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Previously, we’ve considered VAE’s with continuous latent code spaces Z. We’ve also considered
GMM’s over finite code spaces. We’ll now take a look at models where the latent code space is finite,
but |Z| = K is so large that is not amenable to the exact techniques we applied to GMM. Why
would we be interested in learning discrete latent codes? One perspective on latent variable models
is that we are want to learn a compressed representation of our data: i.e. Z is a “small” space that
characterizes interesting information about observations in X . One way to interpret this idea of
compression is in the sense of dimensionality: we often construct VAE’s using a latent code space
that is much lower dimensional than X . But this is an information theoretically poor interpretation
of compression; we can store arbitrary amounts of information (in the sense of Shannon) in to a
single latent scalar value. In contrast, if Z is a finite space, then we have a very precise notion of
compression: the bits of information represented by Z is upper bounded by log2(K).

A Discrete Variational Lower Bound

Recall that for GMM we computed marginal likelihood by explicitly marginalizing over the latent
variable:

p(x) =

∫
Z
p(x|z)p(z) dz =

K∑
k=1

πkN (x;µk,Σk). (1)

In the continuous domain, directly computing this integral became intractable and we resorted on
approximations based on importance sampling to train our a model. When Z is finite, but |Z| = K
is very large we find ourselves in a similar situation, so we will revisit the same importance sampling
techniques that lead us to the ELBO and VAE.

Recall the evidence lower-bound that we derived previously:

θ̂MLE = arg max
θ

sup
q

E
x∼p

z∼qϕ(·|x)

[
log pθ(x|z)−D(qϕ(z|x) ‖ r(z))

]
. (2)

Nothing about that derivation required that Z be continuous, so we can use this variational objec-
tive to optimize a discrete VAE. If Z is discrete, it’s natural to consider a uniform prior r(z). The
divergence term in the evidence lower-bound (2) is just the entropy

D(qϕ(z|x) ‖ r(z)) = log(K)−H(qϕ(z|x)). (3)

The likelihood term remains unchanged, and we can write the combined variational bound as

L(x, θ, ϕ) = E
z∼qϕ(·|x)

[log pθ(x|z)] +H(qϕ(z|x))− log(K) (4)

However, we cannot directly get gradients of (4) with respect to ϕ and, unlike the case for continuous
codes, we cannot fix this with the “reparameterization trick.”
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The Policy Gradient Theorem

One way to construct a monte carlo gradient estimator for the likelihood term in (4) makes use of
the Policy Gradient Theorem, aka REINFORCE [Williams, 1992]:

∇ϕ E
z∼qϕ(·|x)

[
log pθ(x|z)

]
=
∑
z∈Z

log pθ(x|z)∇ϕqϕ(z|x)

=
∑
z∈Z

log pθ(x|z)qϕ(z|x)∇ϕ log qϕ(z|x)

= E
z∼qϕ(·|x)

[
log pθ(x|z)∇ϕ log qϕ(z|x)

]
(5)

= E
z∼qϕ(·|x)

[
log pθ(x|z)
qϕ(z|x)

∇ϕqϕ(z|x)

]
. (6)

This gradient estimator applies equally well in the continuous case, and is discussed in the original
VAE paper [Kingma and Welling, 2014] where it is dismissed due to its high variance in comparison
to the path estimator constructed via reparameterization. The variance of this estimator is a serious
problem in the discrete setting as well.

The divergence term (3) is also troublesome in this setting; unlike the Gaussian case, there is
no closed-form solution so we will need to use monte carlo estimators. Observe that

H(qϕ(z|x)) = E
z∼qϕ(·|x)

[− log qϕ(z|x)] = −
∑
z∈Z

qϕ(z|x) log qϕ(z|x). (7)

The sum over the latent space Z in (7) is a big problem; we’ll want to approximate this term with
importance sampling. We can get gradients via REINFORCE, reiterating the previous caveat that
the variance of this gradient estimator will be very high:

∇ϕ E
z∼qϕ(·|x)

[− log qϕ(z|x)] = − E
z∼qϕ(·|x)

[
(1 + log qϕ(z|x))

qϕ(z|x)
∇ϕqϕ(z|x)

]
. (8)

Variance reduction techniques are considered in Tucker et al. [2017].

Gumbel Softmax

Another gradient estimator that avoids the variance issues with REINFORCE is Gumbel-softmax
estimation [Jang et al., 2016, Maddison et al., 2016]. This estimator can sometimes work quite
well, especially when K is not too large, but the caveat is that it is a biased estimator and can be
unreliable. Suppose we want to draw samples from a categorical distribution q = Categorical(k)
with class probabilities q1, . . . , qk. If g1, . . . , gk ∼ Gumbel(0, 1) then z ∼ q where

z = arg max
i

[
gi + log qi

]
.

