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The Gaussian VAE parameterizes the prior r(z), conditional likelihood p(x|z), and posterior
approximation q(x|z) with with Gaussian distributions. The in-expressivity of these Gaussian
models can make it difficult to capture the distribution p(x); complaints about the “blurriness” of
the VAE may be attributable to these assumptions. Note that many papers visualize the mean
gθ(z̃) of the decoder network, rather than samples gθ(z̃) + η, which coupled with a Gaussian noise
model on X could exacerbate blurriness.

PixelCNN and PixelVAE

One way to increase the expressivity of the VAE is to remove the conditional-independence as-
sumption from the decoder distribution p(x|z). In the standard Gaussian VAE, the components xi
of x are conditionally independent given the latent code z:

p(x|z) =

|X |∏
i=1

p(xi|z) =

|X |∏
i=1

N (xi|µi(z), σ2). (1)

We can remove this assumption by building a fully-autoregressive model of the decoder distribution
over observations x, i.e.

p(x|z) =

|X |∏
i=1

p(xi|x<i, z). (2)

An auto-regressive parameterization of the conditional likelihood called PixelVAE is explored
by Gulrajani et al. [2017], based on a line of work building autoregressive models called PixelCNN
[van den Oord et al., 2016b,a, Salimans et al., 2017] that extends the NADE modeling perspective
to images. One oddity of these models is that, in order to construct an autoregressive factorization
of the like distribution over images, we need to fix a (somewhat arbitrary) ordering over pixels; the
standard choice is to order the pixels from left to right, top-to-bottom, starting with the pixel in
the upper-left corner of the image.

One might question whether the order matters; while any order leads to a valid factorization
of the joint distribution, perhaps some factorizations would be easier to learn than others? This
question was asked in the original NADE work, and the answer. There is followup work on orderless
NADE [Uria et al., 2014] that learns an ensemble of factored autoregressive models, one for each
possible ordering of pixels; by ensembling these models, it may be possible to construct a better
model than using any particular ordering. But in practice, just picking an arbitrary ordering doesn’t
seem to cause too much trouble.

Two serious problems with using autoregressive likelihoods p(x|z) are posterior collapse (dis-
cussed in the next section) and the computational expense of sampling from an autoregressive
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likelihood. Recall that sampling from an autoregressive model is slow: sampling an object of
length n (e.g. n = d × d pixels of a square image) requires O(n) serial calls to the model. For
generating data like text, this is not so bad. But generating a high-resolution 1, 024× 1, 024 image
or 44, 100kHz audio could take hours! In contrast, a very nice property of the Gaussian VAE is
that the conditional independence assumption on the likelihood means that we can generate each
output p(xi|z) in parallel, given the code z. For these reasons, the PixelVAE is not the favored
means through which we will improve the expressivity of the VAE.

Posterior Collapse

A serious trouble using an expressive likelihoods p(x|z) in the VAE (such as an autoregressive
likelihood) is a problem known as posterior collapse, wherein we learn a model that completely
ignores the latent codes z. If all we wanted to do was learn a generative model, then this isn’t
necessarily a problem. But if we had a reason to learn a latent variable model that extracts
semantically meaningful codes, then we need to worry about this.

As a simple example of this phenomenon, suppose X = {0, 1} and p = Bernoulli(.5). Using
the standard Gaussian VAE, we define Z = R, ρZ(z) = N (0, 1), and q(z|x) = N (fϕ(x), σ2ϕ(x)).
Consider a family of Bernoulli likelihoods pθ(x|z) = Bernoulli(gθ(z)) where gθ : Z → X . Suppose
we set pθ(x|z) = Bernoulli(.5) (independent of z). Then the posterior pθ(z|x) is just the prior ρZ ,
which is realizable by our family of posterior candidates q. Setting q(z|x) = N (0, 1) yields no slop
in the ELBO, and we precisely model p(x) while observing “posterior collapse” in the sense that
the latent code z is completely ignored.

We can generalize this to categorical distributions. X is discrete and p = Categorical(|X |) is a
categorical distribution over X . Using the standard Gaussian VAE, we define ρZ(z) = N (0, I), and
qϕ(z|x) = N (fϕ(x),Σϕ(x)). Because X is discrete, we can parameterize pθ(x|z) with all possible
categorical likelihoods, denoted by pθ(x|z) = Categoricalθ,z(|X |). One global minimizer of the
variational bound is just pθ(x|z) = p(x), ignoring the latent variable z. Furthermore, suppose
pθ(x|z) is a global minimizer of the elbo; then the variational bound must be tight, and therefore

ρZ(z) =
∑
x∈X

p(x)pθ(z|x) =
∑
x∈X

p(x)qϕ(z|x). (3)

Observe that the left-hand side is a Gaussian, and the right-hand side is a mixture of Gaussians.
Equality holds iff all the Gaussians on the right-hand side are identical; i.e. qϕ(z|x) is independent
of x. But the posterior is independent of x iff the likelihood is independent of z; i.e. the latent
codes are completely ignored.

Imposing a restrictive assumption on the likelihood, such as the conditional independence as-
sumption, prevents collapse; because a conditionally independent family of distributions cannot
model expressive dependencies between components, these dependencies must be captured by the
latent codes z.

