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The idea of a denoising autoencoder [Vincent et al., 2010] is to recover a data point x ∼ p given
a noisy observation, for example x̃ = x+ ε where ε ∼ N (0, σ2I). These models were initially intro-
duced to provide an objective for unsupervised pre-training of deep networks. While that training
methodology has become less relevant over time, the denoising autoencoder has been adapted as a
means of constructing generative models [Bengio et al., 2013] leading to recent spectacular results
[Ho et al., 2020].

Denoising Autoencoders

Formally, let x ∼ p, x̃ ∼ p(·|x), which together define a joint distribution p(x, x̃) = p(x̃|x)p(x). A
denoising autoencoder is a model of the posterior distribution

p(x|x̃) =
p(x̃|x)p(x)∫
X p(x̃|y)p(y) dy

. (1)

Specifically, we model pθ(x|x̃) = N (gθ(fϕ(x̃)), σ2I), where fϕ : X → Z and gθ : Z → X are neural
networks work parameters ϕ and θ respectively. Fitting this model using the maximum likelihood
estimator leads to the reconstruction objective

θ∗, ϕ∗ = arg min
θ,ϕ

E
(x,x̃)∼p

‖x− gθ(fϕ(x̃))‖2. (2)

We can think of the composition gθ ◦fϕ(x̃) as projecting a corrupted data point x̃ ∼ p(·|x) back
onto the support of p (the data manifold) and we can think of the latent space Z as a coordinate
system on the data manifold. Previewing the work of Bengio et al. [2013] and [Ho et al., 2020], we
can imagine constructing a Markov chain of denoising autoencoders that guides us from samples
x0 = ε ∼ N (0, I) through a sequence of denoising operations xs ∼ ps,θ(·|xs−1) to produce a final
sample xt distributed approximately according to p.

Denoising Score Matching

We can use a denoising autoencoder to construct an explicit score matching estimator, following
Vincent [2011]. Recall that the score function estimator given by minimization of the Fisher
divergence

θ̂ = arg min
θ

E
x∼p

[
1

2
‖sθ(x)−∇x log p(x)‖22

]
. (3)

This expression requires that we evaluate gradients of the unknown density p(x), which are not
accessible to us. Previously, we saw an implicit score matching estimator [Hyvärinen, 2005] for
estimating this quantity using samples. Denoising autoencoders offer another alternative.
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Suppose we are willing to settle for samples of an estimate of the density p(x) given by the
noisy distribution

q(x̃) =

∫
X
p(x̃|x)p(x) dx. (4)

For example, if p(x̃|x) = pσ(x̃|x) = N (x̃;x, σ2I) for small variance σ2, then q(x̃) = qσ(x̃) is a
Gaussian convolution corresponding to a mildly-smoothed version of p(x), with D(qσ ‖ p) → 0 as
σ2 → 0. Suppose we want to calculate the score matching estimator for this noisy distribution qσ.
The following proposition shows that this is much easier than score matching with p.

Proposition 1. (Denoising Score Matching) [Vincent, 2011]

arg min
θ

E
x̃∼qσ

[
1

2
‖sθ(x̃)−∇x̃ log qσ(x̃)‖22

]
= arg min

θ
E
x∼p

x̃∼pσ(·|x)

[
1

2
‖sθ(x̃)−∇x̃ log pσ(x̃|x)‖22

]
. (5)

Proof. Expanding the quadratic and dropping the constant term, we have

arg min
θ

E
x̃∼qσ

[
1

2
‖sθ(x̃)−∇x̃ log qσ(x̃)‖22

]
= arg min

θ
E

x̃∼qσ

[
1

2
‖sθ(x̃)‖2 − sθ(x̃)T∇x̃ log qσ(x̃)

]
. (6)

And with routine algebraic calcuations,

E
x̃∼qσ

[
sθ(x̃)T∇x̃ log qσ(x̃)

]
=

∫
X
sθ(x̃)T∇x̃ log qσ(x̃)qσ(x̃) dx̃ (7)

=

∫
X
sθ(x̃)T∇x̃qσ(x̃) dx̃ (8)

=

∫
X
sθ(x̃)T∇x̃

∫
X
p(x)pσ(x̃|x) dx dx̃ (9)

=

∫
X
sθ(x̃)T

∫
X
∇x̃p(x)pσ(x̃|x) dx dx̃ (10)

=

∫
X
sθ(x̃)T

∫
X
p(x)pσ(x̃|x)∇x̃ log pσ(x̃|x) dx dx̃ (11)

=

∫∫
X×X

p(x)pσ(x̃|x)sθ(x̃)T∇x̃ log pσ(x̃|x) d(x, x̃) (12)

= E
x∼p

x̃∼pσ(x̃|x)

[
sθ(x̃)T∇x̃ log pσ(x̃|x)

]
. (13)

From this and Equation 6, completing the square gives us

arg min
θ

E
x̃∼qσ

[
1

2
‖sθ(x̃)‖2 − sθ(x̃)T∇x̃ log qσ(x̃)

]
(14)

= arg min
θ

E
x∼p

x̃∼pσ(x̃|x)

[
1

2
‖sθ(x̃)‖2 − sθ(x̃)T∇x̃ log pσ(x̃|x)

]
(15)

= arg min
θ

E
x∼p

x̃∼pσ(x̃|x)

[
1

2
‖sθ(x̃)‖2 − sθ(x̃)T∇x̃ log pσ(x̃|x) +

1

2
‖∇x̃ log pσ(x̃|x)‖2

]
(16)

= arg min
θ

E
x∼p

x̃∼pσ(·|x)

[
1

2
‖sθ(x̃)−∇x̃ log pσ(x̃|x)‖22

]
(17)
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