
Some Notes on Multi-armed Bandits
Kevin Jamieson, University of Washington

These notes were written for myself to refer to while lecturing. They are not a replacement for
the course textbooks [Lattimore and Szepesvári, 2020, Bubeck et al., 2012] and may contain
errors! I have posted them by request.

1 Introduction

Machine learning, and in particular, supervised learning, is the study of making statistical inferences from
previously collected data. Multi-armed bandits is more about an interaction between an agent (algorithm)
and an environment where one simultaneously collects data and makes inferences in a closed-loop.

You have n “arms” or actions, representing distributions. “Pulling” an arm represents requesting a
sample from that arm.

At each time t = 1, 2, 3, . . .

• Algorithm chooses an action It ∈ {1, . . . , n}

• Observes a reward XIt,t ∼ PIt where P1, . . . , Pn are unknown distributions

That is, playing arm i and time s results in a reward Xi,s from the ith distribution. In these lectures, all
distributions will be Gaussian (or sub-Gaussian) with variance 1 unless otherwise specified. Example of
sub-Gaussian distribution is bounded distributions on [−1, 1] or Gaussian N (0, 1). Formally, a distribution
of X is 1-sub-Gaussian if E[exp(λX)] ≤ exp(λ2/2).

We will find that the means of the distribution are the most pertinent parameters of these distributions.
Let θ∗i = EX∼Pi [X] be the mean of the ith distribution. Define ∆i = maxj=1,...,n θ

∗
j − θ∗i . We measure

performance of an algorithm in two ways: 1) how much total reward is accumulated, and 2) how many total
pulls are required to identify the best mean.

1.1 Regret Minimization

After T time steps, define the regret as

RT = max
j=1,...,n

θ∗jT − E

[
T∑
t=1

XIt,t

]

The goal is to have R(T) = o(T) to achieve sub-linear regret.
If at time T the ith arm has been played Ti times, then

RT = max
j=1,...,n

θ∗jT − E

[
T∑
t=1

XIt,t

]

= max
j=1,...,n

θ∗jT −
T∑
t=1

E

[
n∑
i=1

Xi,t1{It = i}

]

= max
j=1,...,n

θ∗jT −
n∑
i=1

θ∗i E

[
T∑
t=1

1{It = i}

]

= max
j=1,...,n

θ∗jT −
n∑
i=1

θ∗i E [Ti]

=

n∑
i=1

∆iE [Ti]

Thus, we want to minimize the number of times we play sub-optimal arms.

1

1.2 Best-arm identification

Given a δ ∈ (0, 1) identify the best arm with probability at least 1− δ using as few total pulls as possible.
While related, these objectives are at odds with one another. Sometimes called the (ε, δ)-PAC setting,

but for simplicity we’ll take ε = 0.

1.3 Warm-up

Suppose n = 2. How long would it take to decide one arm was better than another using sub-gaussian
bounds? Consider the trivial algorithm:

Input: 2 arms, time τ ∈ N.
Pull each arm i ∈ {1, 2} exactly τ times and compute empirical mean θ̂i.

For all t > 2τ play arm arg maxi θ̂i

Proposition 1. Fix ε, δ. If Z1, Z2, . . . are independent mean-zero σ2-sub-Gaussian random variables so that
E[exp(λZt)] ≤ exp(λ2σ2/2), then for τ = d2σ2ε−2 log(1/δ)e we have P(1

τ

∑τ
t=1 Zt ≤ ε) ≥ 1− δ.

Proof.

P(
1

τ

τ∑
t=1

Zt > ε) = P(exp

(
λ

τ∑
t=1

Zt

)
> exp(λτε))

≤ e−λτεE

[
exp

(
λ

τ∑
t=1

Zt

)]

= e−λτε
τ∏
t=1

E [exp (λZt)]

= e−λτε exp
(
λ2σ2τ/2

)
= exp

(
−λτε+ λ2σ2τ/2

)
≤ exp

(
−τε2/2σ2

)
≤ δ

for the chosen τ .

Set τ = d8∆−2 log(4/δ)e and let θ̂i = 1
τ

∑τ
s=1Xi,s for i = 1, 2. Define the event

Ei :=

{
|θ̂i − θ∗i | ≤

√
2 log(4/δ)

τ

}
.

Then P(Ec1 ∪ Ec2) ≤ P(Ec1) + P(Ec1) ≤ δ. Thus, if we pull each arm τ times then on E1 ∩ E2 we have

θ̂1 > θ∗1 −∆/2

≥ θ∗2 + ∆/2

> θ̂2

so that we have determined the best-arm. And we can play it forever.
After any T total plays such that arm i has been played Ti times and T = T1 + T2, the expected regret

is at most

θ∗1T − E

[
T∑
s=1

XIs,s

]
= θ∗1T − E [(T1θ

∗
1 + T2θ

∗
2)]

= E [T2∆]

= E [T2∆1{E1 ∩ E2}+ T2∆1{Ec1 ∪ Ec2}]
≤ E [τ∆1{E1 ∩ E2}+ T∆1{Ec1 ∪ Ec2}]
≤ 8∆−1 log(4/δ) + ∆TP(Ec1 ∪ Ec2)

≤ 8∆−1 log(4/δ) + ∆Tδ.

2

If we take δ = 1/T then the expected regret is less than ∆ + 8∆−1 log(4T). On the other hand, the regret
can’t possibly be greater than ∆T , thus the total regret is bounded by

θ∗1T − E

[
T∑
s=1

XIs,s

]
= min{T∆,∆ + 8∆−1 log(4T)}

≤ 1 + 2
√

8T log(4T)

where the last step takes the worst case ∆ =
√

8 log(4T)/T .
Takeaway: For very small ∆ we lose almost nothing, for very large ∆ its easy to distinguish, its maximized
at around 1/

√
T . We’ll see this again.

1.4 Disclaimers and goals of these lectures

To goal of these lectures is to provide an overview of the kinds of problems multi-armed bandits can solve,
and basic algorithmic tropes. By the end of these lectures I hope you will be able to model a real-world
problem as an appropriate bandit problem and propose an algorithm that is a strong baseline.

As a consequence, I will not be stressing important practicalities of algorithms that muck up the analysis.
That is, I will pay for a slightly weaker performing algorithm in exchange for a dramatically simpler analysis.
This means that I will i) assume the horizon times T for regret analyses is known in advance, ii) I will take
liberties with constants and some log factors, making notes of the best known results when pertinent, iii)
will always assume there is a uniquely optimal arm for best-arm identification and aim to find it, not merely
an ε-good arm, iv) I will only study best-arm identification in the fixed confidence setting (exists a whole
literature on fixed budget setting), v) will assume sub-Gaussian distributions everywhere and nothing more.

2 Action Elimination Algorithm for Multi-armed Bandits

Input: n arms X = {1, . . . , n}, confidence level δ ∈ (0, 1).

Let X̂1 ← X , t← 1
while |X̂`| > 1 do
εt = 2−t

Pull each arm in X̂` exactly τ` = d2ε−2
` log(4`2|X |

δ)e times

Compute the empirical mean of these rewards θ̂i,` for all i ∈ X̂`
X̂`+1 ← X̂` \

{
i ∈ X̂` : maxj∈X̂` θ̂j,` − θ̂i,` > 2ε`

}
t← t+ 1

Output: X̂t+1

Lemma 1. Assume that maxi∈X ∆i ≤ 4. With probability at least 1−δ, we have 1 ∈ X̂` and maxi∈X̂` ∆i ≤ 8ε`
for all ` ∈ N.

Proof. For any ` ∈ N and i ∈ [n] define

Ei,` =
{
|θ̂i,` − θ∗i | ≤ ε`

}
and E =

⋂n
i=1

⋂∞
`=1 Ei,`. Noting that ε` =

√
2 log(4n`2/δ)

τ`
we have

P(Ec) = P

(
n⋃
i=1

∞⋃
`=1

Eci,`

)
≤

n∑
i=1

∞∑
`=1

δ

2n`2
≤ δ.

In what follows assume E holds.
Fix any ` for which 1 ∈ X̂` (note 1 ∈ X̂1). Then for any j ∈ X̂` we have

θ̂j,` − θ̂1,` = (θ̂j,` − θ∗j)− (θ̂1,` − θ∗1)−∆`

E
≤ 2ε`

3

which implies 1 ∈ X̂`+1. Thus, 1 ∈ X̂` for all `. On the other hand, any i for which ∆i = θ∗1 − θ∗i > 4ε` we
have

max
j∈X̂`

θ̂j,` − θ̂i,` ≥ θ̂1,` − θ̂i,`

= (θ̂j,` − θj)− (θ̂i,` − θi)−∆i

> 2ε` − 4ε` = 2ε`

which implies this maxj∈X̂`+1
θ∗j ≥ θ∗1 − 4ε` = θ∗1 − 8ε`+1.

Theorem 1. Assume that maxi∈X ∆i ≤ 4. Then with probability at least 1 − δ, 1 is returned from the
algorithm at a time τ that satisfies

τ ≤ c
n∑
i=2

∆−2
i log(n log(∆−2

i)/δ)

Proof. If ∆ = mini 6=1 ∆i then X̂` = {1} for t ≥ dlog2(8∆)e. Note that

Ti =

dlog2(8∆)e∑
`=1

τ`1{i ∈ X̂`}

≤
dlog2(8∆)e∑

`=1

τ`1{∆i ≤ 8ε`}

=

dlog2(8∆−1
i)e∑

`=1

τ`

=

dlog2(8∆−1
i)e∑

`=1

d2ε−2
` log(4`2|X |

δ)e

≤ d2 log(
4 log2

2(16∆−2
i)|X |

δ)e
dlog2(8∆−1

i)e∑
`=1

4`

≤ c∆−2
i log(

4 log2
2(16∆−2

i)|X |
δ)

which implies
Thus, the total number of samples taken before X̂` = {1} is equal to

n∑
i=1

Ti ≤
n∑
i=1

c∆−2
i log(

4 log2
2(16∆−2

i)|X |
δ)

which implies that one can identify the best arm after no more than
∑n
i=2 ∆−2

i log(n log(∆−2
i)/δ).

