampling

Input: Time horizon T, arm distributions ν_1, \cdots, ν_n
Assume the prior p_0 is known and that $\theta^* \sim p_0$. Let $p_t(I_1, \cdots, I_t, X_{1:t})$ be the posterior distribution on θ^* at time t.

for: $t = 1, \cdots, T$
Sample $\theta(t) \sim p_{t-1}$
Pull arm $I_t = \arg \max_{i \leq n} \theta_i(t)$ to observe $X_{I_t, t}$
Update $T_{I_t}(t+1) \leftarrow T_{I_t}(t) + 1$
Compute exact posterior update p_t

Denote the σ-algebra generated by the observations at time t by $\mathcal{F}_t = \sigma(I_1, X_{I_1,1}, \cdots, I_t, X_{I_t,t})$ (if you are unfamiliar with σ-algebras, don’t worry too much - conditioned on the σ-algebra just means conditioning on the choices of arms and the rewards observed). The *Bayesian Regret* of an algorithm is

$$BR_T = \mathbb{E}_{\theta^* \sim p_0} \left[\sum_{t=1}^{T} \max_{i=1, \cdots, n} \theta_i^* - \theta_{I_t}^* \right]$$

$$= \mathbb{E}_{\theta^* \sim p_0} \left[\mathbb{E} \left[\sum_{t=1}^{T} \max_{i=1, \cdots, n} \theta_i^* - \theta_{I_t}^* \right| \theta_i \right]$$

Assume that expectations, if not explicitly specified, are with respect to all randomness including $\theta^* \sim p_0$, I_1, \ldots, I_T, and observations.

3.1 On a given run of the algorithm, let $\hat{\theta}_{i,t}$ denote the empirical mean of the first s pulls from arm i, note that $\mathbb{E}[\hat{\theta}_{i,s}] = \theta_i^*$. Let the good event be

$$\mathcal{E} = \bigcap_{i \in [n]} \bigcap_{t \leq T} \left\{ |\hat{\theta}_{i,t} - \theta_i^*| \leq \sqrt{\frac{2\log(2/\delta)}{t}} \right\}.$$

Show that $\mathbb{P}(\mathcal{E}^c) \leq nT\delta$.

3.2 (Key idea.) Argue that $\mathbb{P}(i^* = |\mathcal{F}_{t-1}) = \mathbb{P}(I_t = |\mathcal{F}_{t-1})$.

3.3 Define $U_t(i) = \min \{1, \hat{\theta}_{i,t} + \sqrt{\frac{2\log(2/\delta)}{T_{I_t}(t)}} \}$. If $i^* = \arg \max_i \theta_i^*$, show that $\mathbb{E}_{\theta^* \sim p_0}[\mathbb{E}_{I_t}[\theta_i^* - \theta_{I_t}^* \mid \mathcal{F}_{t-1}]] = \mathbb{E}_{\theta^* \sim p_0}[\theta_i^* - U_t(i^*)] + \mathbb{E}_{\theta^* \sim p_0}[\mathbb{E}_{I_t}[U_t(I_t) - \theta_{I_t}^* \mid \mathcal{F}_{t-1}]]$. Conclude that $BR_T = \mathbb{E}_{\theta^* \sim p_0} \sum_{t=1}^{T} \theta_i^* - U_t(i^*) + \sum_{t=1}^{T} \mathbb{E}_{I_t}[U_t(I_t) - \theta_{I_t}^* \mid \mathcal{F}_{t-1}]$. Hint.

3.4 Show that $BR_T \leq 4\delta nT^2 + \mathbb{E} \left[\mathcal{E} \left(\sum_{t=1}^{T} U_t(I_t) - \theta_{I_t}^* \right) \right] \leq O(\delta nT^2 + \sqrt{Tn \log(1/\delta)})$. Hint.

3.5 Make an appropriate choice of δ and state a final regret bound.

In general, giving frequentist bounds on the regret is significantly more difficult. We refer the interested reader to [2] and the tutorial [3] for more details. This exercise is motivated by [4].

3. Tower rule of expectation.
4. Apply Jensen’s to $\sum_{i=1}^{n} \sqrt{T_i}$.
5.2 Let’s continue on. Show inf $\phi \max \{P_0(\phi = 1), P_1(\phi = 0)\} \geq \frac{1}{2} \int_{\mathbb{R}^n} \min(p_0(x), p_1(x))dx$. Hint5.

5.2 Let’s continue on. Show $\frac{1}{2} \int_{x \in \mathbb{R}^n} \min(p_0(x), p_1(x))dx \geq \frac{1}{4} \left(\int_{x \in \mathbb{R}^n} \sqrt{p_0(x)p_1(x)}dx \right)^2$. Hint6.

5.3 One more step. Show $\left(\int_{x \in \mathbb{R}^n} \sqrt{p_0(x)p_1(x)}dx \right)^2 \geq \exp\left(-\int_{x \in \mathbb{R}^n} \log\left(\frac{p_1(x)}{p_0(x)} \right) p_1(x)dx \right)$. Hint7.

5.4 The final quantity is known as the KL-Divergence between distributions. Now assume that $P_0 = \mathcal{N}(\mu_0 \mathbf{1}_n, I_n)$ and $P_1 = \mathcal{N}(\mu_1 \mathbf{1}_n, I_n)$ where I_n is the $n \times n$ identity matrix and $\mathbf{1}_n \in \mathbb{R}^n$ is the all ones vector. Show (or look up) $KL(P_0||P_1)$.

5.5 Conclude that to achieve a test that accurately determines whether the sample of size n came from P_0 or P_1 with a probability of error less than δ, we necessarily have $n \geq 2\Delta^{-2} \log(1/4\delta)$ where $\Delta = \mu_1 - \mu_0$.

Remark: The art of lower bounds is well established and extensive in statistics. See [5] for more details in the hypothesis testing setting. In the bandit setting, see [6].

References

5Bound the max below by the average

6Note that for $a, b > 0$ we have $ab = \min\{a, b\} \max\{a, b\}$.

7Apply Cauchy Schwartz.

8Jensen’s inequality.

