
Generative Flow

John Thickstun

Suppose pθ is defined implicitly by the pushforward of a density q using a generator gθ : Z → X .
Changing variables from z to x, we see that

Pr(A) = Pr(g−1
θ (A)) =

∫
g−1
θ (A)

q(z) dz =

∫
A
q(g−1

θ (x))|∇xg−1
θ (x)| dx. (1)

And therefore the density q(z) pushes forward to

pθ(x) = q(g−1
θ (x))|∇xg−1

θ (x)|. (2)

If the inverse of gθ and its Jacobian are easily computed, we can use Equation (2) to convert
a generator into a density estimator. Furthermore, we can train this generator using maximum
likelihood estimation. Given samples x1, . . . , xn ∼ p,

θ̂mle = arg min
θ

E
x∼p
− log pθ(x) ≈ arg min

θ

n∑
i=1

− log q(g−1
θ (xi))− logdet∇xg−1

θ (xi). (3)

Generative Flow

We’ve already seen one example of a network architecture gθ for which we can compute cheap
inverses and Jacobians: inverse autoregressive flow (IAF) [Kingma et al., 2016]. These flows worked
well for parameterizing variational posteriors, but they are not so suitable for parameterizing the
pushforward distribution gθ. The problem is that we need to be able to both compute x = gθ(z) ∼ pθ
(sampling) and also compute inverses z = g−1

θ (x) (inference). If we parameterize g−1
θ with IAF,

then sampling is an expensive sequence of autoregressive computation. Parameterizing gθ with IAF
creates similar problems: sampling becomes a cheap, parallel operation but inference is expensive.
This dilemma is avoided for posterior approximation, because that task requires samples z = g−1

θ (x)
rather than samples x = gθ(z). Therefore, by parameterizing g−1

θ with IAF, both sampling and
inference are cheap.

A clever idea that adapts flow to parameterizing a pushforward distribution is developed in
Dinh et al. [2015]. The idea is to partition your features x ∈ X into two sets. E.g. if X = Rd
then we can partition into the first d/2 and second d/2 features: x = (x1,...,d/2, xd/2+1,...,d). We

parameterize a function hθ : Rd/2 → Rd/2 using an expressive neural network, and proceed to
construct an additive coupling gθ : Rd → Rd defined by the rule x = gθ(z) where

x1,...,d/2 = z1,...,d/2, (4)

xd/2+1,...,d = zd/2+1,...,d + hθ(z1,...,d/2). (5)

1



Observe that this coupling function is invertible, regardless of hθ. Given x ∈ Rd, we can recover
z = g−1

θ (x) by computing

z1,...,d/2 = x1,...,d/2, (6)

zd/2+1,...,d = xd/2+1,...,d − hθ(x1,...,d/2). (7)

And the Jacobian of the inverse transformation is simply

∇xg−1
θ (x) =

[
Idd/2 0

−∂hθ(x1,...,d/2)

∂x1,...,d/2
Idd/2

]
.

Therefore logdet(∇xg−1
θ (x)) = 0: this is a volume-preserving transformation.

While an affine coupling is not very expressive (it is the identity on half of the features!) the

idea is to chain multiple affine couplings g
(k)
θ together (with different partitions at each step) to

construct a deep network gθ(z) = g
(L)
θ ◦ · · · ◦ g(1)θ (z). Curiously, these chains of additive couplings

are the same construction as the Feistel network [Luby and Rackoff, 1988] used in the cryptography
community to construct ciphers (e.g. DES and Blowfish). Even at significant depth, generative
flow models seem to suffer empirically from this restrictive model structure, requiring substantially
more parameters and training time than other modeling techniques (at least for popular vision
tasks). Some (very preliminary) work that attempts to remove the architectural restrictions using
approximations to the inverse and its Jacobian are presented in Keller et al. [2020].

