Energy Based Models

John Thickstun

The idea of an energy-based model [Hinton, 1999] is, rather than explicitly learning a probabilistic model $p_{\theta}(x)$ over a space \mathcal{X} , to instead learn an energy functional $E_{\theta} : \mathcal{X} \to \mathbb{R}$. This energy functional can be used to implicitly define a probability distribution, for example a Gibbs distribution

$$p_{\theta}(x) = \frac{1}{Z_{\theta}} e^{-E_{\theta}(x)}, \text{ where } Z_{\theta} = \int_{\mathcal{X}} e^{-E_{\theta}(y)} \, dy.$$
(1)

The point is that, while it is easy to construct a function $E_{\theta}(x)$, it can be quite challenging to enforce the constraint $\int_{\mathcal{X}} p_{\theta}(x) = 1$, or to compute the partition function Z_{θ} for a given energy function $E_{\theta}(x)$.

To use an energy-based model as a generative model, we need to solve two problems. First, we need a training procedure for optimizing the parameters of the energy function E_{θ} so that the implicit distribution $p_{\theta}(x)$ approximates the data generating distribution p(x). And second, we need a sampling procedure for drawing samples $x \sim p_{\theta}$. Solutions to both problems should avoid calculation of the intractable integral Z_{θ} . For early approaches to this problem based on the contrastive divergence, see Hinton [2002] and Hinton et al. [2006]. For a modern, empirical realization of these ideas see Du and Mordatch [2019].

Langevin Dynamics

Setting aside for the moment the question of training an energy function, suppose we have a model E_{θ} and we want to sample from the implied distribution $x \sim p_{\theta}$. While directly sampling from p_{θ} is difficult, we can approximate samples using a Markov chain with stationary distribution p_{θ} . A convenient construction on $\mathcal{X} = \mathbb{R}^d$ is Langevin dynamics; this is a continuous Markov process with dynamics given by the stochastic differential equation

$$\frac{\partial x_t}{\partial t} = \nabla_x \log p_\theta(x_t) \, dt + \sqrt{2} \, dW_t, \tag{2}$$

where dW_t is a white noise process, given by the derivative of standard Brownian motion W_t . The Fokker-Planck equation shows that diffusion following these dynamics converges asymptotically to samples $x_t \sim p_{\theta}$, in the sense that $D(x_t \parallel p_{\theta}) \to 0$ as $t \to \infty$.

For implementation, we cannot exactly construct a diffusion x_t following the dynamics of Equation (3). In practice, we will discretize the diffusion and follow a discrete Markov chain driven by i.i.d. Gaussian noise $\varepsilon_t \sim \mathcal{N}(0, I)$:

$$x_{t+1} = x_t - \eta \nabla_x \log p_\theta(x_t) + \sqrt{2\eta} \varepsilon_t.$$
(3)

This can be viewed as the stochastic analog to an Euler discretization of a deterministic differential equation. As $\eta \to 0$, the approximation to the continuous dynamics of Equation (3) becomes more precise, but mixing will become more slow; an effective accelerated mixing algorithm based on simulated annealing [Neal, 2001] is presented in Song and Ermon [2019].

Score Matching

We can apply Langevin Dynamics to sample from an energy based model, because

$$\nabla_x \log p_\theta(x) = -\nabla_x E_\theta(x) - \nabla_x \log Z_\theta = -\nabla_x E_\theta(x).$$
(4)

In fact, we can be even more direct and simply model the gradient field of the log-density, also known as the score function $s : \mathbb{R}^d \to \mathbb{R}^d$ defined by $x \mapsto \nabla_x \log p(x)$. Want to estimate this score function using a neural parameterization $s_{\theta} : \mathbb{R}^d \to \mathbb{R}^d$, which implicitly defines an energy function $E_{\theta} : \mathbb{R}^d \to \mathbb{R}$ (by integration) and a density p_{θ} (by choosing the appropriate normalization Z_{θ}). We will now focus on learning this score function $s_{\theta} : \mathbb{R}^d \to \mathbb{R}^d$ that minimizes the Fisher divergence

$$\mathop{\mathbb{E}}_{x \sim p} \left[\frac{1}{2} \| s_{\theta}(x) - \nabla_x \log p(x) \|_2^2 \right].$$
(5)

