Optimal Transport

John Thickstun

Let (\mathcal{X}, p) and (\mathcal{Y}, q) be finite probability spaces with $|\mathcal{X}| = n$ and $|\mathcal{Y}| = m$. Let $\Pi(p, q) \subset \Delta^{m \times n}$ be the collection of distributions on the product space $\mathcal{X} \times \mathcal{Y}$ with marginals p on \mathcal{X} and q on \mathcal{Y} . Consider a cost $c : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$ and the optimal transport problem

$$d_c(p,q) = \min_{\pi \in \Pi(p,q)} \langle c, \pi \rangle = \min_{\pi \in \Pi(p,q)} \sum_{x,y} c(x,y)\pi(x,y).$$
(1)

For example, if $\mathcal{X}, \mathcal{Y} \subset \mathbb{R}^n$ and $c(x, y) = ||x - y||_2$ is the standard Euclidean distance, then the optimal transport between p and q is the (1-)Wasserstein distance

$$d_c(p,q) = \min_{\pi \in \Pi(p,q)} \sum_{x,y} \|x - y\|_2 \pi(x,y) = W_1(p,q).$$
(2)

Concretely, if $\mathbf{1}_n \in \mathbb{R}^n$, $\mathbf{1}_m \in \mathbb{R}^m$ are the vectors of all-ones, then the constraints on the marginals can be written as

$$p(x) = \sum_{i=1}^{m} \pi(x, y_i) = (\pi \mathbf{1}_m)_x, \text{ and } q(y) = \sum_{i=1}^{n} \pi(x_i, y) = (\mathbf{1}_n^T \pi)_y.$$
 (3)

And we can write the optimal transport problem as

$$d_c(p,q) = \min_{\substack{\pi \mathbf{1}_m = p \\ \pi^{\top} \mathbf{1}_n = q}} \sum_{x,y} c(x,y) \pi(x,y).$$
(4)

In the context of e.g. the Wasserstein GAN, it can be helpful to think of the discrete Wasserstein distance (and more generally, the optimal transport) between two finite distributions p and q as being a minibatch approximation of the Wasserstein distance between continuous distributions. If p, q are continuous distributions on \mathbb{R}^d , $x_1, \ldots, x_n \sim p$, and $y_1, \ldots, y_m \sim q$, denote the empirical distributions over samples by \tilde{p} and \tilde{q} respectively:

$$\tilde{p}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{x_i = x}, \quad \tilde{q}(y) = \frac{1}{m} \sum_{i=1}^{m} \mathbf{1}_{y_i = y}, \tag{5}$$

We can approximate $W_1(p,q) \approx W_1(\tilde{p},\tilde{q})$.

Entropy-Regularized Optimal Transport

The optimization problem given by Equation (4) is a linear program. We could solve this problem using an LP-solver, but we can make our life a lot easier if allow for some approximation error.

Instead of solving (4), we'll instead solve an entropy-regularized optimal transport problem, where $H(\pi)$ is the entropy of the joint distribution [Cuturi, 2013]:

$$d_c^{\lambda}(p,q) = \min_{\pi \in \Pi(p,q)} \langle c, \pi \rangle - \lambda H(\pi).$$
(6)

As $\lambda \to 0$, $d_c^{\lambda}(p,q) \to d_c(p,q)$ and the optimal solution to $d_c^{\lambda}(p,q)$ converges to the minimizer of $d_c(p,q)$ with highest entropy.

Analogous to how we can reframe maximum likelihood estimation as KL-divergence minimization, we can also reframe (6) as a KL-divergence minimization problem. Define $k(x, y) \equiv e^{-c(x,y)/\lambda}$. If $Z_{\lambda} = \sum_{x,y} k(x, y)$ then $\frac{1}{Z_{\lambda}} k(x, y)$ defines a (Gibbs) probability distribution p_k^{λ} and

$$D(\pi \parallel p_k^{\lambda}) = \sum_{x,y} \pi(x,y) \log \frac{\pi(x,y)Z_{\lambda}}{k(x,y)} = \frac{1}{\lambda} \langle c, \pi \rangle - H(\pi) + \log Z_{\lambda}.$$

And it follows that

$$\underset{\pi \in \Pi(p,q)}{\arg\min} \langle c, \pi \rangle - \lambda H(\pi) = \underset{\pi \in \Pi(p,q)}{\arg\min} D(\pi \parallel p_k^{\lambda}).$$
(7)

By compactness of $\Pi(p,q)$ and strong convexity of the negative entropy, d_c^{λ} has a unique minimizer π_{λ} , which can be interpreted geometrically as the information projection of the cost matrix's associated Gibbs distribution at temperature λ onto $\Pi(p,q)$.

