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Convolutional neural networks (convnets) are a family of functions introduced by LeCun et al.
[1989] that we can use to parameterize models. They have a bias towards translation-invariance,
which has made them particularly suitable for visual and audio data that exhibit local self-similarity.
They also have a locality bias, although this bias is mitigated with depth. Convnets pervade ma-
chine learning research (especially in vision); the modern, canonical version of a convnet described
in this document was introduced by He et al. [2016]. Maybe the most notable application of
convnets is AlexNet [Krizhevsky et al., 2012], which popularized the principle of deep learning.

Image Modeling

A digital image can be represented as tensor x ∈ RC×h×w, where h and w are the height and
width of the image respectively (measured in pixels) and C are the color channels of the image.
Conventionally C = 3 with color channels in R/G/B (red/green/blue) format; for grayscale images,
C = 1. We typically normalize the dynamic range of color intensities to the range [0, 1], i.e. x ∈
[0, 1]C×h×w. It’s also common to represent images with discrete intensities by linearly quantizing
the range [0, 1]. For example, 8-bit color images take values x ∈ XC×h×w with |X | = 28 = 256.

Visual data was the motivating example for the development of convnets, and it’s a useful
example to keep in mind as we explore convolutional architectures. For convenience, we’ll assume
that h = w = d, i.e. we assume that our images are square. Note that the convnets that we discuss
trivially generalize to non-square images. These models apply equally well to one-dimensional data,
simply setting h = 1 to drop the second spatial dimension [Oord et al., 2016]. Convnets have also
been applied to higher-dimensional data, e.g 3d voxel data [Tian et al., 2019].

A Simple Convnet Architecture

A convolutional layer is a parameterized function class fθ : RCin×d×d → RCout×d×d. If x ∈
RCin×d×d then fθ(x) = z where

zc,i,j = ReLU

(
Cin∑
c′=1

〈Wc,c′ ,Pad(x)i:i+k,j:j+k〉

)
, W ∈ RCout×Cin×k×k. (1)

Each index of the weight tensor Wc is referred to as a convolution filter. The idea is that we
transform the values xi,j ∈ RCin into values zi,j ∈ RCout based on local information from the input
in a neighborhood of xi,j . The hyper-parameter k is called the receptive field of the convolution,
and controls the size of the neighborhood that we use to compute this transformation. The padding
function pad : RCin×d×d → RCin×(d+k)×(d+k) is defined by

Pad(x)d,i,j =

{
xd,i−bk/2c,j−bk/2c if i ≥ bk/2c and j ≥ bk/2c,
0 otherwise.

(2)
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This should be interpreted as a zero-padded version of the input x; typically we choose an odd
value for the receptive field k, in which case the pad is symmetric. If we set C = Cin = Cout

then the convolutional layer is endomorphic and can be stacked. A convnet is a composition of L
convolutional layers, each with their own parameters: fθL ◦ · · · ◦ fθ1(x) ∈ RC×d×d.

Observe that a convolution layer exhibits locality bias: zi,j is only a function of input in a local
neighborhood of xi,j . By restricting the receptive field to a bounded k × k patch, and using the
same weights W to compute the relationship between inputs and outputs at each index (i, j), our
parameter counts do not scale with the dimensionality of the input d × d. By stacking multiple
convolution layers on top of each other, we achieve a wider receptive field. It’s worth taking a
moment to contrast the convolutional layer with a transformer block or a recurrent network. Each
architecture breaks the correspondence between parameter counts and input dimensionality, but
each achieves this independence in a very different way: local connectivity in the convolutional
network, versus attention in the transformer, versus state in the recurrent network.

Deep Residual Convnets

A surprising, and surprising consistent, empirical finding across many applications is that the
performance of convnets increases pretty monotonically with the depth L of the network; this is
the success of deep learning. But to take advantage of depth, we need a couple of modern tricks.
We need a good optimizer; vanilla SGD can fail, or become exceedingly difficult to tune for deep
networks, leading to the development of modern adaptive optimizers like Adam [Kingma and Ba,
2015]. People have also reported that initialization is important for optimizing deep networks
[Mishkin and Matas, 2016], although in my own experiments I’ve found that a simple Gaussian
init generally works fine. Beyond the optimizer and init, there are two modifications of the basic
convolutional architecture that enable optimization of very deep networks: batch normalization
[Ioffe and Szegedy, 2015] and residual connections [He et al., 2016].

