Optimal Transport

Instructor: John Thickstun

Discussion Board: Available on Ed

Zoom Link: Available on Canvas

Instructor Contact: thickstn@cs.washington.edu

Course Webpage: https://courses.cs.washington.edu/courses/cse599i/20au/

Kantorovich Rubinstein Duality

• Minimize Wasserstein distance between p and p_{θ} :

$$\theta_W = \underset{\theta}{\operatorname{arg\,min}} W(p, p_{\theta}) = \underset{\theta}{\operatorname{arg\,min}} \inf_{\pi \in \Pi(p, p_{\theta})} \mathbb{E}_{(x, y) \sim \pi} [\|x - y\|_2].$$

- $\Pi(p,q)$ is the set of probability distributions on $\mathcal{X} \times \mathcal{X}$ with marginals p,q.
- We can't enforce these constraints on the marginals.
- Instead, minimize a dual characterization of the Wasserstein distance:

$$W(p,q) = \inf_{\pi \in \Pi(p,q)} \mathbb{E}_{(x,y) \sim \pi} [\|x - y\|_2] = \sup_{\|h\|_L \le 1} \left[\mathbb{E}_{x \sim p} h(x) - \mathbb{E}_{x \sim q} h(x) \right].$$

Gradient Penalty Relaxation

• Solve a saddle-point problem:

$$\theta_W = \underset{\theta}{\operatorname{arg\,min}} \sup_{\varphi: \|h_{\varphi}\|_{L} < 1} \left[\underset{x \sim p}{\mathbb{E}} h_{\varphi}(x) - \underset{x \sim p_{\theta}}{\mathbb{E}} h_{\varphi}(x) \right].$$

• Idea: enforce $||h_{\varphi}||_L \le 1$ as a soft constraint using Lagrange multipliers:

$$L(\theta, \varphi, \lambda) = \underset{x \sim p}{\mathbb{E}} h_{\varphi}(x) - \underset{x \sim p_{\theta}}{\mathbb{E}} h_{\varphi}(x) + \lambda \underset{x \sim ?}{\mathbb{E}} (\|\nabla_x h_{\varphi}(x)\| - 1)^2.$$

- Saddle point problem becomes $\theta_W^{\lambda} = \underset{\theta}{\arg\min\sup} L(\theta, \varphi, \lambda).$
- Technically need Lipschitz condition everywhere; where to enforce it?
- Uniformly along straight lines between points $x \sim p$ and $\tilde{x} \sim p_{\theta}$.

Wasserstein GAN

Algorithm 1 Wasserstein GAN

```
Initialize \theta, \varphi.
```

while not converged do

for t in range(1,num_critic) do

Sample $x_1, \ldots, x_B \sim p$,

Sample $y_1, \ldots, y_B \sim p_{\theta}$,

$$\varphi \leftarrow \varphi + \eta \nabla_{\varphi} \left(\frac{1}{B} \sum_{i=1}^{B} h_{\varphi}(x_i) - \frac{1}{B} \sum_{i=1}^{B} h_{\varphi}(y_i) + \lambda \text{Penalty}(\varphi) \right).$$

end for

Sample $z_1, \ldots, z_B \sim \mathcal{N}(0, I)$,

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \frac{1}{B} \sum_{i=1}^{B} -h_{\varphi}(g_{\theta}(z_i)).$$

end while

GAN Evaluation

- For AR models and VAE, we calculated the test set log-likelihood.
- Can we do this for GAN's?

$$p_{\theta}(x) = r(g_{\theta}^{-1}(x))|\nabla_x g_{\theta}^{-1}(x)|.$$

- Inception score:
 - Using Inception v3 classifier q(y|x), compute:

$$IS(p) = \exp\left(\mathbb{E}_{x \sim p} D(q(y|x) \parallel q(y))\right)$$

- Lower bound $IS(p_{\theta}) = 1$; CIFAR-10 training data has IS(p) = 11.24.
- Another popular variant is Frechet Inception Distance (FID).

The Monge Problem

 The optimal transport (sigma) maps blue probability mass onto red probability mass while minimizing the product:

Distance x Mass

Peyré and Cuturi, 2019

- The optimal transport sigma is called a "Monge map."
- What if we can't neatly pair up components of the blue and red distributions?

