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Kantorovich Rubinstein Duality

 Minimize Wasserstein distance between p and pe:

~

Oy = argmin W (p, pg) = argmin  inf L |l —yl|2] -
0 0 m€ll(p,po) (x,y)~m

» II(p, q) is the set of probability distributions on X x X with marginals p, q.
* \We can’t enforce these constraints on the marginals.

e |nstead, minimize a dual characterization of the Wasserstein distance:

Wi(p,q) = inf T |llz —yll2] = sup & h(z) — E h(x)| .

mell(p,q) (z,y)~m |h| <1 [®z~p x~q
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Gradient Penalty Relaxation

e Solve a saddle-point problem:

Py = argmin  sup T ho(x) — E hy(z)
0 @illhell<1 LEP TP

» |dea: enforce || h, || < 1 as a soft constraint using Lagrange multipliers:

LO,0,\)= E hy(x)— E hy(x)+ A

L~P L~Po T

(IVahe(@)] — 1)

7

ZLJ

e Saddle point problem becomes %\V = arg minsup L(6, o, A).
0 @

* Technically need Lipschitz condition everywhere; where to enforce it?

« Uniformly along straight lines between points * ~ p and £ ~ pg.
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Wasserstein GAN

Algorithm 1 Wasserstein GAN

Initialize 0, .
while not converged do
for ¢ in range(1,num critic) do
Sample z1,..., x5 ~ P,
Sample y1,...,yB ~ po,

B B
1 1
P @ +nVy (E > hy(x:) B D ho(yi) + /\PenaltY(w)) -
1=1 1=1

end for
Sample z1,...,z25 ~ N (0, ),

B
1

end while
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GAN Evaluation

 For AR models and VAE, we calculated the test set log-likelihood.
 Can we do this for GAN’s?
po(z) = (g5 ()| Vagy ().
* |nception score:
> Using Inception v3 classifier ¢(y|x), compute:

IS(p) = exp ( 2 D(a(yla) | q<y>>)

T~p
> Lower bound IS(py) = 1; CIFAR-10 training data has IS(p) = 11.24.

* Another popular variant is Frechet Inception Distance (FID).
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The Monge Problem

* The optimal transport (sigma)
maps blue probability mass
onto red probability mass
while minimizing the product:

M

Distance x Mass Peyre and Cuturi, 2019

 The optimal transport sigma is called a “Monge map.”

 What if we can’t neatly pair up components of the blue and red distributions?
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The Kantorovich Problem

* Relax the Monge map to a fractional
map (i.e. a probabilistic map). 500
270
* This is a classical problem in logistics
operations research! 500 250

 Formally, the problem is to find: 160

180

arg min E c(x,y)m(x,y).
mell(p,q) "
Pedroso, Rais, Kubo, and Muramatsu (2012)

CSE 599I: Generative Models Lecture 13 University of Washington



The Kantorovich Problem

» Want to find: M 5]
arg min Z c(x,y)m

rell(e,B) o n
 We can mterpret the value of \
the minimizer as a distance
between o and £. ~~
 Costs are not visualized here. o, €R® and ¢, € R4*4

Peyré and Cuturi, 2019

e If 2,y € R” and ¢(x,y) = ||z — yl|2 then
( 76 min Z HQE T y||27T L y) 1(&,6).

mell(a,B)

CSE 599I: Generative Models Lecture 13 University of Washington



The Constraints

 We want to solve an optimal transport problem:

dc 9 — . Y, — . Y, 9 °
(p, q) Werlgl%g,q)@ ) _Join 2. c(z,y)m(z,y)

e Inthe discrete setting, the constraints ™ € II(p, ¢) become

Zﬂ- L yz 7‘-1 )ZE‘) and Q(y) — Zﬂ'(ﬂ?z,y) — (1£7T)y

e The optlmal transport problem is a linear program:

d.(p,q) = min c(z,y)m(z,y).

Tl =
T 1,,=q LY
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Entropy Regularization

 \WWe can compute an optimal transport faster if we regularize a bit:

d(>:\ (pa Q) — wer%llgyl 7) <Cn 7T> o )‘H(ﬂ-)

* This problem has an interesting alternate interpretation:

arg min(c, 7) — AH () = arg min D(7 || py).
mell(p,q) mell(p,q)

* Analogous to how MLE is really KL minimization!

 Does the analogy run deeper?
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KL Divergence Minimization

» Claim:
arg min(c, ) — AH () = arg min D(r || py).

w€ll(p,q) mecll(p,q)

+ Define k(z,y) = e “®¥/* and Z) = Z k(x,y).
| .y
k(x,y) is a probability distribution and

+ Then pp(z,y) =

2\
A 1
Dix | ) = X wla)log T = Jlem) — H(m) +log 2.
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5-Minute Break
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A Conceptual Algorithm

e Qur goal is to find:

arg min(c, 7) — AH (1) = arg min D(7 || p?).
mell(p,q) mell(p,q)

 Two sets of constraints: 7l1,,, =p and © ' 1,, = q.

* How about alternating minimization? Initialize wE\O) = pj and iterate:
arg min D (7 | 7T§\€>) ¢ even,
7_‘_(E—I—l) __ 7wl =p
A ) argmin D(7 || Wg\Hl)) ¢ odd.
WT]—n:q

 These sub-problems have a closed form!
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Solving the Sub-Problems

e Suppose / is even. We need to find arg min D (7 || wf\g)).
1l =p

* Introduce Lagrange multipliers:

arg min D (7 | 7T§\£>) = arg minm?XD(W | Wg\@) + (f,71,, — p).
7wl =p T

* Appeal to strong duality to swap the min and max. We now need to find

arg min D (7 | Wg\g)) + (f, 71, — D).

7T

* This Iis an unconstrained minimization problem.
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Solving the Inner Optimization

« Want to find arg min D(7 | Wg\@) + (f, 71, — p).

T

* Solve the first order optimality conditions:

a _ —
D(r | m) + (f, 71 —p) | =0,

or |
- - (£+1) (£) _
» For a particular index (x,y), 1 +logm, . (z,y) — logmy ' (x,y) + fo = 0.

* Solve for W&%}H) (,y):

/ — /
T @,y) = e Her (@)

CSE 599I: Generative Models Lecture 13 University of Washington



Solving the Outer Optimization

» Suppose / is even. We need to find arg min D(7 || wf\g)).

7l =D

* Equivalent (strong duality) to finding

arg max min D (7 || 77&6)) + {(f, 71, —p)
f TT
/41 / (+1)
— argmax D(Tl'g\}_ ) | 7T§\>) <f,7T§\;cr m — D).
f : 7T(£+1)1 =y

(ﬁ+1)(

* \We previously saw that 7 T,Y) = el_fxw(z) (x,y). So we need

Zw(éﬂ) (2,7y) = _ ol fa ZW(E) (x,y) — ol—fo _ p(x)

> (z,y)
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A Closed Form Solution

» Recall that our goal is to find arg min(c, 7) — AH(7) = argmin D(7 || p3).
mell(p,q) mell(p,q)

 We decomposed this into an alternating minimization problem:

arg min D (7 | 7'('(6)) ¢ even,
(E—I—l) _ 7l =p
X arg min D (7 || 7T<€+1)) ¢ odd.
T 1p=q

 The sub-problems have closed form:

/ . P {— / . q /
5\2 ) = diag ( (20—1) ) WE\Q 1)7 and 775\2 = diag ( (26)) WE\Q g
Ty 1,, 1 T
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