
Energy Based Models

John Thickstun

The idea of an energy-based model [Hinton, 1999] is, rather than explicitly learning a prob-
abilistic model pθ(x) over a space X , to instead learn an energy functional Eθ : X → R. This
energy functional can be used to implicitly define a probability distribution, for example a Gibbs
distribution

pθ(x) =
1

Zθ
e−Eθ(x), where Zθ =

∫
X
e−Eθ(y) dy. (1)

The point is that, while it is easy to construct a function Eθ(x), it can be quite challenging to
enforce the constraint

∫
X pθ(x) = 1, or to compute the partition function Zθ for a given energy

function Eθ(x).
To use an energy-based model as a generative model, we need to solve two problems. First,

we need a training procedure for optimizing the parameters of the energy function Eθ so that
the implicit distribution pθ(x) approximates the data generating distribution p(x). And second,
we need a sampling procedure for drawing samples x ∼ pθ. Solutions to both problems should
avoid calculation of the intractable integral Zθ. For early approaches to this problem based on
the contrastive divergence, see Hinton [2002] and Hinton et al. [2006]. For a modern, empirical
realization of these ideas see Du and Mordatch [2019].

Langevin Dynamics

Setting aside for the moment the question of training an energy function, suppose we have a model
Eθ and we want to sample from the implied distribution x ∼ pθ. While directly sampling from
pθ is difficult, we can approximate samples using a Markov chain with stationary distribution pθ.
A convenient construction on X = Rd is Langevin dynamics; this is a continuous Markov process
with dynamics given by the stochastic differential equation

∂xt
∂t

= ∇x log pθ(xt) dt+
√

2 dWt, (2)

where dWt is a white noise process, given by the derivative of standard Brownian motion Wt. The
Fokker-Planck equation shows that diffusion following these dynamics converges asymptotically to
samples xt ∼ pθ, in the sense that D(xt ‖ pθ)→ 0 as t→∞.

For implementation, we cannot exactly construct a diffusion xt following the dynamics of Equa-
tion (3). In practice, we will discretize the diffusion and follow a discrete Markov chain driven by
i.i.d. Gaussian noise εt ∼ N (0, I):

xt+1 = xt − η∇x log pθ(xt) +
√

2ηεt. (3)

This can be viewed as the stochastic analog to an Euler discretization of a deterministic differential
equation. As η → 0, the approximation to the continuous dynamics of Equation (3) becomes more
precise, but mixing will become more slow; an effective accelerated mixing algorithm based on
simulated annealing [Neal, 2001] is presented in Song and Ermon [2019].
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Score Matching

We can apply Langevin Dynamics to sample from an energy based model, because

∇x log pθ(x) = −∇xEθ(x)−∇x logZθ = −∇xEθ(x). (4)

In fact, we can be even more direct and simply model the gradient field of the log-density, also
known as the score function s : Rd → Rd defined by x 7→ ∇x log p(x). Want to estimate this score
function using a neural parameterization sθ : Rd → Rd, which implicitly defines an energy function
Eθ : Rd → R (by integration) and a density pθ (by choosing the appropriate normalization Zθ). We
will now focus on learning this score function sθ : Rd → Rd that minimizes the Fisher divergence

E
x∼p

[
1

2
‖sθ(x)−∇x log p(x)‖22

]
. (5)

The Fisher divergence provides us with another measure of the distance between two probability
distributions, analogous to KL divergence:

DFisher(p ‖ q) ≡ E
x∼p

[
1

2

∥∥∥∥∇x log
p(x)

q(x)

∥∥∥∥2
]
. (6)

A precise connection between Fisher divergence and the rate of change in KL-divergence over
smoothed versions of p sand q. Define x̃t = x +

√
tεx and ỹt = y +

√
tεy, where x ∼ p, y ∼ q,

and εx, εy ∼ N (0, I) (independent samples). Let pt(x̃t) and qt(ỹt) denote the densities of x̃t and ỹt
respectively. Adding Gaussian noise to x, y corresponds to smoothing of their probability densities
(Gaussian convolution).