The Fisher divergence provides us with another measure of the distance between two probability distributions, analogous to KL divergence:

$$D_{\text{Fisher}}(p \parallel q) \equiv \mathop{\mathbb{E}}_{x \sim p} \left[\frac{1}{2} \left\| \nabla_x \log \frac{p(x)}{q(x)} \right\|^2 \right].$$
(6)

A precise connection between Fisher divergence and the rate of change in KL-divergence over smoothed versions of p sand q. Define $\tilde{x}_t = x + \sqrt{t}\varepsilon_x$ and $\tilde{y}_t = y + \sqrt{t}\varepsilon_y$, where $x \sim p$, $y \sim q$, and $\varepsilon_x, \varepsilon_y \sim \mathcal{N}(0, I)$ (independent samples). Let $p_t(\tilde{x}_t)$ and $q_t(\tilde{y}_t)$ denote the densities of \tilde{x}_t and \tilde{y}_t respectively. Adding Gaussian noise to x, y corresponds to smoothing of their probability densities (Gaussian convolution).

Proposition 1. [Lyu, 2012] Under mild regularity conditions,

$$\frac{d}{dt}D(p_t \parallel q_t) = -D_{\text{Fisher}}(p_t \parallel q_t).$$
(7)

Because Fisher divergence is non-negative, integrating we see that $D(p_t \parallel q_t) \to 0$ as $t \to \infty$, and this convergence is monotonic.

Implicit Score Matching

We can't compute the score matching objective, because it required evaluation of (gradients of) the unknown density p(x). But it turns out that we can minimize it implicitly.

Proposition 2. (Implicit Score Matching) [Hyvärinen, 2005]

$$\arg\min_{\theta} \mathbb{E}_{x \sim p} \left[\frac{1}{2} \| s_{\theta}(x) - \nabla_x \log p(x) \|_2^2 \right] = \arg\min_{\theta} \mathbb{E}_{x \sim p} \left[\operatorname{tr} \left(\nabla_x s_{\theta}(x) \right) + \frac{1}{2} \| s_{\theta}(x) \|_2^2 \right].$$
(8)

Proof. Expanding the quadratic and dropping the constant term, we have

$$\arg\min_{\theta} \mathbb{E}_{x \sim p} \left[\frac{1}{2} \| s_{\theta}(x) - \nabla_x \log p(x) \|_2^2 \right] = \arg\min_{\theta} \mathbb{E}_{x \sim p} \left[\frac{1}{2} \| s_{\theta}(x) \|^2 - s_{\theta}(x)^T \nabla_x \log p(x) \right].$$
(9)

So we just need to show that the inner product term is equivalent to $tr(\nabla_x s_\theta(x))$. Applying integration by parts, we find that

$$\begin{split} \mathbb{E}_{x \sim p} \left[s_{\theta}(x)^{T} \nabla_{x} \log p(x) \right] &= \sum_{i=1}^{d} \int_{\mathcal{X}} s_{\theta}(x)_{i} \frac{\partial \log p(x)}{\partial x_{i}} p(x) \, dx \\ &= \sum_{i=1}^{d} \int_{\mathcal{X}} s_{\theta}(x)_{i} \frac{\partial p(x)}{\partial x_{i}} \, dx \\ &= -\sum_{i=1}^{d} \int_{\mathcal{X}} \frac{s_{\theta}(x)_{i}}{\partial x_{i}} p(x) \, dx \\ &= -\int_{\mathcal{X}} \operatorname{tr} \left(\nabla_{x} s_{\theta}(x) \right) p(x) \, dx = - \mathbb{E}_{x \sim p} \left[\operatorname{tr} \left(\nabla_{x} s_{\theta}(x) \right) \right]. \end{split}$$

Sliced Score Matching

The right-hand side of Equation (8) is interesting because it can be approximated by monte carlo, and evaluation of the objective only involves our model s_{θ} . But this is not yet a convenient objective for modeling, because the quantity $\operatorname{tr}(\nabla_x s_{\theta}(x))$ is a second-order statistic; it is the trace of the Hessian of the log-likelihood $\log p_{\theta}(x)$. Evaluating this quantity scales like O(d) in the dimensionality of $x \in \mathbb{R}^d$. We can create a tractable objective [?] by minimizing Equation (5) along random projections $v \sim r$, e.g. from a Gaussian $r = \mathcal{N}(0, I)$:

$$L(\theta, v) \equiv \mathop{\mathbb{E}}_{x \sim p} \left[\frac{1}{2} \left(v^T s_\theta(x) - v^T \nabla_x \log p(x) \right)^2 \right].$$
(10)