The Kantorovich Problem

- Relax the Monge map to a fractional map (i.e. a probabilistic map).
- This is a classical problem in logistics operations research!
- Formally, the problem is to find:

$$\underset{\pi \in \Pi(p,q)}{\operatorname{arg\,min}} \sum_{x,y} c(x,y) \pi(x,y).$$

Pedroso, Rais, Kubo, and Muramatsu (2012)

The Kantorovich Problem

Want to find:

$$\underset{\pi \in \Pi(\alpha,\beta)}{\operatorname{arg\,min}} \sum_{x,y} c(x,y) \pi(x,y).$$

• We can interpret the value of the minimizer as a distance between α and β .

- Costs are not visualized here.
- If $x,y\in\mathbb{R}^d$ and $c(x,y)=\|x-y\|_2$ then

$$d_c(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \min_{\pi \in \Pi(\boldsymbol{\alpha}, \boldsymbol{\beta})} \sum_{x,y} \|x - y\|_2 \pi(x, y) = W_1(\boldsymbol{\alpha}, \boldsymbol{\beta}).$$

Peyré and Cuturi, 2019

The Constraints

• We want to solve an optimal transport problem:

$$d_c(p,q) = \min_{\pi \in \Pi(p,q)} \langle c, \pi \rangle = \min_{\pi \in \Pi(p,q)} \sum_{x,y} c(x,y)\pi(x,y).$$

• In the discrete setting, the constraints $\pi \in \Pi(p,q)$ become

$$p(x) = \sum_{i=1}^{m} \pi(x, y_i) = (\pi \mathbf{1}_m)_x$$
, and $q(y) = \sum_{i=1}^{n} \pi(x_i, y) = (\mathbf{1}_n^T \pi)_y$.

The optimal transport problem is a linear program:

$$d_c(p,q) = \min_{\substack{\pi \mathbf{1}_m = p \\ \pi^{\top} \mathbf{1}_n = q}} \sum_{x,y} c(x,y) \pi(x,y).$$

Entropy Regularization

• We can compute an optimal transport faster if we regularize a bit:

$$d_c^{\lambda}(p,q) = \min_{\pi \in \Pi(p,q)} \langle c, \pi \rangle - \lambda H(\pi).$$

• This problem has an interesting alternate interpretation:

$$\underset{\pi \in \Pi(p,q)}{\operatorname{arg\,min}} \langle c, \pi \rangle - \lambda H(\pi) = \underset{\pi \in \Pi(p,q)}{\operatorname{arg\,min}} D(\pi \parallel p_k^{\lambda}).$$

- Analogous to how MLE is really KL minimization!
- Does the analogy run deeper?

KL Divergence Minimization

• Claim:

$$\underset{\pi \in \Pi(p,q)}{\operatorname{arg\,min}} \langle c, \pi \rangle - \lambda H(\pi) = \underset{\pi \in \Pi(p,q)}{\operatorname{arg\,min}} D(\pi \parallel p_k^{\lambda}).$$

- Define $k(x,y) \equiv e^{-c(x,y)/\lambda}$ and $Z_{\lambda} = \sum_{x,y} k(x,y)$.
- Then $p_k^{\lambda}(x,y) \equiv \frac{1}{Z_{\lambda}} k(x,y)$ is a probability distribution and

$$D(\pi \parallel p_k^{\lambda}) = \sum_{x,y} \pi(x,y) \log \frac{\pi(x,y)Z_{\lambda}}{k(x,y)} = \frac{1}{\lambda} \langle c, \pi \rangle - H(\pi) + \log Z_{\lambda}.$$

5-Minute Break

A Conceptual Algorithm

Our goal is to find:

$$\underset{\pi \in \Pi(p,q)}{\operatorname{arg\,min}} \langle c, \pi \rangle - \lambda H(\pi) = \underset{\pi \in \Pi(p,q)}{\operatorname{arg\,min}} D(\pi \parallel p_k^{\lambda}).$$

- Two sets of constraints: $\pi \mathbf{1}_m = p$ and $\pi^\top \mathbf{1}_n = q$.
- How about alternating minimization? Initialize $\pi_{\lambda}^{(0)}=p_k^{\lambda}$ and iterate:

$$\pi_{\lambda}^{(\ell+1)} \equiv \begin{cases} \arg\min D(\pi \parallel \pi_{\lambda}^{(\ell)}) & \ell \text{ even,} \\ \pi \mathbf{1}_{m} = p \\ \arg\min D(\pi \parallel \pi_{\lambda}^{(\ell+1)}) & \ell \text{ odd.} \\ \pi^{\top} \mathbf{1}_{n} = q \end{cases}$$

• These sub-problems have a closed form!

