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The Wasserstein GAN [Arjovsky et al., 2017] seeks to minimize the objective

argmin W (p,pgp) = argmin inf E [llz -yl
0 [ 7€ll(p,q) (z,y)~m

In this form, the inner estimation of the Wasserstein distance W (p, py) is intractable. But using a
delicate duality argument, we are able to reformulate the Wasserstein distance as the solution to
a maximization over 1-Lipschitz functions. This turns the Wasserstein GAN optimization problem
into a saddle-point problem, analogous to the f~GAN. The following proof is loosely based on Basso
[2015]; here we take a more concrete approach and fill in the details of the argument.

Theorem. (Kantorovich-Rubinstein)

W)= inf B [le—yll= sup {E (h(a)] - E[h(xﬂ]
7€ll(p,q) (z,y)~m [hllL<1 Lz~P y~q

Proof. Introduce Lagrange multipliers f, g : X — R (bounded, measurable):

L) = [ o ylPrteadydo+ [ <p<:c>— /. w(w,y>dy) f(z) da

+ [ (s = [ wteas) sty

Collecting terms algebraically, we can rewrite the Lagrangian as

Lm.f9) = B @)+ B )]+ [ <||a: “ylle — fla) - g<y>>w<x,y> dy da.

T~p y~q

And we appeal to strong duality to write

W (p,pg) = infsup L(m, f,g) = supinf L(m, f, g).
T fg fg T

Note that if ||z — y|l2 < f(x) + g(y) for some z,y € X then we can concentrate mass of w at (z,y)
and send L(m, f,g) to —oo. Therefore, for all x,y, we must have

f(@) +9(y) <z = ylla-

And with this constraint, the best we can do by minimizing over 7 is to set © = 0:

supinfL(m, f.9) =  sup [E @)+ E W] = w.e).
fg T f.g Tp y~q
f@)+9(y)<|lz—yll2



We now perform an amazing sleight-of-hand. First, observe that optimizing over the class of
1-Lipschitz functions give us a lower bound on the Wasserstein distance; if h is 1-Lipschitz then

E [h(z)] = E [h(y)] Z/Xxx(h(fﬂ)—h(y))ﬂ(w,y) dx dy

r~p yr~q
</“ e — ylly (e, y) dedy < W (p, q).
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It follows that
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Next we will show that the upper bound is attained.
Consider the function x defined by

x> inf [Hx — s — g(u)].

Because g is bounded, the infimum is finite and this function is well-defined. Claim: & is 1-Lipschitz.
Given z,y € X, for any u € X the triangle inequality give us

k(@) < lz—ull2 —g(y) < llz —yl2 + lly — ull2 — g(w).
This holds for any u and therefore
k(@) < o= yllz +inf [z — ull2 = g(w)] = [z = yll2 + #(y).

Le. k(x) — k(y) < ||z — y||2; exchanging x and y gives us k(y) — k(z) < ||z — y||2 and consequently
Kk is 1-Lipschitz:
k() = m(y)] < llz = ylla-
For any pair f,g that satisfies f(z) + g(y) < ||z — y||2,
f(z) < w(z) <lo—zflz — g(z) = —g().

From these facts, we have

E [f@I+ E o)l < E [6()] - E [5(v)]

T~p y~q y~q

And we conclude that

Woa)= s B @)+ B )]
F(@) (@) < lla—yll2
SSW[EMWFEVMﬂSme 0
hllp<1 L=~ u~a
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