Theorem 2. Assume that maxi∈X ∆i ≤ 4. For any T ∈ N, with probability at least 1− δ

∑
i:∆i>0

Ti∆i ≤ inf
ν≥0

νT +

n∑
i=1

c(∆i ∨ ν)−1 log(log((∆i∨ν)−1)|X |
δ).

Moreover, if the algorithm is run with δ = 1/T then RT ≤ c
∑n
i=2 ∆−1

i log(T) and RT ≤ c
√
nT log(T).

4

Suppose you run for T timesteps. Then for any ν ≥ 0 the regret is bounded by:

n∑
i=2

∆iTi ≤ νT +
∑

`:8ε`>ν

8ε`τ`|X̂`|

≤ νT +

dlog2(8(∆∨ν)−1)e∑
`=1

8ε`τ`|X̂`|

≤ νT +

n∑
i=1

dlog2(8(∆∨ν)−1)e∑
`=1

8ε`τ`1{∆i ≤ 8ε`}

= νT +

n∑
i=1

dlog2(8(∆i∨ν)−1)e∑
`=1

8ε`τ`

= νT +

n∑
i=1

dlog2(8(∆i∨ν)−1)e∑
`=1

8ε`d2ε−2
` log(4`2|X |

δ)e

≤ νT +

n∑
i=1

c log(
4 log2

2(8(∆i∨ν)−2)|X |
δ)

dlog2(8(∆i∨ν)−1)e∑
`=1

2`

≤ νT +

n∑
i=1

c(∆i ∨ ν)−1 log(log((∆i∨ν)−1)|X |
δ)

Setting ν = 0 yields a regret of
∑n
i=2 ∆−1

i log(n log(∆−1
i)/δ). On the other hand, using ∆i ∨ ν ≥ ν and

minimizing over ν yields a regret of
√
nT log(n log(T)/δ). The expected regret, of course, is then bounded

by

n∑
i=2

∆iE[Ti] = E

[
n∑
i=2

∆iTi

]

≤
n∑
i=2

∆−1
i log(n log(∆−1

i)/δ) + TP(Ec)

Setting δ = 1/T implies the regret is less than
∑n
i=2 c∆

−1
i log(T).

Some remarks:

• This analysis doesn’t reuse samples from previous rounds, it is easy to make this change.

• Regret bound requires knowledge of T a priori.

3 Lower bounds for Multi-armed Bandits

Let us briefly pause to consider how far off from optimal we are, and then think about an algorithm that
could get us to optimality. How do we know we’re doing okay?

3.1 Mean of a Gaussian

Suppose I get n samples from a Gaussian distribution N (µ, 1). You compute the empirical mean µ̂ =
1
n

∑n
i=1Xi. We know that |µ̂ − µ| ≤

√
2 log(2/δ)/n. How tight is this? If µ ∈ {0,∆} then we just need

n = 8∆−2 log(2/δ)1

1Using the SPRT, as δ → 0 one needs just an expected number of samples equal to 2∆−2 log(2/δ).

5

Let pµ(x) = 1
2π e
−(x−µ)2/2σ2

be the Gaussian distribution with mean µ. Under H0, Xi ∼ p0 and under
H1, Xi ∼ p∆. Let φ : Rn → {0,∆}. Then the minimax probability of error is equal to

inf
φ

max{P0(φ = 1),P1(φ = 0)} ≥ inf
φ

1

2
(P0(φ = 1),P1(φ = 0))

= inf
φ

1

2

(∫
x∈Rn

1{φ(x) = 1}p0(x)dx+

∫
x∈Rn

1{φ(x) = 0}p1(x)dx

)
=

1

2

∫
x∈Rn

min{p0(x), p1(x)}dx

≥ 1

4

(∫
x∈Rn

√
p0(x)p1(x)dx

)2

(Cauchy-Schwartz)

≥ 1

4
exp

(
−
∫
x∈Rn

log(p1(x)
p0(x))p1(x)dx

)
(Jensen’s)

where(∫
x∈Rn

√
p0(x)p1(x)dx

)2

=

(∫
x∈Rn

√
min{p0(x), p1(x)}max{p0(x), p1(x)}dx

)2

≤
∫
x∈Rn

min{p0(x), p1(x)}dx
∫
x∈Rn

max{p0(x), p1(x)}dx (Cauchy-Schwartz)

≤ 2

∫
x∈Rn

min{p0(x), p1(x)}dx

and (integrating only over support of pq)(∫
x∈Rn

√
p0(x)p1(x)dx

)2

= exp

(
2 log(

∫
x∈Rn

p0(x)
√
p1(x)/p0(x)dx)

)
≥ exp

(
2

∫
x∈Rn

p0(x) log(
√
p1(x)/p0(x))dx

)
= exp

(
−
∫
x∈Rn

log(p1(x)
p0(x))p1(x)dx

)
Note that

KL(P1|P0) =

∫
x

log

(
n∏
i=1

p1(xi)

p0(xi)

)
n∏
i=1

p1(xi)dx

= nKL(p1|p0) = n∆2/2

and that KL(N (0, 1)|N (∆, 1)) = ∆2/2.
We conclude that

inf
φ

max{P0(φ = 1),P1(φ = 0)} ≥ 1

4
exp

(
−n∆2/2

)
Thus, to determine whether or not n samples are from a Gaussian with mean 0 or ∆ with probability of
failure less than δ, one needs n ≥ 2∆−2 log(1/4δ).

3.2 Indentification

An algorithm for best-arm identification at time t is described by given a history (Is, Xs)s<t for each time t
is described by a

• selection rule It ∈ [n] is Ft−1 measurable where Ft = σ(I1, X1, I2, X2, . . . , It−1, Xt−1)

• stopping time τ is Ft measurable, and

6

• recommendation rule î ∈ [n] invoked at time τ which is Fτ -measurable.

Definition 1. We say that an algorithm for best-arm identification is δ-PAC if for all θ∗ ∈ Rn we have
Pθ∗ (̂i = arg maxi∈[n] θ

∗
i) ≥ 1− δ.

The following is due to [Kaufmann et al., 2016], a strengthening of the first time it appeared in [Mannor and Tsitsiklis, 2004].

Theorem 3 (Best-arm identification lower bound). Any algorithm that is δ-PAC on {P : Pi = N (θi, 1), θ1 >
maxi6=1 θi, θ ∈ [0, 1]n} for δ < 0.15 satisfies Eθ∗ [τ] ≥ 2 log(1

2.4δ)
∑n
i=1 ∆−2

i .

Proof sketch: The original instance has Pi = N (θ∗i , 1). Pick some j ∈ [n] and define an alternative mean

vector θ(j) ∈ [0, 1]n such that θ
(j)
i = θ∗i if i 6= j and θ

(j)
i = θ1 + ε for j = i for some arbitrarily small number

ε. Note that under θ(j), arm j is the best arm.
Because the algorithm claims to be δ-PAC, it has to output arm 1 under θ∗ and arm j under θ(j). But

these two bandit games only differ on arm j so to tell the difference between them its only natural to sample
arm j until one can figure out which instance is being played (i.e., is its mean θj or θ1 + ε?) The discussion
above suggests that to make this distinction with probability at least 1− δ, it is necessary to sample arm j
at least 2(θ1 − θj + ε)−2 log(1/4δ) times. Taking ε to zero and noticing that j was arbitrary completes the
sketch.

This is not a proof, however, because the number of times the algorithm samples arm j is random whereas
in the above argument it was fixed. The proof of [Kaufmann et al., 2016] provides convenient tools to prove
general lower bounds for δ-PAC settings.

3.3 Regret, minimax

Theorem 4 (Minimax regret lower bound). For every T ≥ n there exists an instance P = N (θ∗, I) such
that RT ≥

√
(n− 1)T/27.

Proof sketch: Let θ∗ = θ = (∆, 0, . . . , 0). For any algorithm, by the pigeon hole principle, there exists an

arm î ∈ [n] such that E[Tî] ≤ T/n.
Define an alternative Gaussian instance with mean vector θ′ that is identical to θ other than θ̂i = 2∆.

If ∆ ≈
√
n/T then î will not be given enough samples to distinguish between the two instances, which

means E[T1] will be about the same under both models.
Under θ, if E[T1] ≤ T/2 then the regret incurred is at least ∆T/2 ≈

√
nT . On the other hand, under θ′,

if E[T1] > T/2 then the regret again is at least ∆T/2 ≈
√
nT .

This is not a proof because again the number of times an arm is pulled is random, but as before, these
arguments can be made precise.

3.4 Gap-dependent regret

Lemma 2. Any strategy that satisfies E[Ti(t)] = o(ta) for any arm i with ∆i > 0 and a ∈ (0, 1), we have

that limT→∞ inf R̄T
log(T) =

∑n
i=2

2
∆i

.

Takeaway: This is what his field does: prove an initial upper, then lower, then chase it.

3.5 Revisiting MAB with Optimism

Why go beyond action elimination algorithms? Because they will never hit the asymptotic lower bound, for
one thing, since if we look at when the second to last arm exits, the lowerbounds are the same.

α-UCB which is arg maxi θ̂i,Ti(t) +
√

2α log(t)
Ti(t)

as α→ 1 achieves the lower bound.

Any sub-linear regret algorithm plays arm 1 an infinite number of times, so assume µ̂1 ≈ µ1. Minimizing
the maximum upper bound. Thus, we expect the number of times the ith arm is pulled is 2∆−2

i log(T),
which is optimal.

UCB1 in its most popular form was developed by [Auer et al., 2002].
MOSS first achieved

√
nT regret [Audibert and Bubeck, 2009].

KL-UCB is finite-time analysis with optimal constants for asymptotic regret [Cappé et al., 2013].

7

The recent work of [Lattimore, 2018] defined a UCB-based algorithm that achieves asymptotic optimal

constants, and finite regret bounds of
∑
i

log(T)

∆−1
i

and
√
nT .

4 Linear Bandits Intro

Now suppose each arm i = 1, . . . , n has a feature vectors xi ∈ Rd. And more over, there exists some θ∗ ∈ Rd
such that a pull of arm It ∈ [n] results in a reward yt = 〈xIt , θ∗〉+ ηt where ηt ∼ N (0, 1).

