Optimal Transport
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Let (X, p) and (), ¢) be finite probability spaces with |X| = n and |Y| = m. Let I(p,q) C A™*™
be the collection of distributions on the product space X x ) with marginals p on X and ¢ on ).
Consider a cost ¢: X x Y — Ry and the optimal transport problem

de(p,q) = min (¢,7) = min c(x,y)m(z,y). (1)

m€ll(p,q) mell(p.q) < Y

For example, if X, C R" and c(z,y) = ||z — y[2 is the standard Euclidean distance, then the
optimal transport between p and ¢ is the (1-)Wasserstein distance

de(p,q) = i wzy: |z — yllom(z,y) = Wi(p, q). (2)

Concretely, if 1,, € R™, 1,,, € R™ are the vectors of all-ones, then the constraints on the marginals
can be written as

pa) =Y 7wz, 4i) = (7ln)e, and q(y) = Y _ w(@i,y) = (1L7),. (3)
i=1 i=1

And we can write the optimal transport problem as

dlpa) = min 3 (o, )m(ay). (@

a’ 1,=¢q Yy

In the context of e.g. the Wasserstein GAN, it can be helpful to think of the discrete Wasserstein
distance (and more generally, the optimal transport) between two finite distributions p and ¢ as
being a minibatch approximation of the Wasserstein distance between continuous distributions. If
p, ¢ are continuous distributions on R, z1,...,x, ~ p, and y1,...,ym ~ ¢, denote the empirical

distributions over samples by p and G respectively:

1< 1 &
Ba) == Ao q) = — D 1ymy, (5)
i=1

=1

We can approximate Wi(p, q) = Wi(p, q).

Entropy-Regularized Optimal Transport

The optimization problem given by Equation (4) is a linear program. We could solve this problem
using an LP-solver, but we can make our life a lot easier if allow for some approximation error.



Instead of solving (4), we’ll instead solve an entropy-regularized optimal transport problem, where
H(7) is the entropy of the joint distribution [Cuturi, 2013]:

4 (p,q) = werﬁ%}?q)@’ ™) — AH (7). (6)

As A = 0, d)(p,q) — d.(p,q) and the optimal solution to d)(p,q) converges to the minimizer of
d.(p, q) with highest entropy.

Analogous to how we can reframe maximum likelihood estimation as KL-divergence minimiza-
tion, we can also reframe (6) as a KL-divergence minimization problem. Define k(z,y) = e~<@¥)/A,
If Z, = E%y k(z,y) then Z%k(:n, y) defines a (Gibbs) probability distribution p; and

Z 1
Dir 1) = 3 nlaw tog T = Seom) — H(r) +log 2
And it follows that
argmin(c, 7) — AH () = argmin D(7 || py). (7)
mell(p,q) mell(p,q)

By compactness of II(p,q) and strong convexity of the negative entropy, do has a unique mini-
mizer mwy, which can be interpreted geometrically as the information projection of the cost matrix’s
associated Gibbs distribution at temperature A\ onto II(p, q).

A Primal Algorithm

We can recover my using iterative I-projections. Let II(p) and II(g) denote the row and column
marginal constraints, so in particular II(p,q) = II(p) N II(g). Initialize ﬂ'g\o) = pz and define the

alternating projections

arg min D(7 || ﬂg\é)) ¢ even,
7_‘_(f—i-l) = w€ell(p)

arg min D(7 || 7r§\€+1)) ¢ odd.

w€ll(q)

(0)

Because II(p) and II(q) are affine sets, m,” — 7y by classical convex analysis.
(e+1)

Without loss of generality, suppose £ is even. Then 7y satisfies
o () _ o
I D(m || my”) = (f, 71y — p)| = 0 (first-order optimality).
T

And for a particular pair (z,y),

1+ log W&%?l)(x,y) —log 77/(\4) (x,y) — fz = 0.

Therefore W&%?l)(l‘, y) = efﬁ_lﬂf\g) (z,y) and because 7T§\€+1) € II(p) we must have

fol _ p(x)
e == 0,
Zy 7T)\ ('ZE, y)
Packaging up this and the analogous reasoning for odd ¢, we have

Y, . p {— ¢ i 4 ¢
m) = ding <M> 7Y, and 7Y = diag (1%(2@) K
A m oA




Sinkhorn’s Algorithm

The preceding algorithm iterated on primal variables WE\@)' It turns out we can iterate more efficiently
on dual variables, by exploiting the following structure of the optimal solution.

Proposition. Let K € R™™ with K, , = k(x,y). For some v € R", v € R™,
7 = diag(u) K diag(v). (8)
Proof. Introduce dual variables f € R™ and g € R™ and consider the Lagrangian
L(7, f,9) = {e,m) = AH(7) = (f, 7Ly — p) — (9,7 1, — q). (9)

First order optimality occurs for 7 satisfying

c(z,y) + Alogma(z,y) — fo — gy = 0. (10)

In other words,
(2, y) = elfe/A=1/2 o —c(zy) /A 9y /A—1/2 (11)
O

The constraints I1(p, ¢) determine the values v and v. In particular, the row and column sums
of ) must match those of p ® ¢q. Finding u and v is known as the matrix scaling problem, in the
sense that we want to scale K’s rows and columns to match the row and column sums of p ® q.
Unpacking the problem a bit, we want u,v that satisfy

p = mal,, = diag(u)(Kv) and ¢ = 7, 1,, = diag(v)(K "u). (12)

Sinkhorn’s algorithm approximates a solution to these equations by initializing u*) = 1,,, v = 1,,,,
and constructing the sequence

(+1) = _P (+1) — q
u = o0 and v = KT (13)

Division here is interpreted entry-wise.
This is equivalent to our previous primal algorithm. Consider primal iterates

ﬁg\ﬂ) = diag(u“V)K diag(v®),
ﬁg\%ﬂ) = diag(u“TV) K diag(v“+1).
Rearranging terms, observe that
~(26-1)
K diag(v®¥)) = m.

It follows that

- (20) _ . (0+1) : Oy = di P A
T\ diag(u )K diag(v'”) = diag (KU(K)) diag(u(®)

T p ~(2¢-1) _ .. p ~(2¢-1)
= diag (diag(u(e))Kv(e)> Ty = diag <77r(2£1)1m> Ty .




Likewise,
- (20)
T

diag(u K = —2 .
iag(u ) diag(v®)

And similarly we see that

- (20)

_(20+1) _ . 041 : ey = T i g
7\ = diag(u“V) K diag(vV)) = diag(0®) diag (W)

g q 220 _ s ) 70
= diag <diag(v(5))KTu(£+l)> ™ = diag (117}5\28)) T -

Therefore the Sinkhorn dual algorithm is identical to the primal algorithm.
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