Generative Models

Instructor: John Thickstun

Discussion Board: Available on Canvas
Zoom Link: Available on Canvas (or email the instructor)
Instructor Contact: thickstn@cs.washington.edu

Course Webpage: https://courses.cs.washington.edu/courses/cse599i/20au/
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Course Overwew

- Autoregressive Models
 Variational Autoencoders
« Generative Adversarial Nets

 Generative Flow

* Energy-Based Models ﬁ-.&- . 9 ‘ E“
Parmar et. al. (ICML, 2018)
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Course Overview

» Autoregressive Models

» Variational Autoencoders
» Generative Adversarial Nets
» Generative Flow

* Energy-Based Models

Vahdat and Kautz (Preprint 2020)
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Course O

» Autoregressive Models

 Variational Autoencoders

« Generative Adversarial Nets

 Generative Flow

* Energy-Based Models

Brock et. al. (ICLR, 2019)
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» Autoregressive Models

» Variational Autoencoders

» Generative Adversarial Nets
» Generative Flow

* Energy-Based Models

CSE 599I: Generative Models

Ma et. al. (Neurips, 2019)
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Course Overwew

» Autoregressive Models | ;ﬂs_ -

LS oL
L o

 Variational Autoencoders
« Generative Adversarial Nets

 Generative Flow

- Energy-Based Models

Song and Ermon (ICML, 2018)
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Computing Resources

Hyperparamter MNIST CIFAR-10 ImageNet CelebA HQ CelebA HQ FFHQ
28 %28 32%x32 32x32 64 x 64 256 x256 256 x256
# epochs 400 400 40 500 400 200
batch size per GPU 200 32 8 16 4 4
# normalizing flows 0 2 2 2 4 4
# latent variable scales 2 1 1 3 5 5
: 4,4, 4, 4,4, 4,
# groups in each scale 5,10 30 28 5, 10, 20 8. 16 8. 16
oy g . 9 092 5 0 9 142 An2 82,162, 322, 82,162, 322,
spatial dims of z in each scale 44 8 16 16 84, 16-, 32 642, 128 642 1282
# channel in 2 20 20 20 20 20 20
# 1nitial channels in enc. 32 128 192 64 32 32
# residual cells per group 1 2 2 2 2 2
A 0.01 0.1 0.01 0.01 0.01 0.1
GPU type 16-GB V100 16-GB V100 16-GB V100 16-GB V100 32-GB V100 32-GB V100
# GPUs 2 8 32 8 24" 24"

total train time (h) 24 100 200 150 180 220

NVAE: Vahdat and Kautz (Preprint 2020)
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Class Computing Resources

» https://colab.research.google.com/

* 1 GPU (probably a K80) or TPU per person
» Homeworks are designed to run in Colab with Python and PyTorch
* Homework O:

= Familiarize yourself with Google Colab

= Familiarize yourself with PyTorch
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Expectations

 (Generative models are an active area of research.

» Lectures will give a high-level sketch of ideas.

» Lecture notes (website) will give a more complete treatment, with references.
* I’ll try to present a clear picture of what’s going on mathematically.
» We’ll also try to understand how these ideas are put into practice at scale.
* There will be a lot of content in this class:
> |If you want to focus more on either the theory or empirical side, that’s fine.

> |f certain topics interest you more than others: also fine.
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Course Project

* Anything related to generative models, theoretical or applied.
» Partner with up to 4 people.
» Consider what computing resources you might need and plan ahead.
- Examples of possible projects:
> An application of generative models to your own research.
> Reproduction of empirical results reported in a recent paper.
>~ Exposition or extension of a technical theoretical result in a recent paper.

> Application of generative modeling techniques to a novel dataset.
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5-Minute Break
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Generative Modeling

e Given finite samples z1,...,x, ~ p, and unlimited samples z ~ q.
 Learn a function gy : Z — X, which induces a distribution py on X.
 E.g.if ¢(z) = Uniform(0, 1) and go(2) = 0z then pyp(x) = Uniform(0, 9).
e |earn the parameters so that pys =~ p.

» Generate samples = = gg(2) ~ pg.
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Sampling from a Gaussian

» Given samples Z1, ..., %, ~ N (u,0%), and unlimited samples z ~ A/ (0, 1).
 Estimate the mean and variance: [t = = i: T, 0% = ! f:(ai — [1)*
. n (% n 1 .

A A

» Define g(z) =1+ o2z.

» Generate samples z = g(z) ~ N (f,67).
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Pushforward Distributions

Definition 1. Given a probability space (Z,q), a (measurable) function g : Z — X induces a
pushforward distribution on X defined, for any (measurable) set A C X by

Pr(A) = /—1(A) q(z) dz.

e If Zand X are both discrete spaces: Pr(A) = Z q(2).
z:g(z)EA

» Suppose z ~ Uniform(0,1) and g(z) = 1.<,, then g(z) ~ Bernoulli(p).
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Inverse Transform Sampling

* | have samples from Uniform(0, 1). | want samples with CDF F.
» Define a generator (the inverse CDF) ¢(z) = inf{x : F'(x) > z}.
o If 2 ~ Uniform(0, 1), then g(z) is distributed according to F.

* Convert samples from the uniform distribution to an arbitrary distribution!
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Finite Generative Modeling

e Given finite samples x1,...,z, ~ p from a finite space X.
e Estimate the probability mass 7, of each element of X.
« Sample from the distribution p(x) = 7, using Inverse Transform Sampling.

« What’s a good estimate p(x) of the probability mass function p(z)?
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Maximum Likelihood Estimation

» What'’s a good estimate p(x) of the probability mass function p(x)?
 \What about count statistics (the MLE)?
1 (4’
Ty = — 1, —..
o = Z Z
1=1
 What happens if “d > n”?

e |.e. If the size of X Is larger than the number of observed samples.
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Continuous Modeling

» Given finite samples z1,...,z, ~ pfrom a continuous distribution p(x).

* Estimate the probability of each element of A'?

* Using the MLE?

1 .
p(:z:) —Jn { 1 }
0 otherwise.
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Parametric Estimation

 For example, learning a Gaussian.
* Restricting to a parametric family of functions regularizes the problem.
 But we want to learn expressive distributions...

 Parameterize with an expressive family: neural nets!

CSE 599I: Generative Models Lecture 1 University of Washington



Maximize the Likelihood?

 Use a neural network to parameterize go : £ — X.
 Optimize 0 so the pushforward distribution pg(x) approximates p(x).

« How do we optimize? Maximize the likelihood??

1 (4’
sup [E logpg(x) =~ sup — logpo(x;).
1 E logpo(a) ~sup 3 logpa(as

« How do we compute po(z)?
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Calculating the Likelihood?

Definition 1. Given a probability space (Z,q), a (measurable) function g : Z — X induces a
pushforward distribution on X defined, for any (measurable) set A C X by

Pr(A) = /—1(A) q(z) dz.

e How do we compute po () defined by pushforward gg : Z — X'?

Pr(4) = Pr(g™ () = | a0z = [ alo™ @)IVag (@)l
* So the density is given by po(x) = q(g9, (2))|Vag, (x)|.

e Uh oh.
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Density Estimation

» Approximating the function p(x) is called the density estimation problem.
» Suppose we (somehow) optimize a generator go such that py9 =~ p.

- If we can compute g, ! () and V., do : (x) then we have a density estimator.

* |In many cases, generation (sampling) is easier than density estimation.
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