
CSE 599i (Generative Models) Homework 1

Analysis

Problem 1. (Location-Scale Transformation) Let g : R → R be defined by z 7→ µ + σz where
µ, σ ∈ R and σ > 0. Prove that if z ∼ N (0, 1) then g(z) ∼ N (µ, σ2).

Problem 2. (Gumbel-Argmax Sampling) Let p be a discrete distribution on the finite space X
with n elements. Define g : (0, 1)n → X by

z 7→ arg max
x∈X

(
log p(x)− log log

1

zx

)
.

Prove that if z ∼ Uniform(0, 1)n i.i.d. then g(z) ∼ p. Hint: − log log 1
zx
∼ Gumbel(0, 1).

Problem 3. (Discrete Maximum Likelihood Estimation) Let p be a discrete distribution on a finite
space X and define

π∗ = arg max
π∈∆|X|−1

E
x∼p

[log πx] .

Show that π∗x = p(x) for all x ∈ X . Hint: consider using the information inequality D(p ‖ q) ≥ 0.

Problem 4. (The M-step of EM for GMMs). Let pθ(x, z) be a K-Gaussian mixture model with
parameters θ = (π, µ) defined by the generative process

1. z ∼ Categoricalπ(K),

2. x ∼ N (µz, I).

Consider the ELBO optimization problem:

π′, µ′ = arg max
π,µ

E
x∼p

[
E

z∼q(·|x)

[
log pθ(x|z)

]
−D(q(z|x) ‖ pθ(z))

]
.

Prove that, if we approximate the expectation E
x∼p

with samples x1, . . . , xn ∼ p, then

π′k =
1

n

n∑
i=1

q(zk|xi), µ′k =
1

nπ′k

n∑
i=1

q(zk|xi)xi.

Problem 5. (Autoregressive Mean Estimation) Recall the AR(1) model defined in Lecture 3,
where a sequence x ∈ RT×1 is governed by the following linear dynamics (|ρ| < 1):

xt = ρ(xt−1 − µ) + µ+ εt,

x1 = µ+ ε1.

Assume that ε1 ∼ N (0, σ2

1−ρ2) and that εt ∼ N (0, σ2) for t > 1. Verify the following claims in the

lecture notes: E[xt] = µ, Var[xt] = σ2

1−ρ2 , and γ(k) = ρkσ2

1−ρ2 .

Problem 6. (Time Series Estimation) Construct an example of a time series for which the sample
mean is an inconsistent estimator of the process mean.

1

Implementation

Problem 7. (Gaussian Mixture Models) In this exercise, you will fit the means θ = {µ1, µ2, µ3}
of a GMM (assume that πk = 1/3 and Σk is the identity), using the data generated in Part a. You
will try three different optimization techniques to approximate the maximum likelihood estimator

θ̂mle = arg max
θ

n∑
i=1

log pθ(xi).

You should find that each algorithm produces comparable numerical results, with a final negative
log-likelihood of around 3.9 nats. You can verify that each algorithm has converged well by plot-
ting the final estimates of the means superimposed on the data. Hint: use PyTorch’s automatic
differentiation to compute gradients, rather than trying to take them by hand.

Part a. Sample 1, 000 points from each of three Gaussian distributions in R2 with means
µ0 = (−2, 0), µ1 = (1, 3), and µ2 = (2,−2) and identity covariance (n = 3, 000 total points). Plot
the points in a 2-d scatter plot.

Part b. Implement gradient ascent to approximate the MLE of θ . Plot the log-likelihood of
the data using the estimators pθ(k) as a function of k = {0, . . . , 10}, where θ(k) are the values of the
parameters after the k’th iteration of gradient descent.

Part c. Implement stochastic gradient ascent (SGD) to approximate the MLE of θ. Plot the
log-likelihood of the data using the estimators pθ(k) as a function of k = {0, . . . , 5000}, where θ(k)

are the values of the parameters after the k’th iteration of SGD.

Part d. Implement expectation-maximization (EM) to approximate the MLE of θ, using the
result of Problem 4. Plot the log-likelihood of the data using the estimators pθ(k) as a function of
k = {0, . . . , 10}, where θ(k) are the values of the parameters after the k’th iteration of EM.

Problem 8. (Wikitext-2) See the github repository for framework code. I encourage you to read
the code in the context of the discussion we’ve had in class (there’s not that much code!). There
should be no surprising hacks in this codebase; if something does seem surprising, please bring it
up on the class discussion board and we can talk about it.

Part a. Implement the forward pass of the the TransformerBlock found in transformer.py.

Part b. Train your transformer for 10 epochs on Wikitext-2 using 2 layers and 2 attention
heads, and no dropout. Report the test set log-likelihood of the model.

Part c. Train your transformer for 10 epochs on Wikitext-2 using 16 layers and 10 attention
heads, and no dropout. Report the test set log-likelihood of the model.

Part d. Train your transformer for 80 epochs on Wikitext-2 using 16 layers, 10 attention heads,
20% dropout, and 60% input/output dropout. Report the test set log-likelihood of the model.

2

https://github.com/jthickstun/gm-hw1