Applications: Drug-discovery, Spotify, Netflix, ads
In the previous setup, pulling arm i provided no information about arm j, but now suddenly it does.

4.1 Least Squares

Given a sequence of arm choices and observed rewards let {xt, yt, ηt}τt=1 we denote the stacked sequences of
each as X ∈ Rτ×d, Y ∈ Rτ , and η ∈ Rτ respectively where Y = Xθ∗ + η. Using this information we can
derive a least-squares estimate of θ∗ given as follows

θ̂ = (XTX)−1XTY = (XTX)−1XT (Xθ∗ + η) = θ∗ + (XTX)−1XT η.

Fix any z ∈ Rd, then Thus

z>(θ̂ − θ∗) = z>(X>X)−1X>η.

Note that η ∼ N (0, I). For any W ∼ N (µ,Σ) we have AW + b ∼ N (Aµ+ b, AΣA>). Thus

z>(θ̂ − θ∗) ∼ N (0, z>(X>X)−1z).

so that

P
(
z>(θ̂ − θ∗) ≥

√
2z>(X>X)−1z log(1/δ)

)
≤ δ.

We will use the notation ‖z‖2A = z>Az so that with probability at least 1− δ

z>(θ̂ − θ∗) ≤ ‖z‖(X>X)−1

√
2 log(1/δ)

4.1.1 Aside: Gaussian to sub-Gaussian

For an arbitrary constant µ,

P (xT (θ̂ − θ∗) > µ) = P (wT η > µ)

≤ exp(−λµ)E[exp(λwT η)], let λ > 0 Chernoff Bound

= exp(−λµ)E[exp(λ

t∑
i=1

wiηi)]

= exp(−λµ)

t∏
i=1

E[exp(λwiηi)] independence of wiηi

≤ exp(−λµ)

t∏
i=1

exp(λ2w2
i /2) sub-Gaussian assumption

= exp(−λµ) exp(
λ2

2
||w||22)

≤ exp(− µ2

2||w||22
) λ =

µ

||w||22

= exp(− µ2

2xT (XTX)−1x
) = δ,

8

where in the final step we made use of the following equality

||w||22 = xT (XTX)−1XTX(XTX)−1x = xT (XTX)−1x.

Thus with probability at least 1− δ,

xT (θ̂ − θ∗) ≤
√

2xT (X>X)−1x log(
1

δ
)

=: ‖x‖(X>X)−1

√
2 log(1/δ)

5 Experimental design

Note that if I take measurements (x1, . . . , xn) ∈ X and observe their corresponding observations yi =

〈xi, θ∗〉 + ηi where ηi ∈ ′,∞, then E[(θ̂ − θ)(θ̂ − θ)>] = σ2(XTX)−1 and also, θ̂ − θ∗ ∼ N (0, σ2(X>X)−1).
We can visualize this as a confidence ellipsoid for each choice of X. And we can even think of optimizing

the choice. Recall that the PDF of a Gaussian is φ(x) = 1
(2π|Σ|)d/2 e

−x>Σ−1x/2. With entropy 1
2 log(2πe|Σ|).

When the number of selected points is large, its more convenient to think of sampling n points from a
distribution placed over X . Define

Aλ =
∑
x∈X

λxxx
>

so that for every X ∈ Rτ×d there exists some λ ∈ 4X such that X>X =
∑
x∈X dλxτexx> = Aλ. This Aλ

can then be used to shape the covariance θ̂:

• A-optimality: minimize fA(λ) = Tr(A−1
λ) minimizes E[‖θ̂ − θ‖22]

• E-optimality: minimize fE(λ) = maxu:‖u‖≤1 u
>A−1

λ u minimizes maxu:‖u‖≤1 E[(〈u, θ̂ − θ〉)2]

• D-optimality: maximize gD(λ) = log(|Aλ|) maximizes the entropy of distribution. Also, if Eλ = {x :
x>A−1

λ x ≤ d} then D-optimality is the minimum volume ellipsoid that contains X .

• G-optimality: minimize fG(λ) = maxx∈X x
>A−1

λ x minimizes maxx∈X E[(〈x, θ̂ − θ∗〉)2]

Lemma 3 (Kiefer-Wolfowitz (1960)). For any X with d = dim(span(X)), there exists a λ∗ ∈ 4X that

• maxλ gD(λ) = gD(λ∗)

• minλ fG(λ) = fG(λ∗)

• fG(λ∗) = gD(λ∗) = d

• support(λ∗) = (d+ 1)d/2

Proposition 2. If λ∗ is the G-optimal design for X then if we pull arm x ∈ X exactly dτλ∗xe times for some

τ > 0 and compute the least squares estimator θ̂. Then for each x ∈ X we have with probability at least 1− δ

〈x, θ̂ − θ∗〉 ≤ ‖x‖(∑x∈X dτλ∗xexx>)−1

√
2 log(1/δ)

≤ 1√
τ
‖x‖(∑x∈X λ

∗
xxx
>)−1

√
2 log(1/δ)

≤
√

2d log(1/δ)

τ

and we have taken at most τ + d(d+1)
2 pulls. Thus, for any δ′ ∈ (0, 1) we have P(

⋃
x∈X {|〈x, θ̂ − θ∗〉| >√

2d log(2|X |/δ′)
τ }) ≤ δ′.

9

Notes:

• The support size of (d + 1)d/2 is trivial application of Caratheodory’s theorem. Many algorithms to
find this efficiently.

• Note that one can find a λ∗ with a constant approximation with just support O(d).

• Leverage scores if V -optimality

• John’s ellipsoid is equivalent to G/D-optimality

[Pukelsheim, 2006, Yu et al., 2006]. [Yu et al., 2006, Soare et al., 2014, Soare, 2015, Lattimore and Szepesvari, 2017],

6 Linear Bandits: Regret Minimization

This section is inspired by [Lattimore and Szepesvári, 2020].

Input: Finite set X ⊂ Rd, confidence level δ ∈ (0, 1).

Let X̂1 ← X , `← 1
while |X̂`| > 1 do

Let λ̂` ∈ 4X̂` be a d(d+1)
2 -sparse minimizer of f(λ) = max

x∈X̂`
‖x‖2(∑

x∈X̂`
λxxx>)−1

ε` = 2−`, τ` = 2dε−2
` log(4`2|X |/δ)

Pull arm x ∈ X exactly dλ̂`,xτ`e times and construct the least squares estimator θ̂` using only
the observations of this round
X̂`+1 ← X̂` \

{
x ∈ X̂` : maxx′∈X̂`〈x

′ − x, θ̂`〉 > 2ε`
}

`← `+ 1
Output: X̂`

After T time steps, define the regret as

RT = 〈x?, θ∗〉 − E

[
T∑
t=1

〈xt, θ∗〉

]

= E

∑
x 6=x?

Tx∆x

where ∆x = 〈x? − x, θ∗〉.

Lemma 4. Assume that maxx∈X 〈x? − x, θ∗〉 ≤ 4. With probability at least 1 − δ, we have x? ∈ X̂` and
maxx∈X̂`〈x

? − x, θ∗〉 ≤ 8ε` for all ` ∈ N.

Proof. For any V ⊆ X and x ∈ V define

Ex,`(V) = {|〈x, θ̂` − θ∗〉| ≤ ε`}

where it is implicit that θ̂` is the G-optimal design constructed in the algorithm at stage ` with respect
to X̂` = V. Note that this is precisely the analogous events of multi-armed bandits. The key piece of the

10

analysis is that

P

 ∞⋃
`=1

⋃
x∈X̂`

{Ecx,`(X̂`)}

 ≤ ∞∑
`=1

P

 ⋃
x∈X̂`

{Ecx,`(X̂`)}

=

∞∑
`=1

∑
V⊆X

P

(⋃
x∈V
{Ecx,`(V)}, X̂` = V

)

=

∞∑
`=1

∑
V⊆X

P

(⋃
x∈V
{Ecx,`(V)}

)
P(X̂` = V)

≤
∞∑
`=1

∑
V⊆X

δ|V|
2`2|X |P(X̂` = V) ≤ δ

Thus, in what follows, assume E :=
⋂
x∈X

⋂∞
`=1{Ex,`(X̂`)} holds.

Fix any ` for which x? ∈ X̂` (note x? ∈ X̂1). Then for any x ∈ X̂` we have

〈x− x?, θ̂`〉 = 〈x, θ̂` − θ∗〉 − 〈x?, θ̂` − θ∗〉+ 〈x− x?, θ∗〉
≤ 2ε`

which implies x? ∈ X̂`+1. Thus, x? ∈ X̂` for all `. On the other hand, any x for which 〈x? − x, θ∗〉 > 4ε` we
have

max
x′∈X̂`

〈x′ − x, θ̂`〉 ≥ 〈x? − x, θ̂`〉

= 〈x?, θ̂` − θ∗〉 − 〈x, θ̂` − θ∗〉+ 〈x? − x, θ∗〉
> 2ε`

which implies maxx∈X̂`+1
〈x, θ∗〉 ≥ 〈x?, θ∗〉 − 4ε` = 〈x?, θ∗〉 − 8ε`+1.

For any ` ≥ dlog2(8∆−1)e we have that X̂` = {x?}. Suppose you run for T timesteps. Then for any ν ≥ 0
the regret is bounded by:

∑
x∈X\x?

∆xTx = Tν +

dlog2(8(∆∨ν)−1)e∑
`=1

8ε`(|support(λ̂`)|+ τ`)

= Tν +

dlog2(8(∆∨ν)−1)e∑
`=1

8ε`(
(d+1)d

2 + 2dε−2
` log(4`2|X |/δ))

≤ Tν + 4(d+ 1)ddlog2(8(∆ ∨ ν)−1)e+

dlog2(8(∆∨ν)−1)e∑
`=1

16dε−1
` log(4`2|X |/δ)

≤ Tν + 4(d+ 1)ddlog2(8(∆ ∨ ν)−1)e+ 16d log(4 log2
2(16(∆ ∨ ν)−1)|X |/δ)

dlog2(8(∆∨ν)−1)e∑
`=1

2`

≤ Tν + 4(d+ 1)ddlog2(8(∆ ∨ ν)−1)e+ 512d(∆ ∨ ν)−1 log(4 log2
2(16(∆ ∨ ν)−1)|X |/δ)

Setting ν = 0 yields a regret bound of O(d∆−1 log(|X | log(∆−1)/δ)) which implies RT ≤ c d∆ log(|X |T). Mini-

mizing over ν > 0 yields a regret bound of O(
√
dT log(log(T/d)|X |/δ)) which implies RT ≤ c

√
dT log(|X |T).

