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The Wasserstein GAN [Arjovsky et al., 2017] seeks to minimize the objective

arg min
θ

W (p, pθ) = arg min
θ

inf
π∈Π(p,q)

E
(x,y)∼π

[‖x− y‖2] .

In this form, the inner estimation of the Wasserstein distance W (p, pθ) is intractable. But using a
delicate duality argument, we are able to reformulate the Wasserstein distance as the solution to
a maximization over 1-Lipschitz functions. This turns the Wasserstein GAN optimization problem
into a saddle-point problem, analogous to the f-GAN. The following proof is loosely based on Basso
[2015]; here we take a more concrete approach and fill in the details of the argument.

Theorem. (Kantorovich-Rubinstein)

W (p, q) = inf
π∈Π(p,q)

E
(x,y)∼π

[‖x− y‖2] = sup
‖h‖L≤1

[
E
x∼p

[h(x)]− E
y∼q

[h(x)]

]
.

Proof. Introduce Lagrange multipliers f, g : X → R (bounded, measurable):

L(π, f, g) =

∫
X×X

‖x− y‖2π(x, y) dy dx+

∫
X

(
p(x)−

∫
X
π(x, y) dy

)
f(x) dx

+

∫
X

(
q(y)−

∫
X
π(x, y) dx

)
g(y) dy.

Collecting terms algebraically, we can rewrite the Lagrangian as

L(π, f, g) = E
x∼p

[f(x)] + E
y∼q

[g(y)] +

∫
X×X

(
‖x− y‖2 − f(x)− g(y)

)
π(x, y) dy dx.

And we appeal to strong duality to write

W (p, pg) = inf
π

sup
f,g

L(π, f, g) = sup
f,g

inf
π
L(π, f, g).

Note that if ‖x− y‖2 < f(x) + g(y) for some x, y ∈ X then we can concentrate mass of π at (x, y)
and send L(π, f, g) to −∞. Therefore, for all x, y, we must have

f(x) + g(y) ≤ ‖x− y‖2.

And with this constraint, the best we can do by minimizing over π is to set π = 0:

sup
f,g

inf
π
L(π, f, g) = sup

f,g
f(x)+g(y)≤‖x−y‖2

[
E
x∼p

[f(x)] + E
y∼q

[g(y)]

]
= W (p, q).
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We now perform an amazing sleight-of-hand. First, observe that optimizing over the class of
1-Lipschitz functions give us a lower bound on the Wasserstein distance; if h is 1-Lipschitz then

E
x∼p

[h(x)]− E
y∼q

[h(y)] =

∫
X×X

(h(x)− h(y))π(x, y) dx dy

≤
∫
X×X

‖x− y‖2 π(x, y) dx dy ≤W (p, q).

It follows that

sup
‖h‖L≤1

[
E
x∼p

[h(x)]− E
y∼q

[h(y)]

]
≤W (p, q).

Next we will show that the upper bound is attained.
Consider the function κ defined by

x 7→ inf
u

[
‖x− u‖2 − g(u)

]
.

Because g is bounded, the infimum is finite and this function is well-defined. Claim: κ is 1-Lipschitz.
Given x, y ∈ X , for any u ∈ X the triangle inequality give us

κ(x) ≤ ‖x− u‖2 − g(y) ≤ ‖x− y‖2 + ‖y − u‖2 − g(u).

This holds for any u and therefore

κ(x) ≤ ‖x− y‖2 + inf
u

[
‖x− u‖2 − g(u)

]
= ‖x− y‖2 + κ(y).

I.e. κ(x)− κ(y) ≤ ‖x− y‖2; exchanging x and y gives us κ(y)− κ(x) ≤ ‖x− y‖2 and consequently
κ is 1-Lipschitz:

|κ(x)− κ(y)| ≤ ‖x− y‖2.
For any pair f, g that satisfies f(x) + g(y) ≤ ‖x− y‖2,

f(x) ≤ κ(x) ≤ ‖x− x‖2 − g(x) = −g(x).

From these facts, we have

E
x∼p

[f(x)] + E
y∼q

[g(y)] ≤ E
x∼p

[κ(x)]− E
y∼q

[κ(y)]

And we conclude that

W (p, q) = sup
f,g

f(x)+g(y)≤‖x−y‖2

[
E
x∼p

[f(x)] + E
y∼q

[g(y)]

]

≤ sup
‖h‖L≤1

[
E
x∼p

[h(x)]− E
y∼q

[h(y)]

]
≤W (p, q).
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