Inference Suboptimality

Another source of in-expressivity in the Gaussian VAE is our use of a Gaussian family to parameter-
ize the posterior approximation qϕ(z|x). We can quantify the approximation error of a variational
posterior estimate qϕ(z|x) by looking at the difference between the evidence lower bound and the
marginal likelihood. The bound is tight iff qϕ(z|x) = pθ(z|x), so this gap measures the cost of
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our approximation qϕ(z|x). Assuming we have effectively optimized qϕ, we can view this gap as a
measure of the cost of the Gaussian family approximation. Cremer et al. [2018] attempt to quantify
the approximation error of the Gaussian parameterization of the posterior by measuring this gap.
They find the error to be small, and conclude that the Gaussian approximation isn’t a significant
simplification.

But this analysis seems a bit off the mark. Because we jointly optimize the likelihood and
the posterior approximation, in principle we shouldn’t get hurt by limiting the family of posterior
approximations qϕ(z|x) to Gaussians: the optimization will just pick a likelihood pθ(x|z) such that
the true posterior pθ(z|x) is well-approximated by the parametric family qϕ(z|x). In practice, it
might be difficult to find a likelihood pθ(x|z) that satisfies both:

• The marginal pθ(x) =
∫
Z pθ(x|z)ρZ(z) dz is close to the true distribution p(x),

• The posterior pθ(z|x) of the chosen likelihood is approximately Gaussian.

There is tension between these criteria, so we may learn a likelihood that achieves a relatively small
posterior approximation gap at the expense of a suboptimal estimate of the marginal distribution.

Normalizing Flows

One way to make the posterior approximations more expressive makes use of the normalizing flow
construct [Rezende and Mohamed, 2015]. Normalizing flows are based on the pushforward principle.
Suppose that z0 ∼ q0, where q has a tractable density, e.g. q0 = N (0, I). If we define zs = gs(zt−1)
where gs : Z → Z, then the log-density of the distribution of zt = gt ◦ · · · ◦ g1(z0) is given by

log qt(zt) = log q0(z0)−
t∑

s=1

logdet

(
∂gs(zt−1)

∂zt−1

)
. (4)

So long as we can compute the log-determinant of the Jacobians of gs, we can compute the log-
likelihood of observations zt. In general these determinants will not be tractable, and the onus is
on us to design functions gs for which this quantity is efficiently computable.

We have already seen (e.g. inverse transform sampling) that we can use pushforwards to turn
simple distributions into arbitrarily rich distributions; our goal is to use leverage this capacity to
construct a rich family of distributions with which to approximate the posterior pθ(z|x). Therefore,
it is in our interest to make the pushforward functions gs as rich and flexible as possible, while also
ensuring efficient calculation of the Jacobian determinants.

Inverse Autoregressive Flows

One class of functions that admits efficient calculation of Jacobian determinants is the family of
inverse autoregressive functions. Recall that we can parameterize a (scalar) autoregressive model
over y ∈ Rp by yk = µk(y<k) + σk(y<k)εt where ε ∼ N (0, I) and µk, σk are functions of elements
of y with indices j < k; this the RNADE autoregressive model [Uria et al., 2013], which can be
viewed as a generalization of NADE [Larochelle and Murray, 2011] to continuous-valued sequences.
Alternatively RNADE can be viewed as a generalization of the classical AR(p) model to non-linear
functions µk, σk of the history y<k.

An autoregressive pushforward operation can be inverted, so long as σk > 0:

εk =
yk − µk(y<k)
σk(y<k)

. (5)
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Whereas sampling from an autoregressive model costs O(p) sequential sampling operations, the
inverse autoregressive transformation can be computed as a parallel, vectorized operation: ε =
(y− µ(y))/σ(y). Futhermore, due to the autoregressive structure, the Jacobian of this operation
is lower diagonal and

logdet

(
∂ε

∂y

)
= −

p∑
k=1

log σk(y<k). (6)

The idea of inverse autoregressive flows [Kingma et al., 2016] is to use a sequence of inverse
autoregressive functions to construct an expressive family of pushforward distributions to parame-
terize the posterior approximation in a VAE. Concretely, we take y = zt−1, ε = zt and write

zt =
zt−1 − µt(zt−1)

σt(zt−1)
=

zt−1
σt(zt−1)

− µt(zt−1)
σt(zt−1)

. (7)

Rather than directly parameterizing µt,σt, it’s more convenient and numerically stable to parame-
terize this transformation with a pair of autoregressive neural networks mt, st, with which we define
vt = sigmoid(st), σt = 1/vt, and µt = −σt � (1− vt)�mt; it follows that

zt = vtzt−1 + (1− vt)�mt. (8)

Another way to think about this construction is that using an expressive posterior approximation
zT parameterized by an inverse autoregressive flow is equivalent to using an autoregressive prior over
the latent space using an autoregressive pushforward of z0 ∼ N (0, I); the advantage of using the
inverse flow is that we can take advantage of parallelism in the inverse operations. Furthermore,
the additional computational costs of the autoregressive operation are pushed into the encoder
network, while sampling pθ(x, z) remains untouched from the original formulation of the VAE; not
only does an autoregressive prior require serial computations, but these computations are incurred
in the forward (decoder) sampling operation.
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