Neural Autoregressive
Distribution Estimation

Instructor: John Thickstun

Discussion Board: Available on Ed!
Zoom Link: Available on Canvas
Instructor Contact: thickstn@cs.washington.edu

Course Webpage: https://courses.cs.washington.edu/courses/cse599i/20au/
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Autoregressive Modeling

* Factor the joint distribution into conditionals:

T
p(Xx) = HP(%W«)-
t=1
» Learn the conditional distributions p(x:|T<¢).

* Linear autoregressive model:

xr ~ N (f(xt), 0%),
f(x<t) = p(@i—1 — p) + p.
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Binary Autoregressive Models

Definition 1. Let P € RT and define f; : RU=1D — R by fi(x<t) = (P<t, z<t). The fully-visible
stigmotd belief network is given by

z; ~ Bernoulli (sigmoid( fi(x<¢))),

z1 ~ Bernoulli(F).

e Sigmoid function sigmoid(u) =1/(1+e™ ") f
* A log-linear autoregressive model. /
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Masked Autoregressive Models

Definition 1. Let P € RT and define f; : Rt - R by fi(x<t) = (P<t,z<t). The fully-visible
stigmotd belief network is given by

z; ~ Bernoulli (sigmoid( fi(x<¢))),

z1 ~ Bernoulli(F).

o Letm € {0,1}" " such that m; ;, = 1,;.

e Then f(x-;)can be equivalently defined by

flrey) = (P, xey) = (Pomy O ).
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Discrete Autoregressive Models

Definition 2. Let P € RT*4Xd gnd define f, : RE—Dxd _y Rd py ft(T<t) = D gy Pss.

The fully-visible softmax belief network is given by

w, ~ Categorical (softmax (fi(z<¢))),

wy ~ Categorical( Py ).

« Softmax function softmax : R — R< defined by

6IJ,

— ZZ:1 o

 What Is the input encoding x; © R® of the discrete inputs w; € V?

softmax(u)
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Input Encoding

. Discrete sequences w € V'
» Tokens w; € V for some finite vocabulary V', where |V| = d.
 Need to encode tokens w as vectors  in a Euclidean space.

 Two popular options:

1. One-hot encoding: x € R where 1 = 1p—o.

2. Word Embeddings (word2vec, Glove, etc.): =1 € R (k < d).
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Training a FVSBN

Definition 2. Let P € RT*4Xd gnd define f, : RE—1)xd 5 Rd py fr(@ey) = Z P.x..

s<t
The fully-visible softmax belief network is given by

w,; ~ Categorical (softmax (f(xz;))),

wy ~ Categorical(Po,o) :

 Maximize the likelihood! Cross-entropy minimization:

n n T
3" logp(w) = - 37" ~logp(wilwl,).
1=1

1=1 t=1
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Neural Parameterization (NADE)

e Fully-Visible Softmax Belief Network:

H(Xct) ZP X, P c R xdxd,
s<t

* Neural Autoregressive Distribution Estimation (NADE):

h; = sigmoid (ct | ZVSXS> , V € RIXFXd o c RTXF
s<t
fe(x<t) =by + » Wih,, W e RTXdxk 1 ¢ RT*4,
s<t

CSE 599I: Generative Models Lecture 4 University of Washington



Training a NADE

e Maximize the likelihood:

n T

3" logpp(w) = — 303" ~logpy(wilut,)
1=1

1=1 t=1

* Optimize with SGD (choose a random 7, t):
0 = 9U~1) + Vg log pe(w]|wl,).

 Consider adding momentum (e.g. NAG) and adaptivity (Adam).
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Back-Propagation Through Time

e NADE models see a limited window of context/history (order p).

 Mini-batch SGD over time steps (one call to the model):

6’(2) — Q(i_l) + 1V log pe (wgv R ,wiﬂ))

p
— 6’(2—1) + nVQ Zlogpg(wiJrS\wi, e ,wi, S 1).

s=—1
* Also mini-batch over k data points (k calls to the model):
k D
@(Z) — 6’(@—1) + 77V9 Z Zlogpg(wiJrS\wi, o ,wi e 1).
j=1 s=1
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5-Minute Break
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BPTT in NLP: The Dirty Detalls

 Suppose we have an NLP corpus of documents (e.g. Wikitext-2).
 Concatenate all the documents: one long sequence of length 1.
 Chunk the sequence up into segments of length p.

 Treat the corpus as n = T'/p data points, each of length p.
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Weight-Sharing

* Neural Autoregressive Distribution Estimator (order p):

h, = sigmoid (Ct—l-ZVsXs) , V € RPXFXd ¢ ¢ RPXF
s<t
fe(x<t) =by + Y Wih,, W e RP*dxk b ¢ RPX4
s<t

¢+ Set V, = (W,)".
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Deep NADE

 Multiple hidden layers (compare to a deep fully-connected network)

hO,t = RelLU (C())t + Z(WS)TXS> : W & RPXka, Cpo © ‘RPXk,

s<t

hg,t — RelLU Cy.t ZV@)Shg_LS .,V € R(L_DXPXka, C © R(L_l)XpXk,

s<t

foi(X<t) = by + ZWShL,S7 b € RP*?,

s<t
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A Recurrent NADE

 Parameter counts in NADE scale with the autoregressive order p.

* \We can share weights using a recursively defined model (RNN):

hy = Wipit, Wi € R”,
h, = sigmoid(c + Wphy_1 + W,x;), W, € R"™* W, € R**¢ ¢ € R,
fi(x<t) =b+W,h;_1, W, € RYF b e R?.

* No dependency on p! Can set W, = WZ for further sharing.
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Hyper-Parameter Selection

* In general: make the model very wide and very deep. Use large p.

 Don’t regularize with model size! Regularize by (in order of effectiveness):

1. Getting more training data.
2. Dataset augmentation (e.g. input/embedding dropout)
3. Early stopping/L2 regularization/dropout

 Use validation data, train multiple models (pay the Amazon tax).

* |f your model is constrained by GPU memory, you are on the right track.
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EXxposure Bias

* Factor the joint distribution into conditionals:
T
p(X) = Hp($t|$<t)-
t=1
e Learn the conditional distributions p(x:|x<¢).
e |teratively sample Z; ~ p(-|Z ;) to construct

 The data we condition on to predict has the wrong distribution!
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Logistics

* Homework 1 is out on the website.
* |If you downloaded it early, get a fresh copy: | made some corrections.

* You could start looking at the code for Problem 8 (except transformers.py)
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