A Primal Algorithm

We can recover π_{λ} using iterative I-projections. Let $\Pi(p)$ and $\Pi(q)$ denote the row and column marginal constraints, so in particular $\Pi(p,q) = \Pi(p) \cap \Pi(q)$. Initialize $\pi_{\lambda}^{(0)} = p_k^{\lambda}$ and define the alternating projections

$$\pi_{\lambda}^{(\ell+1)} \equiv \begin{cases} \arg\min D(\pi \parallel \pi_{\lambda}^{(\ell)}) & \ell \text{ even,} \\ \pi \in \Pi(p) \\ \arg\min D(\pi \parallel \pi_{\lambda}^{(\ell+1)}) & \ell \text{ odd.} \end{cases}$$

Because $\Pi(p)$ and $\Pi(q)$ are affine sets, $\pi_{\lambda}^{(\ell)} \to \pi_{\lambda}$ by classical convex analysis.

Without loss of generality, suppose ℓ is even. Then $\pi_{\lambda}^{(\ell+1)}$ satisfies

$$\frac{\partial}{\partial \pi} \left[D(\pi \parallel \pi_{\lambda}^{(\ell)}) - \langle f, \pi \mathbf{1}_m - p \rangle \right] = 0 \text{ (first-order optimality)}.$$

And for a particular pair (x, y),

$$1 + \log \pi_{\lambda,f}^{(\ell+1)}(x,y) - \log \pi_{\lambda}^{(\ell)}(x,y) - f_x = 0$$

Therefore $\pi_{\lambda,f}^{(\ell+1)}(x,y) = e^{f_x-1}\pi_{\lambda}^{(\ell)}(x,y)$ and because $\pi_{\lambda}^{(\ell+1)} \in \Pi(p)$ we must have

$$e^{f_x - 1} = \frac{p(x)}{\sum_y \pi_\lambda^{(\ell)}(x, y)}.$$

Packaging up this and the analogous reasoning for odd ℓ , we have

$$\pi_{\lambda}^{(2\ell)} = \operatorname{diag}\left(\frac{p}{\pi_{\lambda}^{(2\ell-1)}\mathbf{1}_{m}}\right) \pi_{\lambda}^{(2\ell-1)}, \text{ and } \pi_{\lambda}^{(2\ell+1)} = \operatorname{diag}\left(\frac{q}{\mathbf{1}_{n}^{\top}\pi_{\lambda}^{(2\ell)}}\right) \pi_{\lambda}^{(2\ell)}.$$

Sinkhorn's Algorithm

The preceding algorithm iterated on primal variables $\pi_{\lambda}^{(\ell)}$. It turns out we can iterate more efficiently on dual variables, by exploiting the following structure of the optimal solution.

Proposition. Let $K \in \mathbb{R}^{n \times m}$ with $K_{x,y} = k(x,y)$. For some $u \in \mathbb{R}^n$, $v \in \mathbb{R}^m$,

$$\pi_{\lambda} = \operatorname{diag}(u) K \operatorname{diag}(v). \tag{8}$$

Proof. Introduce dual variables $f \in \mathbb{R}^n$ and $g \in \mathbb{R}^m$ and consider the Lagrangian

$$\mathcal{L}(\pi, f, g) = \langle c, \pi \rangle - \lambda H(\pi) - \langle f, \pi \mathbf{1}_m - p \rangle - \langle g, \pi^\top \mathbf{1}_n - q \rangle.$$
(9)

First order optimality occurs for π_{λ} satisfying

$$c(x,y) + \lambda \log \pi_{\lambda}(x,y) - f_x - g_y = 0.$$
(10)

