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Let (X , p) and (Y, q) be finite probability spaces with |X | = n and |Y| = m. Let Π(p, q) ⊂ ∆m×n

be the collection of distributions on the product space X × Y with marginals p on X and q on Y.
Consider a cost c : X × Y → R+ and the optimal transport problem

dc(p, q) = min
π∈Π(p,q)

〈c, π〉 = min
π∈Π(p,q)

∑
x,y

c(x, y)π(x, y). (1)

For example, if X ,Y ⊂ Rn and c(x, y) = ‖x − y‖2 is the standard Euclidean distance, then the
optimal transport between p and q is the (1-)Wasserstein distance

dc(p, q) = min
π∈Π(p,q)

∑
x,y

‖x− y‖2π(x, y) = W1(p, q). (2)

Concretely, if 1n ∈ Rn,1m ∈ Rm are the vectors of all-ones, then the constraints on the marginals
can be written as

p(x) =

m∑
i=1

π(x, yi) = (π1m)x, and q(y) =

n∑
i=1

π(xi, y) = (1Tnπ)y. (3)

And we can write the optimal transport problem as

dc(p, q) = min
π1m=p
π>1n=q

∑
x,y

c(x, y)π(x, y). (4)

In the context of e.g. the Wasserstein GAN, it can be helpful to think of the discrete Wasserstein
distance (and more generally, the optimal transport) between two finite distributions p and q as
being a minibatch approximation of the Wasserstein distance between continuous distributions. If
p, q are continuous distributions on Rd, x1, . . . , xn ∼ p, and y1, . . . , ym ∼ q, denote the empirical
distributions over samples by p̃ and q̃ respectively:

p̃(x) =
1

n

n∑
i=1

1xi=x, q̃(y) =
1

m

m∑
i=1

1yi=y, (5)

We can approximate W1(p, q) ≈W1(p̃, q̃).

Entropy-Regularized Optimal Transport

The optimization problem given by Equation (4) is a linear program. We could solve this problem
using an LP-solver, but we can make our life a lot easier if allow for some approximation error.
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Instead of solving (4), we’ll instead solve an entropy-regularized optimal transport problem, where
H(π) is the entropy of the joint distribution [Cuturi, 2013]:

dλc (p, q) = min
π∈Π(p,q)

〈c, π〉 − λH(π). (6)

As λ → 0, dλc (p, q) → dc(p, q) and the optimal solution to dλc (p, q) converges to the minimizer of
dc(p, q) with highest entropy.

Analogous to how we can reframe maximum likelihood estimation as KL-divergence minimiza-
tion, we can also reframe (6) as a KL-divergence minimization problem. Define k(x, y) ≡ e−c(x,y)/λ.
If Zλ =

∑
x,y k(x, y) then 1

Zλ
k(x, y) defines a (Gibbs) probability distribution pλk and

D(π ‖ pλk) =
∑
x,y

π(x, y) log
π(x, y)Zλ
k(x, y)

=
1

λ
〈c, π〉 −H(π) + logZλ.

And it follows that
arg min
π∈Π(p,q)

〈c, π〉 − λH(π) = arg min
π∈Π(p,q)

D(π ‖ pλk). (7)

By compactness of Π(p, q) and strong convexity of the negative entropy, dλc has a unique mini-
mizer πλ, which can be interpreted geometrically as the information projection of the cost matrix’s
associated Gibbs distribution at temperature λ onto Π(p, q).

A Primal Algorithm

We can recover πλ using iterative I-projections. Let Π(p) and Π(q) denote the row and column

marginal constraints, so in particular Π(p, q) = Π(p) ∩ Π(q). Initialize π
(0)
λ = pλk and define the

alternating projections

π
(`+1)
λ ≡


arg min
π∈Π(p)

D(π ‖ π(`)
λ ) ` even,

arg min
π∈Π(q)

D(π ‖ π(`+1)
λ ) ` odd.

