Generative Models

Instructor: John Thickstun

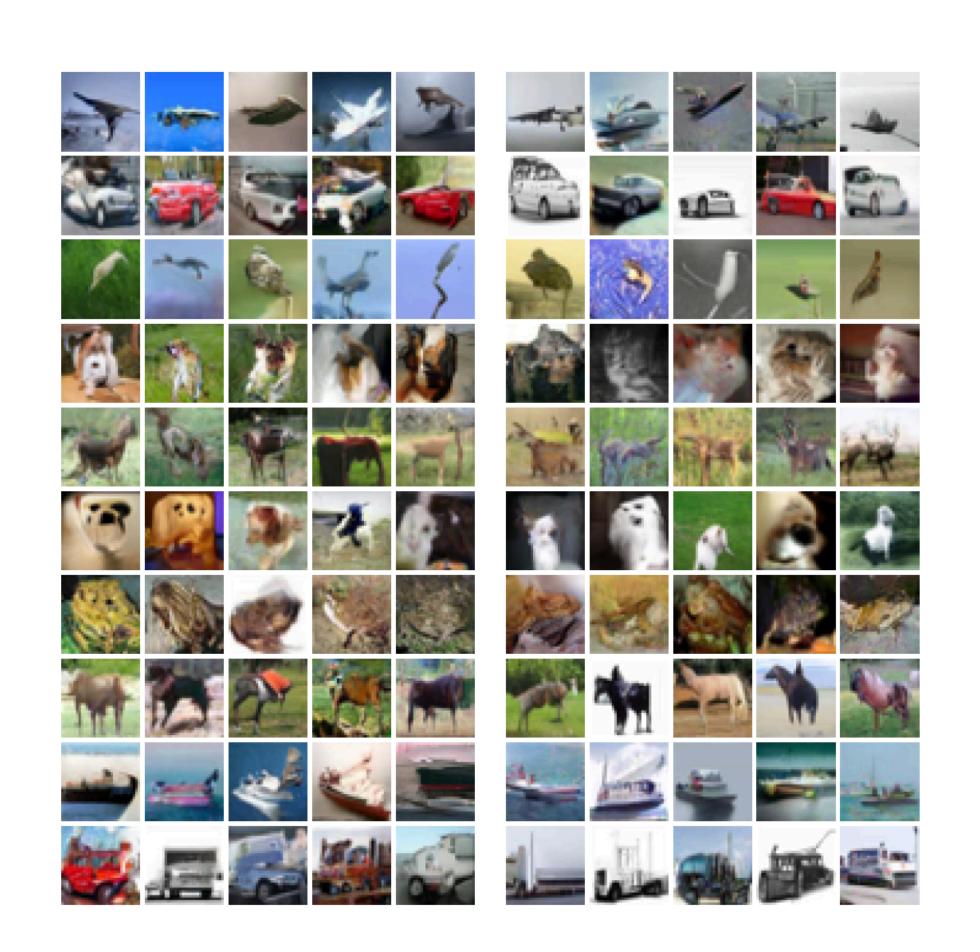
Discussion Board: Available on Canvas

Zoom Link: Available on Canvas (or email the instructor)

Instructor Contact: thickstn@cs.washington.edu

Course Webpage: https://courses.cs.washington.edu/courses/cse599i/20au/

- Autoregressive Models
- Variational Autoencoders
- Generative Adversarial Nets
- Generative Flow
- Energy-Based Models