Remarks:

• Let X = {ei : i ∈ [d]}. Then for this action set, this bound is nearly minimax according to our lower
bounds!

11

• However, this is also concerning: we know that in the bandit setting the regret scales like
∑d
i=2 ∆−1

i log(T)
but this scales d∆−1 log(T), which is significantly worse. Can we achieve this?

• For pure-exploration, an analogous analysis shows that one can identify the best-arm in d
∆2 log(1/δ)

pulls. But this is exactly the same rate we would have gotten if we did G-optimal once in the beginning
and sample according to that!

• Optimism won’t help here

7 Linear Bandits: Pure exploration

This section is inspired by [Fiez et al., 2019].
Showing that x? is the best arm is equivalent to showing that 〈x? − x, θ∗〉 > 0 for all x ∈ X \ x?. Given

a finite number of observations, we have an estimate θ̂ and a confidence set for θ∗.

〈x? − x, θ̂〉 = 〈x? − x, θ̂ − θ∗〉+ 〈x? − x, θ∗〉

= 〈x? − x, θ̂ − θ∗〉+ ∆x

Recalling above, we have for any vector z ∈ Rd that |〈z, θ̂ − θ∗〉| ≤ ‖z‖(X>X)−1

√
2 log(1/δ) w.p. ≥ 1− δ.

We need to show that this confidence set is completely inside the x? region. Where we need to decrease
uncertainty is in the directions x − x?, clearly, which is not the G-optimal design. The most realistic
optimization program

ρ? := inf
λ∈4X ,τ∈N

τ

subject to max
x∈X

‖x? − x‖2(∑x∈X τλxxx
>)−1

∆2
x

≤ 1

2

= inf
λ∈4X

max
x∈X

‖x? − x‖2(∑x∈X λxxx
>)−1

∆2
x

Once can prove a lower bound of log(1/2.4δ)ρ?.

Input: Finite set X ⊂ Rd, confidence level δ ∈ (0, 1).

Let X̂1 ← X , t← 1
while |X̂`| > 1 do

Let λ̂` ∈ 4X be a d(d+1)
2 -sparse minimizer of f(λ; X̂`) where

f(V) = inf
λ∈X

f(λ;V) = inf
λ∈X

max
x,x′∈V

‖x− x′‖2(∑x∈X λxxx
>)−1

Set ε` = 2−`, τ` = 2ε−2
` f(X̂`) log(4`2|X |/δ)

Pull arm x ∈ X exactly dτ`λ̂`,xe times and construct θ̂`
X̂`+1 ← X̂` \

{
x ∈ X̂` : maxx′∈X̂`〈x

′ − x, θ̂t〉 > ε`
}

t← t+ 1
Output: X̂t+1

Lemma 5. Assume that maxx∈X 〈x? − x, θ∗〉 ≤ 2. With probability at least 1 − δ, we have x? ∈ X̂` and
maxx∈X̂`〈x

? − x, θ∗〉 ≤ 4ε` for all ` ∈ N.

Proof. For any V ⊆ X and x ∈ V define

Ex,`(V) = {|〈x− x?, θ̂` − θ∗〉| ≤ ε`}

12

where it is implicit that θ̂` is the design constructed in the algorithm at stage ` with respect to X̂` = V.
Given X̂`, with probability at least 1− δ

2`2|X |

|〈x− x?, θ̂` − θ∗〉| ≤ ‖x− x?‖(∑x∈Vdτ`λ`,x(V)exx>)−1

√
2 log(4`2|X |/δ)

≤
‖x− x?‖(∑x∈V λ`,x(V)xx>)−1

√
τ`

√
2 log(4`2|X |/δ)

≤

√√√√‖x− x?‖2(∑x∈V λ`,x(V)xx>)−1

2ε−2
` f(V) log(4`2|X |/δ)

√
2 log(4`2|X |/δ)

= ε`

By exactly the same sequence of steps as above, we have P(
⋂∞
`=1

⋂
x∈X̂`{|〈x − x?, θ̂t − θ∗〉| > εt}) =

P
(⋂

x∈X
⋂∞
`=1 Ex,`(X̂`)

)
≥ 1− δ, so assume these events hold. Consequently, for any x′ ∈ X̂`

〈x′ − x?, θ̂`〉 = 〈x′ − x?, θ̂` − θ∗〉+ 〈x′ − x?, θ∗〉

≤ 〈x′ − x?, θ̂` − θ∗〉
≤ ε`

so that x? would survive to round `+ 1. And for any x ∈ X̂` such that 〈x? − x, θ∗〉 > 2ε` we have

max
x′∈X̂`

〈x′ − x, θ̂`〉 ≥ 〈x? − x, θ̂`〉

= 〈x? − x, θ̂` − θ∗〉+ 〈x? − x, θ∗〉
> −ε` + 2ε`

= ε`

which implies this x would be kicked out. Note that this implies that maxx∈X̂`+1
〈x?−x, θ∗〉 ≤ 2ε` = 4ε`+1.

Theorem 5. Assume that maxx∈X 〈x?−x, θ∗〉 ≤ 2. Then with probability at least 1− δ, x? is returned from
the algorithm at a time τ that satisfies

τ ≤ cρ? log(∆−1)[log(1/δ) + log(log(∆−1)) + log(|X |)].

Proof. Define S` = {x ∈ X : 〈x? − x, θ∗〉 ≤ 4ε`}. Note that by assumption X = X̂1 = S1. The above lemma

implies that with probability at least 1− δ we have
⋂∞
`=1{X̂` ⊆ S`}. This implies that

f(X̂`) = min
λ∈4X

max
x,x′∈X̂`

‖x− x′‖2(∑x∈X λxxx
>)−1

≤ min
λ∈4X

max
x,x′∈S`

‖x− x′‖2(∑x∈X λxxx
>)−1

= f(S`)

13

For ` ≥ dlog2(4∆−1)e we have that S` = {x?}, thus, the sample complexity to identify x? is equal to

dlog2(4∆−1)e∑
`=1

∑
x∈X
dτ`λ̂`,xe =

dlog2(4∆−1)e∑
`=1

(
(d+1)d

2 + τ`

)

=

dlog2(4∆−1)e∑
`=1

(
(d+1)d

2 + 2ε−2
` f(X̂`) log(4`2|X |/δ)

)

≤ (d+1)d
2 dlog2(4∆−1)e+

dlog2(4∆−1)e∑
`=1

2ε−2
` f(S`) log(4`2|X |/δ)

≤ (d+1)d
2 dlog2(4∆−1)e+ 4 log(

4 log2
2(8∆−1)|X |

δ)

dlog2(4∆−1)e∑
`=1

22`f(S`).

We now note that

ρ? = inf
λ∈4X

max
x∈X

‖x− x?‖2(∑x∈X λxxx
>)−1

(〈x− x?, θ∗〉)2

= inf
λ∈4X

max
`≤dlog2(4∆−1)e

max
x∈S`

‖x− x?‖2(∑x∈X λxxx
>)−1

(〈x− x?, θ∗〉)2

≥ 1

dlog2(4∆−1)e
inf

λ∈4X

dlog2(4∆−1)e∑
`=1

max
x∈S`

‖x− x?‖2(∑x∈X λxxx
>)−1

(〈x− x?, θ∗〉)2

≥ 1

16dlog2(4∆−1)e

dlog2(4∆−1)e∑
`=1

22` inf
λ∈4X

max
x∈S`

‖x− x?‖2(∑x∈X λxxx
>)−1

≥ 1

64dlog2(4∆−1)e

dlog2(4∆−1)e∑
`=1

22` inf
λ∈4X

max
x,x′∈S`

‖x− x′‖2(∑x∈X λxxx
>)−1

≥ 1

64dlog2(4∆−1)e

dlog2(4∆−1)e∑
`=1

22`f(S`)

where we have used the fact that maxx,x′∈St ‖x−x′‖2(∑x∈X λxxx
>)−1 ≤ 4 maxx∈St ‖x−x?‖2(∑x∈X λxxx

>)−1 by

the triangle inequality.

8 Linear bandits: regret minimization revisited

Okay, now that we know how to do optimal pure exploration, how do we turn this into an algorithm that is
optimal?

Let RT (X , θ) = Eθ[
∑T
t=1 ∆Xt], ∆x = maxx′∈X 〈x′ − x, θ〉

The next theorem is from [Lattimore and Szepesvári, 2020].

Theorem 6. Fix any X ⊂ Rd that spans Rd and θ∗ ∈ Rd such that arg maxx∈X 〈x, θ∗〉 is unique. Any policy

for which RT (X , θ∗) = o(T a) for any a > 0 also satisfies lim infT→∞
RT (X ,θ∗)

log(T) ≥ r? where

r? := inf
α∈[0,∞)X

∑
x∈X

αx∆x

subject to max
x∈X

‖x? − x‖2(∑x∈X αxxx
>)−1

∆2
x

≤ 1

2

14

Note that

ρ? := inf
α∈[0,∞)X

1

2

∑
x∈X

αx

subject to max
x∈X

‖x? − x‖2(∑x∈X αxxx
>)−1

∆2
x

≤ 1

2

Notes

• There exists an asymptotic algorithm [Lattimore and Szepesvari, 2016], but no satisfying finite-time
algorithm as of yet.

• Information directed sampling may be near-optimal and very high performance.

9 Adversarial Linear Bandits

Protocal for Linear Bandits
Input: Time horizon T , action set A ⊂ Rd.
Initialize: Adversary chooses {zt}Tt=1 ⊂ Rd.
for: t = 1, · · · , T

Player chooses action At ∈ A
Player suffers (and observes) loss `(At, zt) = A>t zt

9.1 Preliminaries

This presentation of mirror descent follows [Bubeck et al., 2012, Ch. 5].
For any open convex set D ⊂ Rd and its closure denoted D̄, for any Legendre F on D̄ define F ∗(x) :=

supy∈D̄ x
>y − F (y).