Because Π(p) and Π(q) are affine sets, π
(`)
λ → πλ by classical convex analysis.

Without loss of generality, suppose ` is even. Then π
(`+1)
λ satisfies

∂

∂π

[
D(π ‖ π(`)

λ )− 〈f, π1m − p〉
]

= 0 (first-order optimality).

And for a particular pair (x, y),

1 + log π
(`+1)
λ,f (x, y)− log π

(`)
λ (x, y)− fx = 0.

Therefore π
(`+1)
λ,f (x, y) = efx−1π

(`)
λ (x, y) and because π

(`+1)
λ ∈ Π(p) we must have

efx−1 =
p(x)∑

y π
(`)
λ (x, y)

.

Packaging up this and the analogous reasoning for odd `, we have

π
(2`)
λ = diag

(
p

π
(2`−1)
λ 1m

)
π

(2`−1)
λ , and π

(2`+1)
λ = diag

(
q

1>n π
(2`)
λ

)
π

(2`)
λ .
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Sinkhorn’s Algorithm

The preceding algorithm iterated on primal variables π
(`)
λ . It turns out we can iterate more efficiently

on dual variables, by exploiting the following structure of the optimal solution.

Proposition. Let K ∈ Rn×m with Kx,y = k(x, y). For some u ∈ Rn, v ∈ Rm,

πλ = diag(u)K diag(v). (8)

Proof. Introduce dual variables f ∈ Rn and g ∈ Rm and consider the Lagrangian

L(π, f, g) = 〈c, π〉 − λH(π)− 〈f, π1m − p〉 − 〈g, π>1n − q〉. (9)

First order optimality occurs for πλ satisfying

c(x, y) + λ log πλ(x, y)− fx − gy = 0. (10)

In other words,
πλ(x, y) = efx/λ−1/2e−c(x,y)/λegy/λ−1/2. (11)

The constraints Π(p, q) determine the values u and v. In particular, the row and column sums
of πλ must match those of p⊗ q. Finding u and v is known as the matrix scaling problem, in the
sense that we want to scale K’s rows and columns to match the row and column sums of p ⊗ q.
Unpacking the problem a bit, we want u,v that satisfy

p = πλ1m = diag(u)(Kv) and q = π>λ 1n = diag(v)(K>u). (12)

Sinkhorn’s algorithm approximates a solution to these equations by initializing u(1) ≡ 1n, v(1) ≡ 1m,
and constructing the sequence

u(`+1) ≡ p

Kv(`)
, and v(`+1) ≡ q

K>u(`+1)
. (13)

Division here is interpreted entry-wise.
This is equivalent to our previous primal algorithm. Consider primal iterates

π̃
(2`)
λ ≡ diag(u(`+1))K diag(v(`)),

π̃
(2`+1)
λ ≡ diag(u(`+1))K diag(v(`+1)).

Rearranging terms, observe that

K diag(v(`)) =
π̃

(2`−1)
λ

diag(u(`))
.

It follows that

π̃
(2`)
λ = diag(u(`+1))K diag(v(`)) = diag

( p

Kv(`)

) π̃
(2`−1)
λ

diag(u(`))

= diag

(
p

diag(u(`))Kv(`)

)
π̃

(2`−1)
λ = diag

(
p

π̃
(2`−1)
λ 1m

)
π̃

(2`−1)
λ .
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Likewise,

diag(u(`+1))K =
π̃

(2`)
λ

diag(v(`))
.

And similarly we see that

π̃
(2`+1)
λ ≡ diag(u(`+1))K diag(v(`+1)) =

π̃
(2`)
λ

diag(v(`))
diag

( q

K>u(`+1)

)

= diag

(
q

diag(v(`))K>u(`+1)

)
π̃

(2`)
λ = diag

(
q

1>n π̃
(2`)
λ

)
π̃

(2`)
λ .

Therefore the Sinkhorn dual algorithm is identical to the primal algorithm.
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