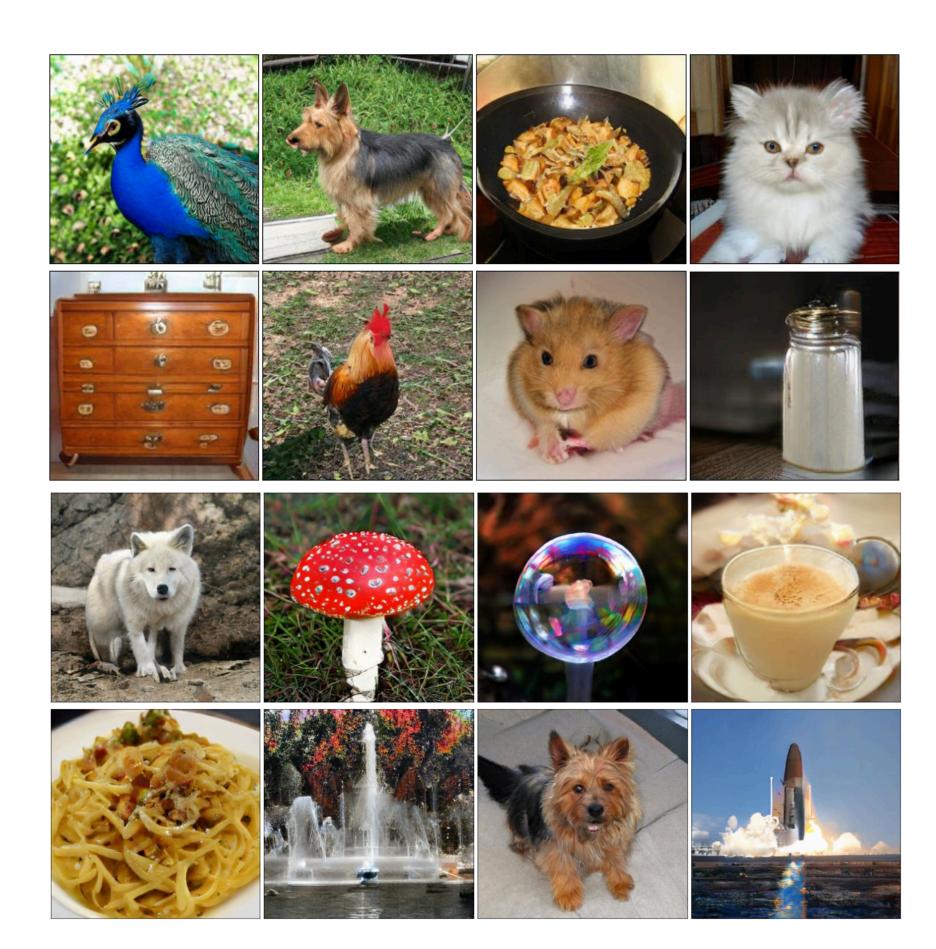


Parmar et. al. (ICML, 2018)

- Autoregressive Models
- Variational Autoencoders
- Generative Adversarial Nets
- Generative Flow
- Energy-Based Models

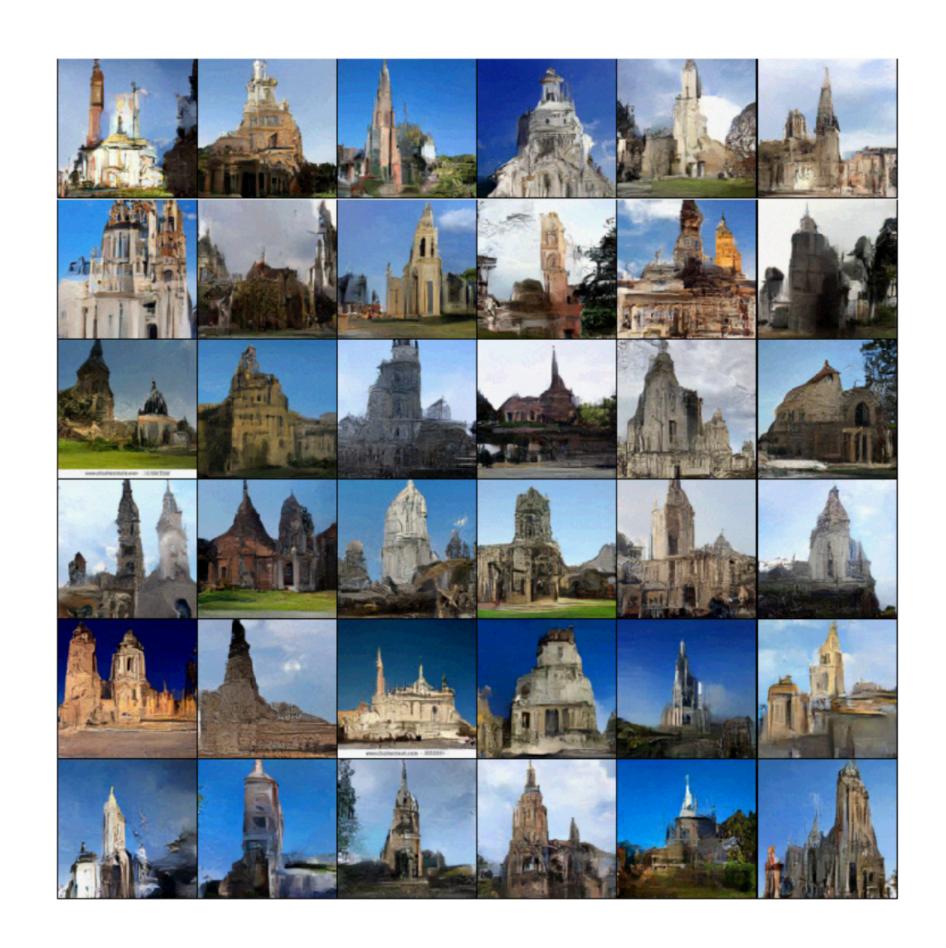
Vahdat and Kautz (Preprint 2020)