Define DF (x, y) = F (x)− F (y)− (x− y)>∇F (y).
Let the Mirror Descent iterations satisfy, a1 = arg mina∈A F (a) then

ãt+1 = ∇F ∗(∇F (at)− η∇`(at, zt)) (1)

at+1 = arg min
a∈A

DF (a, ãt+1) (2)

where we have assumed the iterates exist.

Theorem 7 (Online Mirror Descent). Let A ⊂ Rd be a closed convex action set, ` a subdifferentiable loss,
and F a Legendre function defined on A ⊂ D̄, such that ∇F (a)− ηz ∈ dom(∇F (D)) for all (a, z) ∈ A × Z
is satisfied. Then OMD satisfies

sup
a∈A

T∑
t=1

`(at, zt)− `(a, zt) ≤
supa∈A F (a)− F (a1)

η
+

1

η

T∑
t=1

DF∗ (∇F (at)− η∇`(at, zt),∇F (at)) .

Online Mirror Descent with Linear Losses
Input: Time horizon T , convex action set A ⊂ Rd.
Initialize: Player sets a1 = arg mina∈A F (a). Adversary chooses {zt}Tt=1 ⊂ [0, 1]d.
for: t = 1, · · · , T

Player suffers (and observes) loss `(at, zt) = a>t zt
Player observes zt
Update mirror descent iterates:

ãt+1 = ∇F ∗(∇F (at)− ηzt)
at+1 = arg min

a∈A
DF (a, ãt+1)

15

Corollary 1 (Online Mirror Descent with Linear Losses). Let A ⊂ D ⊂ Rd be a closed convex action set,
{zt}Tt=1 ⊂ Z, `(a, z) = a>z, and F a Legendre function defined on A ⊂ D̄, such that ∇F (a)− ηz ∈ ∇F (D)
for all (a, z) ∈ A× Z is satisfied. Then OMD satisfies

sup
a∈A

T∑
t=1

(at − a)>zt ≤
supa∈A F (a)− F (a1)

η
+

1

η

T∑
t=1

DF∗ (∇F (at)− ηzt,∇F (at)) .

Stochastic Online Mirror Descent with Linear Losses
Input: Time horizon T , action set A ⊂ Rd.
Initialize: Player sets a1 = arg mina∈A F (a). Adversary chooses {zt}Tt=1 ⊂ [0, 1]d.
for: t = 1, · · · , T

Player chooses distribution Pt over A with at = E[At|Pt] =
∑
a∈A aPt(a)

Player samples At from Pt and suffers (and observes) loss `(At, zt) = A>t zt
Player computes estimate ẑt with E[ẑt|Pt] = zt
Update mirror descent iterates:

ãt+1 = ∇F ∗(∇F (at)− ηẑt)
at+1 = arg min

a∈convhull(A)
DF (a, ãt+1)

Corollary 2 (Stochastic Online Mirror Descent with Linear Losses). Let A ⊂ D ⊂ Rd be a finite action set,
{ẑt}Tt=1 ⊂ Z, `(a, z) = a>z, and F a Legendre function defined on A ⊂ D̄, such that ∇F (a)− ηz ∈ ∇F (D)
for all (a, z) ∈ A× Z is satisfied. Then OMD satisfies

sup
a∈A

E

[
T∑
t=1

(At − a)>zt

]
≤

supa∈A F (a)− F (a1)

η
+

1

η

T∑
t=1

E [DF∗ (∇F (at)− ηẑt,∇F (at))] .

Proof. Applying Corollary 1 with ẑt we have

sup
a∈A

T∑
t=1

(at − a)>ẑt ≤
supa∈A F (a)− F (a1)

η
+

1

η

T∑
t=1

DF∗ (∇F (at)− ηẑt,∇F (at)) .

Taking the expectation on both sides yields the result by noting that

E

[
T∑
t=1

z>t (At − a)

]
= E

[
T∑
t=1

z>t (at − a)

]
= E

[
T∑
t=1

E[z>t (at − a)|Pt]

]
= E

[
T∑
t=1

E[ẑ>t (at − a)|Pt]

]
= E

[
T∑
t=1

ẑ>t (at − a)

]
.

9.2 Simplex with unnormalized negative entropy

Example 1 Let A = {x ∈ Rd : xi ≥ 0,
∑d
i=1 = 1}, F (x) =

∑n
i=1 xi log(xi) − xi with D = (0,∞)d. F is

Legendre and

[∇F (x)]i = log(xi)

DF (x, y) =

d∑
i=1

xi log(xiyi)−
d∑
i=1

(xi − yi)

F ∗(x) =

d∑
i=1

exp(xi)

[∇F ∗(x)]i = exp(xi)

DF∗(x, y) =

d∑
i=1

exp(yi)(exp(xi − yi)− 1− (xi − yi))

16

9.2.1 Full information game

Assume the setting of Example 1. The following algorithm implements the updates of Mirror Descent above
for the particular loss `(a, z) = a>z.

Exponential Weights
Input: Time horizon T .
Initialize: Player sets a1 = (1/d, . . . , 1/d). Adversary chooses {zt}Tt=1 ⊂ [0, 1]d.
for: t = 1, · · · , T

Player chooses at ∈ A
Player suffers (and observes) loss `(at, zt) = a>t zt
Player observes zt
Update mirror descent iterates:

ãt+1,i = exp(−η
t∑

s=1

zs,i) at,i = ãt+1,i/

d∑
j=1

ãt+1,j .

Corollary 3 (Exponential weights). Under the conditions of Example 1 with let `(a, z) = a>z, the expo-
nential weights algorithm satisfies

sup
a∈A

T∑
t=1

`(at, zt)− `(a, zt) ≤
log(d)

η
+
ηT

2
≤
√

2T log(d)

Proof. Note ∇a`(a, z) = z. Plug in quantities of the example to obtain for any a ∈ A

T∑
t=1

`(at, zt)− `(a, zt) =

T∑
t=1

z>t (at − a)

≤ log(d)

η
+

1

η

T∑
t=1

d∑
i=1

at,i(exp(−ηzt,i)− 1 + ηzt,i)

≤ log(d)

η
+
η

2

T∑
t=1

d∑
i=1

at,iz
2
t,i

≤ log(d)

η
+
ηT

2

where the second line uses F (x) ≤ 0 and F (a1) = log(d), the third line uses exp(−x) ≤ 1 − x + 1
2x

2 for
x ≥ 0, and the last line follows from zt,i ∈ [0, 1] and at is a probability distribution.

9.2.2 Full information, finite action set

Analogous to the categorial weather prediction problem in class, we now consider the case where the player
can only play from a distinct set {1, . . . , d} (i.e., predict rain, snow, sunny). As discussed in class, any
deterministic algorithm will suffer linear regret, so instead, at time t we choose a probability distribution
at ∈ A (in the setting of Example 1), choose distinct action It drawn according to at so that At := eIt , and

then suffer loss `(At, zt) = A>t zt = zt,It . Note that E[At] = E[eIt] =
∑d
i=1 eiat,i = at so that E[`(At, zt)] =

E[A>t zt] = a>t zt. Thus, the expected regret relative to any probability distribution a ∈ A over distinct items

17

in hindsight is

E

[
T∑
t=1

`(At, zt)− `(a, zt)

]
= E

[
T∑
t=1

z>t (At − a)

]

= E

[
T∑
t=1

z>t (at − a)

]

= E

[
T∑
t=1

`(at, zt)− `(a, zt)

]
where the expectation is with to the random selection of each It from at. Alternatively, we can directly
apply Corollary 2 with ẑt = zt since we are in the full information setting.

Exponential Weights over finite actions
Input: Time horizon T .
Initialize: Player sets a1 = (1/d, . . . , 1/d). Adversary chooses {zt}Tt=1 ⊂ [0, 1]d.
for: t = 1, · · · , T

Player chooses at ∈ A
Player draws It ∼ at, sets At = eIt and suffers (and observes) loss `(At, zt) = A>t zt =

zt,It
Player observes zt
Update mirror descent iterates:

ãt+1,i = exp(−η
t∑

s=1

zs,i) at,i = ãt+1,i/

d∑
j=1

ãt+1,j .

Corollary 4 (Exponential weights over finite actions). Under the conditions of Example 1 where the player
can only play ei for i ∈ {1, . . . , d} with let `(a, z) = a>z, the exponential weights over finite actions algorithm
satisfies

E

[
sup
a∈A

T∑
t=1

`(eIt , zt)− `(a, zt)

]
≤ log(d)

η
+
ηT

2
≤
√

2T log(d)

Proof. Immediate from reduction described above and the previous corollary since the iterates are identical
in the full information game. Due to the oblivious adversary we have

sup
a∈A

E

[
T∑
t=1

`(at, zt)− `(a, zt)

]
= E

[
sup
a∈A

T∑
t=1

`(at, zt)− `(a, zt)

]
Note, as we did in class, one can also prove a high probability bound that would apply to a general reactive
adversary [?, Ch. 2.7]

9.2.3 Bandit feedback over finite action sets

This setting is identical to the previous setting, but now we do not observe the entire vector zt at each time
t, we only observe the element we played zt,It . Using this single value, the player constructs an unbiased

estimate of zt with ẑt,i =
1{It=i}zt,i

at,i
for all i. Note that

E[ẑt,i|a1, I1, . . . , at−1, It−1, at] = E[
1{It = i}zt,i

at,i
|a1, I1, . . . , at−1, It−1, at]

=

d∑
j=1

at,j
1{j = i}zt,i

at,i

= zt,i.

18

Also note that E[At] = E[eIt] =
∑d
i=1 eiat,i = at.

EXP3: Exponential Weights for Exploration Exploitation

Input: Time horizon T , A = {x ∈ Rd : xi ≥ 0,
∑d
i=1 = 1}.

