
CSE 599i (Generative Models) Homework 3

Analysis

Problem 1. (Estimating the MLE) We initially abandoned maximum likelihood estimation for
learning a pushforward distribution because computing the likelihood was too difficult. We can
implicitly compute a KL-divergence (and thus the MLE) using an f-GAN. Show that

D(p ‖ q) = 1 + sup
d:X→R

[
E
x∼p

log d(x)− E
x∼q

d(x)

]
.

Hint: Let f(x) = x log x, T (x) = 1 + log d(x), and apply the proposition from Lecture 10.

Problem 2. (Estimating the Reverse-KL) Show that

D(q ‖ p) = 1 + sup
d:X→R

[
E
x∼p

d(x) + E
x∼q

log(−d(x))

]
.

Hint: let f(x) = − log x and apply the proposition from Lecture 10.

Problem 3. (Wasserstein Distance is Smooth) Let p : Rd → R be a probability density on Rd,
and let pσ : Rd → R denote the density of y = x+ ε, where x ∼ p and ε ∼ N (0, σ2I). Recall that
the Wasserstein distance between two probability densities is defined by

W1(p, q) = inf
π∈Π(p,q)

E
(x,y)∼π

[‖x− y‖2] .

Prove that W1(p, pσ) ≤ σ
√
d.

Problem 4. (Wasserstein Distance is a Metric) Recall that the discrete Wasserstein distance on a
space with n elements and cost metric c is defined by

W1(p, q) = min
π∈Π(p,q)

〈c, π〉.

Verify the triangle inequality for the discrete Wasserstein distance:

W1(p, q) ≤W1(p, r) +W1(r, q).

Hint: let πp = arg min
π∈Π(p,r)

〈c, π〉, πq = arg min
π∈Π(r,q)

〈c, π〉, and define κ = πp diag(1/r)πq. Show that

W1(p, q) ≤ 〈κ, c〉 ≤W1(p, r) +W1(r, q).

Hint: Because c is a cost metric, it satisfies the triangle inequality c(x, y) ≤ c(x, z) + c(z, y).

1



Implementation

See the github repository for framework code. Turn in your version of models.py, your mnist.ipynb
and cifar10.ipynb notebooks, and plots of your results. Hacks to notice (but shouldn’t affect your
work): we don’t use BatchNorm in the discriminator (it doesn’t interact well with Lipschitz regu-
larization) and we set β1 = 0 in the Adam optimizer (the momentum seems to destabilize training).

Problem 5. (Wasserstein GAN for MNIST) In this problem you will train a Wasserstein GAN on
the MNIST dataset, using the training framework found in mnist.ipynb. This dataset consists of
28× 28 grayscale images.

Part a. Implement the Wasserstein GAN
optimization updates in mnist.ipynb. People
usually make multiple updates to the discrim-
inator for each update to the generator, but
I find alternating between minimization and
maximization steps works fine. Enforce the Lip-
schitz constraint using gradient penalty (imple-
mented in models.py) with a Lagrange multi-
plier λ = 10.

Part b. Train your model for 40 epochs.
After training, samples from your model should
look like the results to the right. How good are
these results? That’s hard to quantify.

Problem 6. (Wasserstein GAN for CIFAR-10) In this problem you will train a Wasserstein GAN
on the CIFAR-10 dataset, using the training framework found in cifar10.ipynb. This dataset
consists of 3× 32× 32 rgb color images.

Part a. Make minimal updates to
the Generator and Discriminator classes in
models.py to accommodate 3×32×32 CIFAR-
10 data. To account for higher complexity of
CIFAR-10 data, increase the generator’s resid-
ual blocks from 3 to 9.

Part b. Using the same Wasserstein GAN
optimization that you implemented in Problem
5, train your model for at least 100 epochs, cut-
ting the learning rate to 3e-5 after 80 epochs.
You should get an Inception score around 7.9.
If you have the time: train for 300 epochs, cut-
ting the learning rate to 3e-5 after the first 200
epochs. You’ll get results like the ones to the
right with Inception score around 8.2.

2

https://github.com/jthickstun/gm-hw3

