
CSE 599i (Generative Models) Homework 2

Analysis

Problem 1. (KL-Divergence between Gaussians) Let µ : X → Rk, σ : X → Rk and let q(z|x) =
N
(
z;µ(x), diag(σ2(x))

)
. Suppose that p(z) = N (z; 0, I). Show that

D(q(z|x) ‖ p(z)) =
1

2

k∑
i=1

(
σ2i (x) + µ(x)2i − 1− log σ2i (x)

)
.

Problem 2. (Marginal Likelihood Estimation) Consider a latent variable model over pairs (x, z)
where x is observed and z is latent, with a marginal likelihood given by

pθ(x) =

∫
Z
pθ(x|z)r(z) dz.

Given a proposal distribution q(z|x), consider the importance sampling estimator

L̂(x) ≡ log
1

M

M∑
i=1

pθ(x|zi)r(zi)
q(zi|x)

, where zi ∼ q(·|x).

Prove that L̂(x) is a biased estimator of log pθ(x), but is asymptotically unbiased as M →∞:

E
zi∼q(·|x)

[
L̂(x)

]
≤ log pθ(x), but lim

M→∞
L̂(x) = log pθ(x).

Problem 3. (Normalizing Flows) Let q0 be a probability distribution on Z, and define zs =
gs(zt−1) where gs : Z → Z are invertible functions. Prove that the pushforward distribution on
zt = gt ◦ · · · ◦ g1(z0) is given by qt, where

log qt(zt) = log q0(z0)−
t∑

s=1

logdet

(
∂gs(zs−1)

∂zs−1

)
.

Hint: consider using the inverse function theorem.

Problem 4. (A Monte-Carlo Estimator for Entropy Gradients) Let qϕ(z|x) be a family of condi-
tional distributions with parameters ϕ. Show that

∇ϕH(qϕ(z|x)) = − E
z∼qϕ(·|x)

[
(1 + log qϕ(z|x))

qϕ(z|x)
∇ϕqϕ(z|x)

]
.

Hint: apply the policy gradient theorem (or mimic its proof).

1



Implementation

See the github repository for framework code. Turn in your versions of models.py and losses.py.
Consider using smaller models to debug your code before the final run with default hyper-parameters.

Problem 5. (Gaussian Variational Autoencoders) In this problem you will train a Gaussian VAE
for the MNIST dataset, using the training framework found in gaussian vae.ipynb. This dataset
consists of 28× 28 grayscale images.

Part a. Implement the ConvnetBlock found in models.py.

Part b. Train a Gaussian VAE to minimize the negative evidence lower-bound:

L(x; θ, ϕ) = E
z∼qϕ(·|x)

[
1

2σ2
‖x− gθ(z)‖2

]
+D(qϕ(z|x) ‖ r(z)).

Implement this lower bound as gaussian elbo in losses.py using the closed-form expression for
the KL divergence derived in Problem 1. Report visual samples from your optimized model.

Part c. Train a Gaussian VAE with using a monte carlo estimate of the KL divergence:

D(qϕ(z|x) ‖ r(z)) = E
z∼qϕ(·|x)

[
log

qϕ(z|x)

r(z)

]
.

Implement this lower bound as mc gaussian elbo in losses.py. Report the test-set value of the
evidence lower bound. Compare your results to the results of Part b.

Problem 6. (VAE’s with Discrete Outputs) In this problem you will train a Gaussian VAE
with discrete outputs for the binarized MNIST dataset, using the training framework found in
binaryvae.ipynb. This dataset consists of 28 × 28 black-and-white images derived from MNIST
by sampling a value in {0, 1} for each pixel value. In place of the MSE reconstruction term, use a
binary cross-entropy loss in the evidence lower-bound:

L(x; θ, ϕ) = E
z∼qϕ(·|x)

[
− log pθ(x|z)

]
+D(qϕ(z|x) ‖ r(z)).

Part a. Implement MaskedConvnetBlock in models.py (analogous to ConvnetBlock, but us-
ing masked convolutions). Train a PixelCNN using pixelcnn.ipynb. Report test-set log-likelihood.

Part b. Implement the discrete-output ELBO as discrete output elbo in losses.py. Train
a VAE using binaryvae.ipynb and report the test-set marginal log-likelihood estimated using im-
portance sampling with M = 1, 000 samples zi for each data point x.

Part c. Set autoregress = True in binaryvae.ipynb to train a VAE Decoder that conditions
on previously-generated pixels using the PixelCNN you built in Part a and the VAE Encoder from
Part b. Compute the test set value of the ELBO after 20 epochs and compare to the marginal
log-likelihood computed with importance sampling (M = 1, 000). Plot the divergence in the ELBO
as a function of training iterations: you should visibly observe posterior collapse during training.

Part d. Modify the VAE Encoder in models.py to incorporate 8 steps of Inverse Autoregres-
sive Flow. Report the test-set marginal log-likelihood using importance sampling (M = 1, 000).

Part e. (open ended) Train a PixelVAE by combining a PixelCNN Decoder (Part c) with
an IAF Encoder (Part d). Can you prevent posterior collapse?

2

https://github.com/jthickstun/gm-hw2