A residual convolutional block is a parameterized function class fθ : RC×d×d → RC×d×d. If
x ∈ RC×d×d then fθ(x) = z where

u′c,i,j =

C∑
c′=1

〈W 1
c,c′ ,Pad(x)i:i+k,j:j+k〉, W 1 ∈ RC×C×k×k, (3)

u = ReLU
(
BatchNorm(u′; γ1, β1)

)
, γ1, β1 ∈ RC , (4)

z′c,i,j =
C∑
c′=1

〈W 2
c,c′ ,Pad(u)i:i+k,j:j+k〉, W 2 ∈ RC×C×k×k. (5)

z = ReLU
(
x + BatchNorm(z′); γ2, β2

)
, γ2, β2 ∈ RC. (6)

The BatchNorm function [Ioffe and Szegedy, 2015] is applied directly after every convolution oper-
ation, and is defined for a batch of B samples z ∈ RB×C×d×d by

BatchNorm(z; γ, β)i,c = γc
(zi,c − µz,c)

σz,c
+ βc, γ, β ∈ RC . (7)

µz =
1

B

B∑
i=1

zi, σz =

√√√√1

k

B∑
i=1

(zi − µz)2. (8)
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The residual connection, defined in Equation (6) by reintroducing the input x directly at the output
of the block, is motivated by the principle that we should make it easy for a neural network to fit
the identify function; for further discussion of this principle see Hardt and Ma [2017].

Contrast batch normalization, which centers the mean and normalizes the variance of indepen-
dent samples across a minibatch, with the layer normalization used in transformers, which centers
the mean and normalizes the variance of features across a single sample. Batch-normalization re-
quires use of a minibatch during training (when the minibatch gets very small, maybe 4 samples
or less, the behavior of BatchNorm gets weird). After training, when we evaluate the network we
replace minibatch statistics µz and σz with large-batch versions computed across the whole training
dataset (or approximated by an exponential moving average of these statistics accumulated during
training). This is a little weird, since it means that we optimize a different function than we eval-
uate; this behavior is comparable to the behavior of the Dropout function [Srivastava et al., 2014]
and if it makes you feel better you could think of BatchNorm as a strange form of regularization
that happens to also help us optimize. The reason BatchNorm helps us optimize remains unclear,
five years after its introduction, despite its widespread adoption.

1x1 Convolutions

A final modern trick for improving the performance of convnets is the idea of a 1x1 convolution.
These 1x1 convolutions first appeared (as far as I can tell) in Lin et al. [2013] and were rapidly
integrated into models like Inception [Szegedy et al., 2015] before appearing in the form presented
here in He et al. [2016]. The idea of a 1x1 convolution is that we want to make the capacity of out
network C large, but if C is large then the weight matrices W 1,W 2 ∈ RC×C×k×k appearing in the
residual convolutional block have a lot of parameters, and convolving with these matrices can be
computationally intensive. The idea of a 1x1 convolution is to maintain a large network capacity
C, but project down to a smaller collection of feature maps D before convolving.

A residual block with 1x1 convolutions is a parameterized function class fθ : RC×d×d →
RC×d×d. If x ∈ RC×d×d then fθ(x) = z where

u′c,i,j =

C∑
c′=1

〈W 1
c,c′ ,xi:i+1,j:j+1〉, W 1 ∈ RC×D×1×1, (9)

u = ReLU
(
BatchNorm(u′; γ1, β1)

)
, γ1, β1 ∈ RD, (10)

v′c,i,j =
D∑
c′=1

〈W 2
c,c′ ,Pad(u)i:i+k,j:j+k〉, W 2 ∈ RD×D×k×k, (11)

v = ReLU
(
BatchNorm(v′; γ1, β1)

)
, γ2, β2 ∈ RD, (12)

z′c,i,j =
D∑
c′=1

〈W 3
c,c′ ,Pad(v)i:i+1,j:j+1〉, W 3 ∈ RD×C×1×1. (13)

z = ReLU
(
x + BatchNorm(z′); γ3, β3

)
, γ2, β2 ∈ RC . (14)

The 1x1 convolution W 1 applies a projection at each coordinate (i, j) of the input from C channels
down to D channels (with the understanding that D < C). We then perform a k × k convolution
with a reduced number of filter maps D, before projecting back up to C channels again with a
second 1x1 convolution operation using weights W 3. Drawing a very loose analogy to transformer
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networks, we could compare the inner k×k convolution to the attention layer of a transformer block,
and the 1x1 convolutions to the fully-connected layer. This perspective puts residual blocks with
1x1 convolutions into the same loose convection-diffusion framework described for transformers by
Lu et al. [2019].
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