Initialize: Player sets a1 = (1/d, . . . , 1/d). Adversary chooses {zt}Tt=1 ⊂ [0, 1]d.
for: t = 1, · · · , T

Player draws It ∼ at and suffers (and observes) loss `(eIt , zt) = zt,It
Player sets ẑt,i =

1{It=i}zt,i
at,i

Update mirror descent iterates:

ãt+1,i = exp(−η
t∑

s=1

ẑs,i) at,i = ãt+1,i/

d∑
j=1

ãt+1,j .

Corollary 5 (EXP3). Under the conditions of Example 1 where the player can only play ei for i ∈ {1, . . . , d}
with `(a, z) = a>z and only observe bandit feedback, the EXP3 algorithm satisfies

sup
a∈A

E

[
T∑
t=1

`(At, zt)− `(a, zt)

]
≤ log(d)

η
+
η

2

T∑
t=1

E

[
d∑
i=1

at,iẑ
2
t,i

]

≤ log(d)

η
+
ηTd

2
≤
√

2dT log(d)

Proof. We can directly apply Corollary 2:

E

[
sup
a∈A

T∑
t=1

(At − a)>zt

]
≤

supa∈A F (a)− F (a1)

η
+

1

η

T∑
t=1

E [DF∗ (∇F (at)− ηẑt,∇F (at))]

=
log(d)

η
+

1

η

T∑
t=1

E

[
d∑
i=1

at,i(exp(−ηẑt,i)− 1 + ηẑt,i)

]

≤ log(d)

η
+
η

2

T∑
t=1

E

[
d∑
i=1

at,iẑ
2
t,i

]

=
log(d)

η
+
η

2

T∑
t=1

E

[
d∑
i=1

at,i
1{It = i}z2

t,i

a2
t,i

]

=
log(d)

η
+
η

2

T∑
t=1

d∑
i=1

z2
t,i

≤ log(d)

η
+
ηdT

2

For an alternative proof of EXP3, see [Lattimore and Szepesvári, 2020, Ch. 11]

9.3 Other action sets

The previous section addressed the case of the action set being equal to the simplex: A = {x ∈ Rd : xi ≥
0,
∑d
i=1 = 1}. As our Legendre potential we chose unnormalize negative entropy F (x) =

∑d
i=1 xi log(xi)−xi.

Consider what the guarantee would be from Corollary 2 if we chose a different function, say, F (x) = 1
2‖x‖

2
2

19

then:

E

[
sup
a∈A

T∑
t=1

(At − a)>zt

]
≤

supa∈A F (a)− F (a1)

η
+

1

η

T∑
t=1

E [DF∗ (∇F (at)− ηẑt,∇F (at))]

≤ 1

η
+
η

2

T∑
t=1

E
[
‖ẑt‖22

]
=

1

η
+
η

2

T∑
t=1

E

[
d∑
i=1

ẑ2
t,i

]

=
1

η
+
η

2

T∑
t=1

E

[
d∑
i=1

z2
t,i

at,i

]
.

The issue here is that at,i can become arbitrarily close to 0 and blow up the bound. If we mix in unfirom
exploration at each round, one can show that the regret bound is O((dT)2/3) which is significantly worse
than O(

√
dT log(d)) of EXP3 above. So given an action set A how do we choose F? The next proposition

sheds some light on this question.

Proposition 3. If F is twice continuously differntiable, and if its Hessian ∇2F (x) is invertible ∀x ∈ D,
then ∀x, y ∈ D, there exists ζ ∈ D such that ∇F (ζ) ∈ [∇F (x),∇F (y)] and

DF∗(∇F (x),∇F (y)) =
1

2
‖∇F (x)−∇F (y)‖2(∇2F (ζ))−1 .

The implication of the above proposition is that ∃∇F (ζt) ∈ [∇F (at)− ηẑt,∇F (at)] and

DF∗ (∇F (at)− ηẑt,∇F (at)) =
η2

2
‖ẑt‖2(∇2F (ζt))−1

For the choice of F (x) = 1
2‖x‖

2
2 we have ∇2F (ζt) = I for any ζt so that the Hessian is flat across the action

set. On the other hand, with the choice F (x) =
∑d
i=1 xi log(xi)−xi, we have ∇2F (x) = diag(1/x1, . . . , 1/xd)

which blows up as a component of x approaches 0. But this is perfect, since then

E [DF∗ (∇F (at)− ηẑt,∇F (at))] = E
[
η2

2
‖ẑt‖2(∇2F (ζt))−1

]
= E

[
η2

2

d∑
i=1

ẑ2
t,iζt,i

]

= E

[
η2

2

d∑
i=1

z2
t,i

at,i
ζt,i

]

≈ η2

2

d∑
i=1

z2
t,i

where we have used the approximation that ζt ≈ at. The hessian of F is blowing up precisely at the locations
where ẑt blows up, essentially cancelling each other! We’ll see another example of this in the next subsection.

9.3.1 Unit ball action set

Here we address the action set A = {x ∈ Rd : ‖x‖2 ≤ 1}. To use Corollary 2, we need to define Pt (or
equivalently, At) to make sure that E[At] = at and we need to define ẑt with E[ẑt] = zt. Consider the
following choices:

• ξt ∼ Bernoulli(‖at‖2), It ∼ uniform([d]), εt ∈ {−1, 1} with equal probability

• At = (1− ξt)εteIt + ξt
at
‖at‖2

20

• ẑt = (1− ξt) d
1−‖at‖2AtA

>
t zt

It is straightforward to verify that E[At|at] = at and E[ẑt|at] = zt. Following the intuition of the previous

section, we need to choose F to make E
[
η2

2 ‖ẑt‖
2
(∇2F (ζt))−1

]
small. Let F (x) = − log(1−‖x‖2)−‖x‖2. Note

that

E
[
‖ẑt‖2(∇2F (ζt))−1

]
= E

[
‖(1− ξt)

d

1− ‖at‖2
AtA

>
t zt‖2(∇2F (ζt))−1

]
= E

[
d2

1− ‖at‖2
‖AtA>t zt‖2(∇2F (ζt))−1 |ξt = 0

]
=

d∑
i=1

1

d

d2

1− ‖at‖2
‖eie>i zt‖2(∇2F (ζt))−1

=
d

1− ‖at‖2
‖zt‖2(∇2F (ζt))−1

≤ d

1− ‖at‖2
(1− ‖ζt‖2)‖zt‖22

≤ 2d

where we have used the fact that∇2F (x) � I/(1−‖x‖2) and 1−‖zt‖2
1−‖at‖2 ≤ 2 (see [Lattimore and Szepesvári, 2020]

for second fact).
Using a shrunken action set, one can prove that the regret is bounded byO(

√
dT) (see [Lattimore and Szepesvári, 2020]).

9.3.2 Finite action sets

Here we study the case when |A| = n and A = {x1, . . . , xn} ⊂ Rd and maxx∈Amaxt |x>zt| ≤ 1. Our
approach will rely on a slight modification of the EXP3 algorithm:

EXP3(γ): Exponential Weights for Exploration Exploitation

Input: Time horizon T , n arms, η > 0, γ ∈ [0, 1], λ ∈ 4n.
Initialize: Player sets p1 = (1/n, . . . , 1/n) ∈ 4n. Adversary chooses {yt}Tt=1 ⊂ [−1, 1]n.
for: t = 1, · · · , T

Player draws It ∼ qt := (1− γ)pt + γλ and suffers (and observes) loss `(It, yt) = yt,It
Player computes ŷt,i where E[ŷt,i|pt] = yt,i
Update iterates:

p̃t+1,i = exp(−η
t∑

s=1

ŷs,i) pt,i = p̃t+1,i/

n∑
j=1

p̃t+1,j .

A straightforward modification for the stochastic mirror descent proof accounts for the forced exploration:

Proposition 4 (EXP3(γ)). The regret of EXP3(γ) algorithm satisfies

max
i∈[n]

E

[
T∑
t=1

yt,It − yt,i

]
≤ log(n)

η
+ 2γT +

1

η

T∑
t=1

E

[
n∑
i=1

qt,iφ(−ηŷt,i)

]

where φ(x) = ex − 1− x ≤ x2 for |x| ≤ 1.

We will use the EXP3(γ) algorithm as follows:

• Set At = xIt , Qt =
∑n
i=1 qt,ixix

>
i , ẑt = Q−1

t AtA
>
t zt

• yt,i = x>i zt, ŷt,i = x>i ẑt

to obtain the following theorem:

21

Theorem 8. Let |A| = n and A = {x1, . . . , xn} ⊂ Rd and maxx∈Amaxt |x>zt| ≤ 1. Using the reduction to
EXP3(γ) with γ = ηd we have

max
a∈A

E

[
T∑
t=1

(At − a)>zt

]
≤ log(n)

η
+ 3ηdT ≤

√
3dT log(n)

First note that

E[ŷt,i|pt] = E[x>i ẑt|pt]
= E[x>i Q

−1
t AtA

>
t zt|pt]

= x>i Q
−1
t E[AtA

>
t |pt]zt

= x>i zt = yt,i

We also have

E[ŷ2
t,i] = E[(x>i ẑt)

2|pt]
= E[x>i Q

−1
t AtA

>
t Q
−1
t xi(A

>
t zt)

2|pt]
≤ x>i Q−1

t xi · h2

so that

E

[
n∑
i=1

qt,iŷ
2
t,i

]
≤ h2

n∑
i=1

qt,ix
>
i Q
−1
t xi

≤ h2
n∑
i=1

Trace(qt,ixix
>
i Q
−1
t)

≤ h2Trace(QtQ
−1
t) = dL2

Finally,

|ηŷt,i| = |ηx>i ẑt|
= |ηx>i Q−1

t AtA
>
t zt|

≤ ηh|x>i Q−1
t At|

= ηh|x>i Q−1
t xIt |

≤ ηh‖xi‖Q−1
t
‖xIt‖Q−1

t

≤ ηh‖xi‖(γ∑n
i=1 λixix

>
i)−1‖xIt‖(γ∑n

i=1 λixix
>
i)−1

≤ ηhd

γ

so it suffices to take γ = ηhd.

10 Contextual Bandits

This section is inspired by [Lattimore and Szepesvári, 2020]
For t = 1, 2, . . .