- Autoregressive Models
- Variational Autoencoders
- Generative Adversarial Nets
- Generative Flow
- Energy-Based Models



Brock et. al. (ICLR, 2019)

- Autoregressive Models
- Variational Autoencoders
- Generative Adversarial Nets
- Generative Flow
- Energy-Based Models



Ma et. al. (Neurips, 2019)

- Autoregressive Models
- Variational Autoencoders
- Generative Adversarial Nets
- Generative Flow
- Energy-Based Models

Song and Ermon (ICML, 2018)

Computing Resources

Hyperparamter	MNIST 28×28	CIFAR-10 32×32	ImageNet 32×32	CelebA HQ 64×64	CelebA HQ 256×256	FFHQ 256×256
# epochs	400	400	40	500	400	200
batch size per GPU	200	32	8	16	4	4
# normalizing flows	0	2	2	2	4	4
# latent variable scales	2	1	1	3	5	5
# groups in each scale	5, 10	30	28	5, 10, 20	4, 4, 4,	4, 4, 4,
					8, 16	8, 16
spatial dims of z in each scale	$4^2, 8^2$	16^2	16^2	8^2 , 16^2 , 32^2	8^2 , 16^2 , 32^2 ,	8^2 , 16^2 , 32^2 ,
					$64^2, 128^2$	64^2 , 128^2
# channel in z	20	20	20	20	20	20
# initial channels in enc.	32	128	192	64	32	32
# residual cells per group	1	2	2	2	2	2
λ	0.01	0.1	0.01	0.01	0.01	0.1
GPU type	16-GB V100	16-GB V100	16-GB V100	16-GB V100	32-GB V100	32-GB V100
# GPUs	2	8	32	8	24*	24*
total train time (h)	24	100	200	150	180	220

NVAE: Vahdat and Kautz (Preprint 2020)

Class Computing Resources

- https://colab.research.google.com/
- 1 GPU (probably a K80) or TPU per person
- Homeworks are designed to run in Colab with Python and PyTorch
- Homework 0:
 - → Familiarize yourself with Google Colab
 - → Familiarize yourself with PyTorch

Expectations

- Generative models are an active area of research.
- Lectures will give a high-level sketch of ideas.
- Lecture notes (website) will give a more complete treatment, with references.
- I'll try to present a clear picture of what's going on mathematically.
- We'll also try to understand how these ideas are put into practice at scale.
- There will be a lot of content in this class:
 - If you want to focus more on either the theory or empirical side, that's fine.
 - If certain topics interest you more than others: also fine.

Course Project

- Anything related to generative models, theoretical or applied.
- Partner with up to 4 people.
- Consider what computing resources you might need and plan ahead.
- Examples of possible projects:
 - An application of generative models to your own research.
 - Reproduction of empirical results reported in a recent paper.
 - Exposition or extension of a technical theoretical result in a recent paper.
 - Application of generative modeling techniques to a novel dataset.

5-Minute Break

Generative Modeling

- Given finite samples $x_1, \ldots, x_n \sim p$, and unlimited samples $z \sim q$.
- Learn a function $g_{\theta}: \mathcal{Z} \to \mathcal{X}$, which induces a distribution p_{θ} on \mathcal{X} .
- E.g. if q(z) = Uniform(0,1) and $g_{\theta}(z) = \theta z$ then $p_{\theta}(x) = \text{Uniform}(0,\theta)$.
- Learn the parameters so that $p_{\theta} \approx p$.
- Generate samples $x=g_{\theta}(z)\sim p_{\theta}$.

Sampling from a Gaussian

- Given samples $x_1, \ldots, x_n \sim \mathcal{N}(\mu, \sigma^2)$, and unlimited samples $z \sim \mathcal{N}(0, 1)$.
- Estimate the mean and variance: $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i \hat{\mu})^2.$
- Define $g(z) = \hat{\mu} + \hat{\sigma}z$.
- Generate samples $x = g(z) \sim \mathcal{N}(\hat{\mu}, \hat{\sigma}^2)$.