In other words,

$$\pi_{\lambda}(x,y) = e^{f_x/\lambda - 1/2} e^{-c(x,y)/\lambda} e^{g_y/\lambda - 1/2}.$$
(11)

The constraints $\Pi(p,q)$ determine the values u and v. In particular, the row and column sums of π_{λ} must match those of $p \otimes q$. Finding u and v is known as the matrix scaling problem, in the sense that we want to scale K's rows and columns to match the row and column sums of $p \otimes q$. Unpacking the problem a bit, we want u, v that satisfy

$$p = \pi_{\lambda} \mathbf{1}_m = \operatorname{diag}(u)(Kv) \text{ and } q = \pi_{\lambda}^{\top} \mathbf{1}_n = \operatorname{diag}(v)(K^{\top}u).$$
 (12)

Sinkhorn's algorithm approximates a solution to these equations by initializing $u^{(1)} \equiv \mathbf{1}_n, v^{(1)} \equiv \mathbf{1}_m$, and constructing the sequence

$$u^{(\ell+1)} \equiv \frac{p}{Kv^{(\ell)}}, \text{ and } v^{(\ell+1)} \equiv \frac{q}{K^{\top}u^{(\ell+1)}}.$$
 (13)

Division here is interpreted entry-wise.

This is equivalent to our previous primal algorithm. Consider primal iterates

$$\begin{split} &\tilde{\pi}_{\lambda}^{(2\ell)} \equiv \operatorname{diag}(u^{(\ell+1)}) K \operatorname{diag}(v^{(\ell)}), \\ &\tilde{\pi}_{\lambda}^{(2\ell+1)} \equiv \operatorname{diag}(u^{(\ell+1)}) K \operatorname{diag}(v^{(\ell+1)}). \end{split}$$

Rearranging terms, observe that

$$K \operatorname{diag}(v^{(\ell)}) = \frac{\tilde{\pi}_{\lambda}^{(2\ell-1)}}{\operatorname{diag}(u^{(\ell)})}.$$

It follows that

$$\begin{split} \tilde{\pi}_{\lambda}^{(2\ell)} &= \operatorname{diag}(u^{(\ell+1)}) K \operatorname{diag}(v^{(\ell)}) = \operatorname{diag}\left(\frac{p}{Kv^{(\ell)}}\right) \frac{\tilde{\pi}_{\lambda}^{(2\ell-1)}}{\operatorname{diag}(u^{(\ell)})} \\ &= \operatorname{diag}\left(\frac{p}{\operatorname{diag}(u^{(\ell)}) Kv^{(\ell)}}\right) \tilde{\pi}_{\lambda}^{(2\ell-1)} = \operatorname{diag}\left(\frac{p}{\tilde{\pi}_{\lambda}^{(2\ell-1)} \mathbf{1}_m}\right) \tilde{\pi}_{\lambda}^{(2\ell-1)}. \end{split}$$

Likewise,

$$\operatorname{diag}(u^{(\ell+1)})K = \frac{\tilde{\pi}_{\lambda}^{(2\ell)}}{\operatorname{diag}(v^{(\ell)})}.$$

And similarly we see that

$$\begin{split} \tilde{\pi}_{\lambda}^{(2\ell+1)} &\equiv \operatorname{diag}(u^{(\ell+1)}) K \operatorname{diag}(v^{(\ell+1)}) = \frac{\tilde{\pi}_{\lambda}^{(2\ell)}}{\operatorname{diag}(v^{(\ell)})} \operatorname{diag}\left(\frac{q}{K^{\top} u^{(\ell+1)}}\right) \\ &= \operatorname{diag}\left(\frac{q}{\operatorname{diag}(v^{(\ell)}) K^{\top} u^{(\ell+1)}}\right) \tilde{\pi}_{\lambda}^{(2\ell)} = \operatorname{diag}\left(\frac{q}{\mathbf{1}_{n}^{\top} \tilde{\pi}_{\lambda}^{(2\ell)}}\right) \tilde{\pi}_{\lambda}^{(2\ell)}. \end{split}$$

Therefore the Sinkhorn dual algorithm is identical to the primal algorithm.

References

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in neural information processing systems, 2013. (document)