Solving the Sub-Problems

- Suppose ℓ is even. We need to find $\underset{\pi \mathbf{1}_m = p}{\arg\min} D(\pi \parallel \pi_{\lambda}^{(\ell)})$.
- Introduce Lagrange multipliers:

$$\underset{\pi \mathbf{1}_{m} = p}{\operatorname{arg\,min}} D(\pi \parallel \pi_{\lambda}^{(\ell)}) = \underset{\pi}{\operatorname{arg\,min}} \max_{f} D(\pi \parallel \pi_{\lambda}^{(\ell)}) + \langle f, \pi \mathbf{1}_{m} - p \rangle.$$

Appeal to strong duality to swap the min and max. We now need to find

$$\underset{\pi}{\operatorname{arg\,min}} D(\pi \parallel \pi_{\lambda}^{(\ell)}) + \langle f, \pi \mathbf{1}_m - p \rangle.$$

• This is an unconstrained minimization problem.

Solving the Inner Optimization

- Want to find $\underset{\pi}{\operatorname{arg\,min}}\,D(\pi\parallel\pi_{\lambda}^{(\ell)})+\langle f,\pi\mathbf{1}_m-p\rangle.$
- Solve the first order optimality conditions:

$$\frac{\partial}{\partial \pi} \left[D(\pi \parallel \pi_{\lambda}^{(\ell)}) + \langle f, \pi \mathbf{1}_m - p \rangle \right] = 0.$$

- For a particular index (x,y), $1 + \log \pi_{\lambda,f}^{(\ell+1)}(x,y) \log \pi_{\lambda}^{(\ell)}(x,y) + f_x = 0$.
- Solve for $\pi_{\lambda,f}^{(\ell+1)}(x,y)$:

$$\pi_{\lambda}^{(\ell+1)}(x,y) = e^{1-f_x} \pi_{\lambda}^{(\ell)}(x,y).$$

Solving the Outer Optimization

- Suppose ℓ is even. We need to find $\underset{\pi \mathbf{1}_m = p}{\arg\min} D(\pi \parallel \pi_{\lambda}^{(\ell)})$.
- Equivalent (strong duality) to finding

$$\arg \max_{f} \min_{\pi} D(\pi \parallel \pi_{\lambda}^{(\ell)}) + \langle f, \pi \mathbf{1}_{m} - p \rangle
= \arg \max_{f} D(\pi_{\lambda, f}^{(\ell+1)} \parallel \pi_{\lambda}^{(\ell)}) + \langle f, \pi_{\lambda, f}^{(\ell+1)} \mathbf{1}_{m} - p \rangle.
f: \pi_{\lambda, f}^{(\ell+1)} \mathbf{1}_{m} = p$$

• We previously saw that $\pi_\lambda^{(\ell+1)}(x,y)=e^{1-f_x}\pi_\lambda^{(\ell)}(x,y).$ So we need

$$p(x) = \sum_{y} \pi_{\lambda,f}^{(\ell+1)}(x,y) = e^{1-f_x} \sum_{y} \pi_{\lambda}^{(\ell)}(x,y) \implies e^{1-f_x} = \frac{p(x)}{\sum_{y} \pi_{\lambda}^{(\ell)}(x,y)}.$$

A Closed Form Solution

- Recall that our goal is to find $\underset{\pi \in \Pi(p,q)}{\arg\min} \langle c,\pi \rangle \lambda H(\pi) = \underset{\pi \in \Pi(p,q)}{\arg\min} D(\pi \parallel p_k^{\lambda}).$
- We decomposed this into an alternating minimization problem:

$$\pi_{\lambda}^{(\ell+1)} \equiv \begin{cases} \arg\min D(\pi \parallel \pi_{\lambda}^{(\ell)}) & \ell \text{ even,} \\ \pi \mathbf{1}_{m} = p \\ \arg\min D(\pi \parallel \pi_{\lambda}^{(\ell+1)}) & \ell \text{ odd.} \\ \pi^{\top} \mathbf{1}_{n} = q \end{cases}$$

The sub-problems have closed form:

$$\pi_{\lambda}^{(2\ell)} = \operatorname{diag}\left(\frac{p}{\pi_{\lambda}^{(2\ell-1)}\mathbf{1}_{m}}\right) \pi_{\lambda}^{(2\ell-1)}, \text{ and } \pi_{\lambda}^{(2\ell+1)} = \operatorname{diag}\left(\frac{q}{\mathbf{1}_{n}^{\top}\pi_{\lambda}^{(2\ell)}}\right) \pi_{\lambda}^{(2\ell)}.$$