This procedure for sampling from q lends itself to the “reparameterization trick”:

E
z∼q

[
f(z)

]
= E

gi∼Gumbel(0,1)

[
f

(
arg max

i
[gi + log qi]

)]
.

However, we still cannot differentiate through the argmax.

2



The Gumbel-softmax estimator relaxes the argmax operation to a softmax with a temperature
parameter τ :

E
gi∼Gumbel(0,1)

[
f

(
exp((gi + log qi)/τ)∑k
j=1 exp((gj + log qj)/τ)

)]
.

As τ → 0 the relaxation recovers the argmax, but gradient estimates blow up, so there is a tradeoff
between the bias of the estimator and our ability to use it to optimize.

The Straight-Through Estimator

The straight-through estimator was initially proposed by Bengio et al. [2013] (with credit to earlier
lecture notes by Hinton) as a means for differentiating through thresholding operations. Consider
a threshold function th : R→ R s.t. th(x) = 1(x ≥ 0) and consider a composition f = g ◦ th ◦h for
differentiable real functions g, h. Observe that ∇xth = 0 and therefore ∇xf(x) = 0:

∇xf(x) = [(∇xf)(th ◦ h(x))]∇xth ◦ h(x)

= [(∇xf)(th ◦ h(x))] [(∇xth)(h(x))]∇xh(x) = 0.

The straight-through estimator ∇̃x replaces ∇xth with the constant function 1:

∇̃xf(x) = [(∇xf)(th ◦ h(x))]∇xh(x).

I.e. we compute gradients of th as if it were the identity function. Another way of stating this
operation is that we “copy gradients” across the non-differentiable operation th; i.e.

∇̃xth ◦ h(x) = ∇xh(x).

This idea can be adapted to differentiate through a discrete sampling operation. Suppose we
have a categorical distribution qϕ ∈ ∆k and we want to estimate

∇ϕ E
z∼qϕ

[f(z)] .

The straight-through estimator ignores the sampling operation (i.e. the expectation) and formally
defines the gradient of a sampled value z ∼ qϕ to be ∇̃ϕz ≡ ∇ϕqϕ(z). We then compute a gradient
of an expression containing sampled values z by application of the chain rule:

∇̃ϕf(z) = (∇zf(z))∇̃ϕz = (∇zf(z))∇ϕqϕ(z).

I.e. we take the gradient of the sampled element z to be the gradient of the categorical distribution’s
z’th component. More formally, the straight-through estimator is

∇̃ϕ E
z∼qϕ

[f(z)] ≡ E
z∼qϕ

[(∇zf(z))∇ϕqϕ(z)] .

It’s not entirely clear to me why this should work. But it’s been used effectively in recent formu-
lations of discrete VAE’s [Van Den Oord et al., 2017, Razavi et al., 2019].
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Automatic Differentiation

We’ll conclude the discussion of discrete VAE’s with a brief comment on efficient implementation of
REINFORCE-style algorithms using an autodiff system. This trick is well-known in the reinforce-
ment learning community, but I’m not sure how broadly people are aware of it. Writing out the
gradient estimates proposed by REINFORCE naively leads us to construct estimators like these:

∇θL(x, z, ϕ, θ) ≈ ∇θ log pθ(x|z),
∇ϕL(x, z, ϕ, θ) ≈ (log pθ(x|z)− 1− log qϕ(z|x))∇ϕ log qϕ(z|x). (9)

This approach has some computational downsides: we need to build separate proxy expressions to
compute the gradients with respect to θ and ϕ, and we will waste time recomputing the forward
pass of common subexpressions. We’ll typically also want to make a separate forward pass on the
full objective to evaluate the loss itself. But if we’re clever, we can write down the loss in a form
that directly allows us to get all the required gradients with a single autodiff operation.

Let’s start with the full discrete VAE formulation with gradients given by Equation (9). Ap-
proximating the loss L(x, ϕ, ψ) given by Equation (4) using a sample z ∼ qϕ(·|x), we have the
objective

L̂(x, z, ϕ, ψ) = log pθ(x|z)− log(|Z|)− log qϕ(z|x)

=
qϕ(z|x) log pθ(x|z)
{qϕ(z|x)}

(likelihood)

+ 1− log(|Z|)− qϕ(z|x) (1 + {log qϕ(z|x)})
{qϕ(z|x)}

(divergence).

Ignoring the curly brackets, observe that this truly is a simple algebraic identity. The curly brackets
indicate that when we take gradients, we will treat the terms inside as constants (in the language of
e.g., PyTorch, we “detach” this subexpressions from the graph). Following this rule, the gradients
of L̂ match the gradients derived in Equation (9).
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