We can replace this projected loss with an equivalent quantity that can be estimated from samples (Proposition 2):

$$\arg\min_{\theta} \mathop{\mathbb{E}}_{v \sim r} L(\theta, v) = \arg\min_{\theta} \mathop{\mathbb{E}}_{v \sim r} v^T \mathop{\mathbb{E}}_{x \sim p} \left[\frac{1}{2} \| s_{\theta}(x) - \nabla_x \log p(x) \|^2 \right] v$$
(11)

$$= \arg\min_{\theta} \mathop{\mathbb{E}}_{v \sim r} v^{T} \mathop{\mathbb{E}}_{x \sim p} \left[\operatorname{tr} \left(\nabla_{x} s_{\theta}(x) \right) + \frac{1}{2} \| s_{\theta}(x) \|_{2}^{2} \right] v \tag{12}$$

$$= \arg\min_{\theta} \mathop{\mathbb{E}}_{\substack{v \sim r \\ x \sim p}} \left[v^T \nabla_x s_\theta(x) v + \frac{1}{2} \left(v^T s_\theta(x) \right)^2 \right].$$
(13)

Crucially, this objective involves only Hessian-vector products, which can be computed in time complexity independent of the data dimension. The following proposition shows that, so long as our random projections $v \sim r$ span the space \mathbb{R}^d , we can recover the data generating distribution p(x) by minimizing the expected loss $L(\theta, v)$.

Proposition 3. [Song, Garg, Shi, and Ermon, 2019] Suppose $p(x) = p_{\theta^*}(x)$ for some value of the parameters θ^* (the data-generating distribution is realizable). If r is positive definite, i.e. $\mathbb{E}_{v \sim r}[vv^T] \succ 0$, then

$$\mathop{\mathbb{E}}_{v \sim r} L(\theta, v) = 0 \text{ if and only if } \theta = \theta^*.$$
(14)

Proof. Suppose $\mathbb{E}_{v \sim r} L(\theta, v) = 0$ (the converse is clearly true). Note that $L(\theta, v) \ge 0$ and therefore for any x,

$$0 = \mathop{\mathbb{E}}_{v \sim r} \left[\frac{1}{2} \left(v^T s_\theta(x) - v^T \nabla_x \log p(x) \right)^2 \right]$$
(15)

$$= \mathop{\mathbb{E}}_{v \sim r} \left[\frac{1}{2} v^T \left(s_\theta(x) - \nabla_x \log p(x) \right) \left(s_\theta(x) - \nabla_x \log p(x) \right)^T v \right]$$
(16)

$$= \frac{1}{2} \left(s_{\theta}(x) - \nabla_x \log p(x) \right)^T \mathop{\mathbb{E}}_{v \sim r} \left[v v^T \right] \left(s_{\theta}(x) - \nabla_x \log p(x) \right).$$
(17)

Because $\mathbb{E}_{v \sim r}[vv^T] \succ 0$, we deduce that $s_{\theta}(x) - \nabla_x \log p(x) = 0$.

References

- Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. In Advances in Neural Information Processing Systems, pages 3608–3618, 2019. (document)
- Geoffrey Hinton, Simon Osindero, Max Welling, and Yee-Whye Teh. Unsupervised discovery of nonlinear structure using contrastive backpropagation. *Cognitive science*, 2006. (document)
- Geoffrey E Hinton. Products of experts. 1999. (document)
- Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. *Neural* computation, 2002. (document)
- Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal of Machine Learning Research, 2005. 2
- Siwei Lyu. Interpretation and generalization of score matching. In Uncertainty in Artificial Intelligence, 2012. 1
- Radford M Neal. Annealed importance sampling. Statistics and computing, 2001. (document)
- Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. In Advances in Neural Information Processing Systems, 2019. (document)
- Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach to density and score estimation. In *Uncertainty in Artificial Intelligence*, 2019. **3**