Pushforward Distributions

Definition 1. Given a probability space (\mathcal{Z}, q) , a (measurable) function $g : \mathcal{Z} \to \mathcal{X}$ induces a **pushforward** distribution on \mathcal{X} defined, for any (measurable) set $A \subset \mathcal{X}$ by

$$\Pr(A) = \int_{g^{-1}(A)} q(z) dz.$$

- If $\mathcal Z$ and $\mathcal X$ are both discrete spaces: $\Pr(A) = \sum_{z \,:\, g(z) \in A} q(z).$
- Suppose $z \sim \text{Uniform}(0,1)$ and $g(z) = \mathbf{1}_{z < p}$, then $g(z) \sim \text{Bernoulli}(p)$.

Inverse Transform Sampling

- I have samples from Uniform(0,1). I want samples with CDF F.
- Define a generator (the inverse CDF) $g(z) = \inf\{x : F(x) \ge z\}$.
- If $z \sim \mathrm{Uniform}(0,1)$, then g(z) is distributed according to F.
- Convert samples from the uniform distribution to an arbitrary distribution!

Finite Generative Modeling

- Given finite samples $x_1, \ldots, x_n \sim p$ from a finite space \mathcal{X} .
- Estimate the probability mass $\hat{\pi}_x$ of each element of \mathcal{X} .
- Sample from the distribution $\hat{p}(x) = \hat{\pi}_x$ using Inverse Transform Sampling.
- What's a good estimate $\hat{p}(x)$ of the probability mass function p(x)?

Maximum Likelihood Estimation

- What's a good estimate $\hat{p}(x)$ of the probability mass function p(x)?
- What about count statistics (the MLE)?

$$\hat{\pi}_x = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{x_i = x}.$$

- What happens if "d > n"?
- I.e. if the size of ${\mathcal X}$ is larger than the number of observed samples.

Continuous Modeling

- Given finite samples $x_1, \ldots, x_n \sim p$ from a continuous distribution p(x).
- Estimate the probability of each element of \mathcal{X} ?
- Using the MLE?

$$\hat{p}(x) = \begin{cases} \frac{1}{n} & \text{if } x \in \{x_1, \dots, x_n\}, \\ 0 & \text{otherwise.} \end{cases}$$

Parametric Estimation

- For example, learning a Gaussian.
- Restricting to a parametric family of functions regularizes the problem.
- But we want to learn expressive distributions...
- Parameterize with an expressive family: neural nets!

Maximize the Likelihood?

- Use a neural network to parameterize $g_{\theta}: \mathcal{Z} \to \mathcal{X}$.
- Optimize θ so the pushforward distribution $p_{\theta}(x)$ approximates p(x).
- How do we optimize? Maximize the likelihood?

$$\sup_{\theta} \mathbb{E} \log p_{\theta}(x) \approx \sup_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(x_i).$$

• How do we compute $p_{\theta}(x)$?

Calculating the Likelihood?

Definition 1. Given a probability space (\mathcal{Z}, q) , a (measurable) function $g : \mathcal{Z} \to \mathcal{X}$ induces a **pushforward** distribution on \mathcal{X} defined, for any (measurable) set $A \subset \mathcal{X}$ by

$$\Pr(A) = \int_{g^{-1}(A)} q(z) dz.$$

• How do we compute $p_{\theta}(x)$ defined by pushforward $g_{\theta}: \mathcal{Z} \to \mathcal{X}$?

$$\Pr(A) = \Pr(g^{-1}(A)) = \int_{g^{-1}(A)} q(z) \, dz = \int_A q(g^{-1}(x)) |\nabla_x g^{-1}(x)| \, dx.$$

- So the density is given by $p_{\theta}(x) = q(g_{\theta}^{-1}(x))|\nabla_x g_{\theta}^{-1}(x)|$.
- Uh oh.

Density Estimation

- Approximating the function p(x) is called the density estimation problem.
- Suppose we (somehow) optimize a generator g_{θ} such that $p_{\theta} \approx p$.
- If we can compute $g_{\theta}^{-1}(x)$ and $\nabla_x g_{\theta}^{-1}(x)$ then we have a density estimator.
- In many cases, generation (sampling) is easier than density estimation.