• Nature reveals ct
iid∼ D

• Player chooses xt ∈ X and observes yt = v(ct, xt) + εt

22

which models users showing up to websites, or patients showing up to the doctor with different symptoms.
A policy π maps contexts to actions in [n] and the value of a policy π is defiend as

V (π) = EC,ε[v(C, π(C)) + ε] = EC [v(C, π(C))]

At each time, we assume the action taken is according to some policy πt ∈ Π so that the regret is defined as

RT = T · V (π?)− E[

T∑
t=1

V (πt)]

Notes

• This is not the only way we could have defined regret. Perhaps an even more natural approach would
be to define the optimal policy wrt the actual rewards, now the expected rewards.

One naive way to handle this is to run a different linear bandit for each ct, but this is impractical for
infinite sets of ct.

10.1 Stochastic Linear model

Suppose v(c, x) = 〈φ(c, x), θ∗〉. This can be learned through historical data (e.g., a deep network), or through
polynomials of inputs. We can restate the above models as For t = 1, 2, . . .

• Nature reveals (xt,1, . . . , xt,n) = Xt ⊂ Rd

• Player chooses It ∈ [n] and observes yt = 〈xt,It , θ∗〉+ εt

When we had a fixed action set, we built confidence intervals on 〈xi, θ̂ − θ∗〉. Now that we don’t
know what action sets to expect, a natural to assume maxi,t ‖xi,t‖ ≤ 1 and build confidence intervals

on supu:‖u‖2≤1〈u, θ̂ − θ∗〉 = ‖θ̂ − θ∗‖2, or equivalently, define a set Ct with the guarantee that θ∗ ∈ Ct
for all t. When an action set Xt shows up, we could eliminate all provably sub-optimal arms by setting
X̂t = X \ {x : maxx′∈X 〈x′ − x, θ〉 < 0 ∀θ ∈ Ct}. An alternative is to run UCB, defining:

UCBt(x) = max
θ∈Ct
〈x, θ〉

and play xt = arg maxx∈Xt UCBt(x). If x?t = arg maxx∈Xt〈x, θ∗〉 then

〈x?t , θ∗〉 ≤ UCBt(x?t) ≤ UCBt(xt) = 〈xt, θ̃〉.

Thus, the instantaneous regret at time t satisfies

rt = 〈x?t − xt, θ∗〉

≤ 〈xt, θ̃ − θ∗〉

≤ ‖xt‖A−1
t−1
‖θ̃ − θ∗‖At−1

≤ 2‖xt‖A−1
t−1

√
βt−1

Thus, the random regret satisfies

R̂T =

T∑
t=1

rt ≤

√√√√T

T∑
t=1

r2
t ≈

√√√√2TβT

T∑
t=1

‖xt‖2A−1
t−1

Let θ̂t be the `2-regularized least-squares estimate of θ∗ with regularization parameter λ > 0 given by

θ̂t = arg min
θ
‖X1:tθ −Y1:t‖+ λ‖θ‖22 = (XT

1:tX1:t + λI)−1XT
1:tY1:t

where we are denoting X1:t as a matrix with rows XT
1 , X

T
2 , . . . , X

T
t and Y1:t as the vector (Y1, . . . , Yt)

T . The
following theorem says that with high probability θ∗ lies with high probability in an ellipsoid with center at
θ̂t.

23

Theorem 9. Confidence Ellipsoid. Assume the same as in Theorem ??, let V = Iλ, λ > 0, define Yt =
〈Xt, θt〉+ ηt and assume that ‖θ∗‖ ≤ S. Then for any δ > 0, with probability at least 1− δ, for all t ≥ 0, θ∗
lies in the set

Ct =

θ ∈ Rd : ‖θ̂ − θ‖V t ≤ R

√
2 log(

det(V t)1/2) det(λI)−1/2

δ
) + λ1/2S

 .

Furthermore, if for all t ≥ 1, ‖Xt‖2 ≤ L then with probability at least 1− δ, for all t ≥ 0, θ∗ lies in the set

C ′t =

{
θ ∈ Rd : ‖θ̂ − θ‖V t ≤ R

√
d log(

1 + tL2/λ

δ
) + λ1/2S

}
.

10.2 Stochastic Contextual Bandits for General policy classes

This section is inspired by Alekh’s Agarwal’s excellent notes on contextual bandits. See https://courses.

cs.washington.edu/courses/cse599m/19sp/.
Let’s return to the general setting of trying to minimize V (π?)− V (π). The core diffuclty of contextual

bandits is that if I take action i and receive a reward with mean v(ct, i), I don’t observe v(ct, j) for some
j 6= i. If I don’t see that context ever again, how can I know what I should have done?

10.2.1 τ-greedy

Here we explore a simple strategy that explores for τ steps then exploits or the last T − τ steps. For any
context c fix an exploration distribution µ(x|c) ∈ 4n such that µ(x|c) > 0 for all x, c.

Then suppose at time t, I observed some context ct and played xt ∼ µ(·|c) to receive reward rt =
v(ct, xt) + εt. Then define the inverse propensity scoring estimator as

v̂(ct, x) = rt
1{xt = x}
µ(x|ct)

Note that

E[v̂(ct, x)|ct] = E
[
rt

1{xt = x}
µ(x|ct)

|ct
]

=
∑
x′∈X

µ(x′|ct)E
[
rt

1{xt = x}
µ(x|ct)

|ct, xt = x′
]

=
∑
x′∈X

µ(x′|ct)v(ct, x
′)

1{x′ = x}
µ(x|ct)

= v(ct, x)

with variance

E[(v̂(ct, x)− v(ct, x))2|ct] ≤ E[(v̂(ct, x))2|ct]

≤ E
[

1{xt = x}
µ(x|ct)2

|ct
]

(rt ≤ 1)

≤
∑
x′∈X

µ(x′|ct)
1{x′ = x}
µ(x|ct)2

=
1

µ(x|ct)

and trivially, v̂(c, x) ≤ v̂max := maxc,x
1

µ(x|c) . Finally, if V̂t(π) = 1
s

∑t
s=1 v̂(ct, π(ct)) then E[V̂t(π)] = V (π)

for any π ∈ Π. By Bernstein’s inequality we have with probability at least 1− δ

|V (π)− V̂t(π)| ≤

√
2 log(2/δ)

t
Ec,x∼µ

[
1

µ(π(c)|c)

]
+

2v̂max log(2/δ)

3t

24

https://courses.cs.washington.edu/courses/cse599m/19sp/
https://courses.cs.washington.edu/courses/cse599m/19sp/

and in particular, if µ(x|c) = 1
n for all x, c then

|V (π)− V̂t(π)| ≤
√

2n log(2/δ)

t
+

2n log(2/δ)

3t
≤
√

4n log(2/δ)

t

for some t ≥ 2n log(2/δ). Define εt :=
√

4n log(2|Π|/δ)
t . If π̂ = arg maxπ∈Π V̂t(π)

V (π̂) = V (π̂)− V̂t(π̂)︸ ︷︷ ︸
≥−εt

+ V̂t(π̂)− V̂t(π?)︸ ︷︷ ︸
≥0

+ V̂t(π
?)− V (π?)︸ ︷︷ ︸
≥−εt

+V (π?)

≥ V (π?)− 2εt

If we explore uniformly for τ rounds than exploit or T − τ rounds then we achieve a regret of at most

1 · t+ 2ετ (̇T − τ) ≤ τ + T

√
4n log(2|Π|/δ)

τ

which is minimized at τ = (nT 2 log(2|Π|/δ))1/3 which yields a regret of O(T 2/3(n log(2|Π|/δ))1/3) regret.

Lemma 6 (Bernstein’s inequality). Let X1, . . . , Xm be independent random variables such that 1
m

∑m
i=1 E[(Xi−

E[Xi])
2] ≤ σ2 and |Xi| ≤ B. Then∣∣∣∣∣ 1

m

m∑
i=1

Xi

∣∣∣∣∣ ≤
√

2σ2 log(2/δ)

m
+

2B log(2/δ)

3m

with probability at least 1− δ.

10.2.2 Action Elimination

We will make the strong assumption that the distribution of contexts is known a priori. Not so implausible
due to historical data.

Recall the value of a policy π ∈ Π as V (π) = Ec[v(c, π(c))]. Taking our G-optimality approach, we wish
to sequentially define probability vectors at each time and play probabilistically following

min
λ∈∆Π̂

max
π∈Π̂

E[(V̂t(π)− V (π))2]

for some active set Π̂ ⊂ Π.
Input: Policy set Π such that π : X → [n] for all π ∈ Π, confidence level δ ∈ (0, 1).

Let Π̂1 ← Π, `← 1
while |Π̂`| > 1 do

ε` = 2−`, τ` = d16nε−2
` log(2|Π|T/δ)e, γ` = min{ 1

2n
,
√

log(2|Π|T/δ)
9nτ`

}

Q` = arg minQ∈4
Π̂`

maxπ∈Π̂`
EC
[

1
Qγ(π(C)|C)

]
s.t. Qγ(x|c) = γ + (1− γn)

∑
π∈Π̂`:π(c)=xQ(π)

for t = T`−1 + 1, . . . , T`
Observe context ct
Play xt ∼ Qγ(·|ct), set pt = Qγ(xt|ct) and observe reward rt = v(ct, xt) + ηt

Set V̂`(π) = 1
T`−T`−1

∑
t∈(T`−1,T`]

rt
1{π(ct)=ct}

pt

Π̂`+1 ← Π̂` \
{
π ∈ Π̂`|maxπ′∈Π̂`

V̂`(π
′)− V̂`(π) ≥ 2ε`

}
t← t+ 1

Output: Πt+1

We state without proof:

Lemma 7. For any finite policy set Π and γ ≤ 1
2n we have

min
Q∈4Π

max
π∈Π

EC
[

1

Qγ(π(C)|C)

]
≤ 2n

25

Lemma 8. For all ` = 1, 2, . . . we have π? ∈ Π̂` and maxπ∈Π̂`
V (π) ≥ V (π?)− 8ε`.