One simple extension of additive flow is the real non-volume preserving transformation (real-
NVP) [Dinh et al., 2017] that replaces the additive couplings (4) and (5) with affine couplings. Given
parameterized scale and translation functions sθ, tθ : Rd/2 → Rd/2, we define an affine coupling by
x = gθ(z) by

x1,...,d/2 = z1,...,d/2, (8)

xd/2+1,...,d = zd/2+1,...,d� exp(sθ(z1,...,d/2)) + tθ(z1,...,d/2). (9)

The multiplicative scaling � should be interpreted elementwise. The Jacobian in this case is

∇xg−1
θ (x) =

[
Idd/2 0

. . . diag
(
exp(−sθ(x1,...,d/2))

)] (10)

And the log determinant of the Jacobian is just

logdet(∇xg−1
θ (x)) = −

d/2∑
i=1

sθ(x1,...,d/2)i. (11)

Extensions of this idea with large-scale experiments is presented in Kingma and Dhariwal [2018].

Continuous Flows

Let zt = gt ◦ · · · ◦ g1(z0). If qt is the pushforward of q0 = q induced by gt then

log qt(zt) = log q0(z0)−
t∑

s=1

logdet

(
∂gs(zs−1)

∂zs−1

)
. (12)

2



We can think of the sequence of function applications g1, . . . , gt as gradually warping the initial
distribution q0 into the final distribution qt. An interesting way to interpret an additive update
like Equation (5) (especially as t gets large) is to think about it as an (Euler) discretization of
continuous dynamics hθ [Chen et al., 2018]; i.e.

zt =

∫ t

0
hθ(zs) ds ≈ z0 +

t∑
s=1

hθ(zs−1). (13)

The instantaneous change of variables under dynamics ∂z
∂t = hθ(z), analogous to the discrete

change Equation (2), are given by

∂ log qs(z(s))

∂s
= − tr

(
∂hθ(zs)

∂z

)
. (14)

A proof of this fact can be found in Appendix A of Chen et al. [2018]. We can accumulate these
instantaneous updates to the density, analogous to Equation (12), to compute

log qt(zt) = log q0(z(0))−
∫ t

0
tr

(
∂hθ(zs)

∂z

)
ds (15)

Note that the (potentially expensive) determinant operation has been replaced by the (relatively
inexpensive) trace operation in this analogy.

For the density estimation application, we can think of x = zt and log pθ(x) = log qt(zt). For
maximum likelihood estimation, we need to compute the sensitivity of log qt(zt) to the dynamics
parameters θ. This might look daunting, but the solution can be decomposed and characterized by
introducing an adjoint process

α(s) =
∂ log qs(zs)

∂z
. (16)

This process can be characterized [Pontryagin, 1962] by the solution to another initial value problem

with an initial value α(t) = ∂ log qt(zt)
∂zt

, running backward in time from s = t to s = 0:

dα(s)

ds
= −α(s)T

∂hθ(zs)

∂z
. (17)

And combining solutions to Equation (13) and (17), we can write the gradient of the loss as the
solution to the following integral:

d log qt(zt)

dθ
=

∫ t

0
α(s)T

∂hθ(zs)

∂θ
ds. (18)

For the results of this approach to training a generative flow model, see Grathwohl et al. [2018].

References

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in neural information processing systems, 2018. (document)

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. International Conference on Learning Representations Workshop, 2015. (document)

3



Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. Inter-
national Conference on Learning Representations, 2017. (document)

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. In International Con-
ference on Learning Representations, 2018. (document)

T Anderson Keller, Jorn WT Peters, Priyank Jaini, Emiel Hoogeboom, Patrick Forré, and Max
Welling. Self normalizing flows. Beyond Backpropagation Workshop at Neural Information Pro-
cessing Systems, 2020. (document)

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In Advances in neural information processing systems, pages 10215–10224, 2018. (document)

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Im-
proved variational inference with inverse autoregressive flow. In Advances in neural information
processing systems, 2016. (document)

Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from pseudo-
random functions. SIAM Journal on Computing, 1988. (document)

Lev Semenovich Pontryagin. Mathematical theory of optimal processes. Routledge, 1962. (docu-
ment)

4