Proposition 1. [Lyu, 2012] Under mild regularity conditions,

d

dt
D(pt ‖ qt) = −DFisher(pt ‖ qt). (7)

Because Fisher divergence is non-negative, integrating we see that D(pt ‖ qt) → 0 as t → ∞, and
this convergence is monotonic.

Implicit Score Matching

We can’t compute the score matching objective, because it required evaluation of (gradients of)
the unknown density p(x). But it turns out that we can minimize it implicitly.

Proposition 2. (Implicit Score Matching) [Hyvärinen, 2005]

arg min
θ

E
x∼p

[
1

2
‖sθ(x)−∇x log p(x)‖22

]
= arg min

θ
E
x∼p

[
tr (∇xsθ(x)) +

1

2
‖sθ(x)‖22

]
. (8)

Proof. Expanding the quadratic and dropping the constant term, we have

arg min
θ

E
x∼p

[
1

2
‖sθ(x)−∇x log p(x)‖22

]
= arg min

θ
E
x∼p

[
1

2
‖sθ(x)‖2 − sθ(x)T∇x log p(x)

]
. (9)
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So we just need to show that the inner product term is equivalent to tr(∇xsθ(x)). Applying
integration by parts, we find that

E
x∼p

[
sθ(x)T∇x log p(x)

]
=

d∑
i=1

∫
X
sθ(x)i

∂ log p(x)

∂xi
p(x) dx

=

d∑
i=1

∫
X
sθ(x)i

∂p(x)

∂xi
dx

= −
d∑
i=1

∫
X

sθ(x)i
∂xi

p(x) dx

= −
∫
X

tr (∇xsθ(x)) p(x) dx = − E
x∼p

[tr (∇xsθ(x))] .

Sliced Score Matching

The right-hand side of Equation (8) is interesting because it can be approximated by monte carlo,
and evaluation of the objective only involves our model sθ. But this is not yet a convenient
objective for modeling, because the quantity tr(∇xsθ(x)) is a second-order statistic; it is the trace
of the Hessian of the log-likelihood log pθ(x). Evaluating this quantity scales like O(d) in the
dimensionality of x ∈ Rd. We can create a tractable objective [?] by minimizing Equation (5)
along random projections v ∼ r, e.g. from a Gaussian r = N (0, I):

L(θ, v) ≡ E
x∼p

[
1

2

(
vT sθ(x)− vT∇x log p(x)

)2]
. (10)

We can replace this projected loss with an equivalent quantity that can be estimated from samples
(Proposition 2):

arg min
θ

E
v∼r

L(θ, v) = arg min
θ

E
v∼r

vT E
x∼p

[
1

2
‖sθ(x)−∇x log p(x)‖2

]
v (11)

= arg min
θ

E
v∼r

vT E
x∼p

[
tr (∇xsθ(x)) +

1

2
‖sθ(x)‖22

]
v (12)

= arg min
θ

E
v∼r
x∼p

[
vT∇xsθ(x)v +

1

2

(
vT sθ(x)

)2]
. (13)

Crucially, this objective involves only Hessian-vector products, which can be computed in time
complexity independent of the data dimension. The following proposition shows that, so long as
our random projections v ∼ r span the space Rd, we can recover the data generating distribution
p(x) by minimizing the expected loss L(θ, v).

Proposition 3. [Song, Garg, Shi, and Ermon, 2019] Suppose p(x) = pθ∗(x) for some value of
the parameters θ∗ (the data-generating distribution is realizable). If r is positive definite, i.e.

Ev∼r[vvT ] � 0, then

E
v∼r

L(θ, v) = 0 if and only if θ = θ∗. (14)
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Proof. Suppose Ev∼r L(θ, v) = 0 (the converse is clearly true). Note that L(θ, v) ≥ 0 and therefore
for any x,

0 = E
v∼r

[
1

2

(
vT sθ(x)− vT∇x log p(x)

)2]
(15)

= E
v∼r

[
1

2
vT (sθ(x)−∇x log p(x)) (sθ(x)−∇x log p(x))T v

]
(16)

=
1

2
(sθ(x)−∇x log p(x))T E

v∼r

[
vvT

]
(sθ(x)−∇x log p(x)) . (17)

Because Ev∼r[vvT ] � 0, we deduce that sθ(x)−∇x log p(x) = 0.
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