Proof. Let τ` = T` − T`−1. Noting that the variance of V̂`(π) is bounded by maxπ∈Π̂`
EC
[

1
Qγ` (π(C)|C)

]
, we

apply Bernstein’s inequality at each stage ` to find

|V (π)− V̂`(π)| ≤

√
4n log(2|Π|T/δ)

τ`
+

2 log(2|Π|T/δ)
3γ`τ`

≤

√
16n log(2|Π|T/δ)

τ`

for the choice of γ` = min{ 1
2n ,
√

log(2|Π|T/δ)
9nτ`

} to equalize the terms for large τ`. The last inequality holds if

τ` ≥ n log(2|Π|T/δ). To make the right hand side less than ε`, it suffices to take τ` = d16nε−2
` log(2|Π|T/δ)e.

For any fixed Π̂` with π? ∈ Π̂`, we have that any π ∈ Π̂` satisfies

V̂`(π)− V̂`(π?) = V̂`(π)− V (π) + V (π)− V (π?)︸ ︷︷ ︸
≤0

+V (π?)− V̂`(π?)

≤ 2ε`.

On the other hand, for any π such that V (π?)− V (π) > 4ε`

max
π′∈Π̂`

V̂`(π
′)− V̂`(π) ≥ V̂`(π?)− V̂`(π)

= V̂`(π
?)− V (π?) + V (π?)− V (π)︸ ︷︷ ︸

>4ε`

+V (π)− V̂`(π)

> 2ε`

which implies this π will be kicked out. This means that maxπ∈Π̂`+1
V (π) ≥ V (π?)− 4ε` ≥ V (π?)− 8ε`+1.

Extending the proof to all ` and random Π̂` is identical to above for linear bandits.

Suppose you run for T timesteps. Let ∆ = minπ 6=π? V (π?) − V (π). Then for any ν ≥ 0 the regret is
bounded by:

Tν+

dlog2(4(∆∨ν)−1)e∑
`=1

(γ`n+ 8ε`(1− γ`n))τ`

= Tν +

dlog2(4(∆∨ν)−1)e∑
`=1

(n
√

log(2|Π|T/δ)
9nτ`

+ 8ε`)τ`

= Tν +

dlog2(4(∆∨ν)−1)e∑
`=1

n
√
d16nε−2

` log(2|Π|T/δ)e log(2|Π|T/δ)/9n+ 8ε`d16nε−2
` log(2|Π|T/δ)e

≤ Tν +

dlog2(4(∆∨ν)−1)e∑
`=1

2nε−1
` log(4|Π|T/δ) + 128nε−1

` log(4|Π|T/δ)

≤ Tν + 8 + 130n log(2|Π|T/δ)
dlog2(4(∆∨ν)−1)e∑

t=1

2t

≤ Tν + 8 + 2080n(∆ ∨ ν)−1 log(2|Π|T/δ).

As before, using the upper bound (∆ ∨ ν) ≤ ν and optimizing over ν we have that the regret is no great
than O(

√
nT log(|Π|T/δ)).

26

10.3 EXP4 for oblivious adversaries

The following algorithm and proof are very standard. However, the textbooks [Lattimore and Szepesvári, 2020,
Bubeck et al., 2012] have some unfortunate typos and/or notation that I found confusing so I have repro-
duced EXP4 here.

EXP4: Exponential Weights for Exploration Exploitation

Input: Time horizon T , n arms, m expers, η > 0, γ ∈ [0, 1], λ ∈ 4n.
Initialize: Player sets Q1 = (1/m, . . . , 1/m) ∈ [0, 1]1×m. Adversary chooses {`t}Tt=1 ⊂
[0, 1]n.
for: t = 1, · · · , T

Nature reveals expert advice E(t) ∈ [0, 1]m×n

Set pt,i = EM∼Qt [E
(t)
M,i] =

∑m
j=1Qt,jE

(t)
j,i

Player draws Mt ∼ Qt and It ∼ E(t)
Mt
∈ 4n (equivalent to It ∼ pt ∈ 4n)

Player suffers (and observes) loss `t,It
Estimate arm losses ̂̀t,i =

1{It=i}`t,i
pt,i

Estimate expert losses ŷt,j =
∑n
i=1E

(t)
j,i
̂̀
t,i for all j = 1, . . . ,m

Update iterates:

Q̃t+1,i = exp(−η
t∑

s=1

ŷs,i) Qt,i = Q̃t+1,i/

m∑
j=1

Q̃t+1,j .

First we will prove some simple identities:

E[ŷt,j] = E[

n∑
i=1

E
(t)
j,i
̂̀
t,i] =

n∑
i=1

E
(t)
j,i `t,i

and

E[`t,It] = E[

n∑
i=1

pt,i`t,i] =

n∑
i=1

m∑
j=1

Qt,jE
(t)
j,i `t,i =

m∑
j=1

Qt,j

n∑
i=1

E
(t)
j,i `t,i = E[

m∑
j=1

Qt,j

n∑
i=1

ŷt,j]

The expert regret is defined as

max
k=1,...,m

E

[
T∑
t=1

`t,It −
n∑
i=1

E
(t)
k,i`t,i

]
= max
k=1,...,m

E

 T∑
t=1

m∑
j=1

Qt,j

n∑
i=1

E
(t)
j,i `t,i −

n∑
i=1

E
(t)
k,i`t,i

= max
k∈[m]

E

 T∑
t=1

m∑
j=1

Qt,j ŷt,j − ŷt,k

= max
k∈[m]

E

[
T∑
t=1

ŷt,Mt
− ŷt,k

]

≤ log(m)

η
+
η

2

T∑
t=1

E

 m∑
j=1

Qt,j ŷ
2
t,j

≤ log(m)

η
+
ηnT

2

where the first two lines follow from plugging in the identities of above, the third from the definition of Mt,

27

and the first inequality follows from the guarantee of EXP3. The last inequality follows from

E[ŷ2
t,j] = E

[
(

n∑
i=1

E
(t)
j,i
̂̀
t,i)

2

]

= E

(n∑
i=1

E
(t)
j,i

1{It = i}`t,i
pt,i

)2

= E

(E(t)
j,It
`t,It

pt,It

)2

=

n∑
i=1

pt,i

(
E

(t)
j,i `t,i

pt,i

)2

≤
n∑
i=1

E
(t)
j,i

pt,i

so

E

 m∑
j=1

Qt,j ŷ
2
t,j

 =

m∑
j=1

Qt,j

n∑
i=1

E
(t)
j,i

pt,i

=

n∑
i=1

∑m
j=1Qt,jE

(t)
j,i

pt,i
= n

28

References

[Audibert and Bubeck, 2009] Audibert, J.-Y. and Bubeck, S. (2009). Minimax policies for adversarial and stochastic
bandits.

[Auer et al., 2002] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256.

[Bubeck et al., 2012] Bubeck, S., Cesa-Bianchi, N., et al. (2012). Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends R© in Machine Learning, 5(1):1–122.

[Cappé et al., 2013] Cappé, O., Garivier, A., Maillard, O.-A., Munos, R., Stoltz, G., et al. (2013). Kullback–leibler
upper confidence bounds for optimal sequential allocation. The Annals of Statistics, 41(3):1516–1541.

[Fiez et al., 2019] Fiez, T., Jain, L., Jamieson, K. G., and Ratliff, L. (2019). Sequential experimental design for
transductive linear bandits. In Advances in Neural Information Processing Systems, pages 10666–10676.

[Kaufmann et al., 2016] Kaufmann, E., Cappé, O., and Garivier, A. (2016). On the complexity of best-arm identifi-
cation in multi-armed bandit models. The Journal of Machine Learning Research, 17(1):1–42.

[Lattimore, 2018] Lattimore, T. (2018). Refining the confidence level for optimistic bandit strategies. The Journal
of Machine Learning Research, 19(1):765–796.

[Lattimore and Szepesvari, 2016] Lattimore, T. and Szepesvari, C. (2016). The end of optimism? an asymptotic
analysis of finite-armed linear bandits. arXiv preprint arXiv:1610.04491.

[Lattimore and Szepesvari, 2017] Lattimore, T. and Szepesvari, C. (2017). The end of optimism? an asymptotic
analysis of finite-armed linear bandits. In Artificial Intelligence and Statistics, pages 728–737.

[Lattimore and Szepesvári, 2020] Lattimore, T. and Szepesvári, C. (2020). Bandit algorithms. https: //

tor-lattimore. com/ downloads/ book/ book. pdf .

[Mannor and Tsitsiklis, 2004] Mannor, S. and Tsitsiklis, J. N. (2004). The sample complexity of exploration in the
multi-armed bandit problem. Journal of Machine Learning Research, 5(Jun):623–648.

[Pukelsheim, 2006] Pukelsheim, F. (2006). Optimal design of experiments. SIAM.

[Soare, 2015] Soare, M. (2015). Sequential resource allocation in linear stochastic bandits. PhD thesis, Université
Lille 1-Sciences et Technologies.

[Soare et al., 2014] Soare, M., Lazaric, A., and Munos, R. (2014). Best-arm identification in linear bandits. In
Advances in Neural Information Processing Systems, pages 828–836.

[Yu et al., 2006] Yu, K., Bi, J., and Tresp, V. (2006). Active learning via transductive experimental design. In
Proceedings of the 23rd international conference on Machine learning, pages 1081–1088. ACM.

1

https://tor-lattimore.com/downloads/book/book.pdf
https://tor-lattimore.com/downloads/book/book.pdf

	Introduction
	Regret Minimization
	Best-arm identification
	Warm-up
	Disclaimers and goals of these lectures

	Action Elimination Algorithm for Multi-armed Bandits
	Lower bounds for Multi-armed Bandits
	Mean of a Gaussian
	Indentification
	Regret, minimax
	Gap-dependent regret
	Revisiting MAB with Optimism

	Linear Bandits Intro
	Least Squares
	Aside: Gaussian to sub-Gaussian

	Experimental design
	Linear Bandits: Regret Minimization
	Linear Bandits: Pure exploration
	Linear bandits: regret minimization revisited
	Adversarial Linear Bandits
	Preliminaries
	Simplex with unnormalized negative entropy
	Full information game
	Full information, finite action set
	Bandit feedback over finite action sets

	Other action sets
	Unit ball action set
	Finite action sets

	Contextual Bandits
	Stochastic Linear model
	Stochastic Contextual Bandits for General policy classes
	-greedy
	Action Elimination

	EXP4 for oblivious adversaries

